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Phenomenological approach to complex systems. 
- averaging over suitable scale (mean free path)
- long wavelength limit of a field theory
- superfluids (coherence length)

Realistic physics requires several distinct “flows”.



Why “relativistic” fluids?

- at high temperatures, individual particle velocities may be 
large

- the average velocity of the fluid elements may be large 
- the curved spacetime may play a role



“Thermodynamics is a branch of 
physics concerned with heat and 
temperature and their relation to 
energy and work. It defines 
macroscopic variables, such as 
internal energy, entropy and 
pressure that partly describe a 
body of matter or radiation.” 

(the wisdom of Wikipedia)



Euler relation (extensive system)

or, in terms of densities

Key question: Who measures what?

2 Thermodynamics and Equations of State

A fluids consists of many fluid elements, and each fluid element consists of many particles. The
state of matter in a given fluid element is determined thermodynamically [126], meaning that
only a few parameters are tracked as the fluid element evolves. In a typical situation, not all the
thermodynamic variables are independent – they are connected through the so-called equation of
state. Moreover, the number of independent variables can also be reduced if the system has an
overall additivity property. As this is a very instructive example, we will illustrate such additivity
in detail.

2.1 Fundamental, or Euler, relation

Consider the standard form of the combined First and Second Laws4 for a simple, single-species
system:

dE = T dS � p dV + µ dN. (2)

This follows because there is an equation of state, meaning that E = E(S, V, N) where

T =
@E

@S

����
V,N

, p = �
@E

@V

����
S,N

, µ =
@E

@N

����
S,V

. (3)

The total energy E, entropy S, volume V , and particle number N are said to be extensive if when
S, V , and N are doubled, say, then E will also double. Conversely, the temperature T , pressure
p, and chemical potential µ are called intensive if they do not change their values when V , N ,
and S are doubled. This is the additivity property and we will now show that it implies an Euler
relation (also known as the “fundamental relation” [126]) among the thermodynamic variables.
This relation is essential for any e↵ort to connect the microphysics and thermodynamics to the
fluid dynamics.

Let a tilde represent the change in thermodynamic variables when S, V , and N are all increased
by the same amount �, i.e.

S̃ = �S, Ṽ = �V, Ñ = �N. (4)

Taking E to be extensive then means

Ẽ(S̃, Ṽ , Ñ) = �E(S, V, N). (5)

Of course we have for the intensive variables

T̃ = T, p̃ = p, µ̃ = µ. (6)

Now,

dẼ = � dE + E d�

= T̃ dS̃ � p̃ dṼ + µ̃ dÑ

= � (TdS � pdV + µdN) + (TS � pV + µN) d�, (7)

and therefore we find the Euler relation

E = TS � pV + µN. (8)

4 We say “combined” here because the First Law is a statement about heat and work, and says nothing about
the entropy, which enters through the Second Law. Heat is not strictly equal to T dS for all processes; they are
equal for quasistatic processes, but not for free expansion of a gas into vacuum [132].
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If we let " = E/V denote the total energy density, s = S/V the total entropy density, and n = N/V

the total particle number density, then

p + " = Ts + µn. (9)

The nicest feature of an extensive system is that the number of parameters required for a
complete specification of the thermodynamic state can be reduced by one, and in such a way that
only intensive thermodynamic variables remain. To see this, let � = 1/V , in which case

S̃ = s, Ṽ = 1, Ñ = n. (10)

The re-scaled energy becomes just the total energy density, i.e. Ẽ = E/V = ", and moreover
" = "(s, n) since

" = Ẽ(S̃, Ṽ , Ñ) = Ẽ(S/V, 1, N/V ) = Ẽ(s, n). (11)

The first law thus becomes

dẼ = T̃ dS̃ � p̃ dṼ + µ̃ dÑ = T ds + µ dn, (12)

or
d" = T ds + µ dn. (13)

This implies

T =
@"

@s

����
n

, µ =
@"

@n

����
s

. (14)

That is, µ and T are the chemical potentials5 associated with the particles and entropy, respectively.
The Euler relation (9) then yields the pressure as

p = �" + s
@"

@s

����
n

+ n
@"

@n

����
s

. (15)

We can think of a given relation "(s, n) as the equation of state, to be determined in the flat,
tangent space at each point of the manifold, or, physically, small enough patches across which the
changes in the gravitational field are negligible, but also large enough to contain a large number of
particles. For example, for a neutron star Glendenning [67] has reasoned that the relative change in
the metric over the size of a nucleon with respect to the change over the entire star is about 10�19,
and thus one must consider many internucleon spacings before a substantial change in the metric
occurs. In other words, it is su�cient to determine the properties of matter in special relativity,
neglecting e↵ects due to spacetime curvature. The equation of state is the major link between
the microphysics that governs the local fluid behavior and global quantities (such as the mass and
radius of a star).

In what follows we will use a thermodynamic formulation that satisfies the fundamental scaling
relation, meaning that the local thermodynamic state (modulo entrainment, see later) is a function
of the variables N/V , S/V , etc. This is in contrast to the fluid formulation of “MTW” [108]. In
their approach one fixes from the outset the total number of particles N , meaning that one simply
sets dN = 0 in the first law of thermodynamics. Thus without imposing any scaling relation, one
can write

d" = d (E/V ) = T ds +
1

n
(p + " � Ts) dn. (16)

This is consistent with our starting point for fluids, because we assume that the extensive variables
associated with a fluid element do not change as the fluid element moves through spacetime.
However, we feel that the use of scaling is necessary in that the fully conservative, or non-dissipative,
fluid formalism presented below can be adapted to non-conservative, or dissipative, situations where
dN = 0 cannot be imposed.

5Loosely speaking, the “energy” associated with adding or removing one particle of the given species from the
system.
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to the timelike direction defined by U
a (see [137] for the idea from a “3+ 1” point of view, or [36]

from the “brane” point of view) is e↵ected via the operator ?
a
b , defined as

?
a
b= �

a
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a
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a
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a = 0 (158)

Any tensor index that has been “hit” with the projection operator will be perpendicular to the
timelike direction defined locally by U

a. It is then easy to see that any vector can be expressed in
terms of it component along a given U

a and a component orthogonal (in the spacetime sense) to
it. That is,

V
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a
b V

b + (Ua
UbV

b
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The two projections (of a vector V
a for an observer with unit four-velocity U

a) are illustrated in
figure 6. More general tensors are projected by acting with U

a or ?
a
b on each index separately (i.e.

multi-linearly).

5 Case Study: Single Fluids

Without an a priori, physically-based specification for Tab, solutions to the Einstein equations
are devoid of physical content, a point which has been emphasized, for instance, by Geroch and
Horowitz (in [63]). Unfortunately, the following algorithm for producing “solutions” has been
much abused: (i) specify the form of the metric, typically by imposing some type of symmetry,
or symmetries, (ii) work out the components of Gab based on this metric, (iii) define the energy
density to be G00 and the pressure to be G11, say, and thereby “solve” those two equations, and
(iv) based on the “solutions” for the energy density and pressure solve the remaining Einstein
equations. The problem is that this algorithm is little more than a mathematical game. It is only
by sheer luck that it will generate a physically relevant solution for a non-vacuum spacetime. As
such, the strategy is antithetical to the raison d’être of, say, gravitational-wave astrophysics, which
is to use gravitational-wave data as a probe the microphysics, say, in the cores of neutron stars.
Much e↵ort is currently going into taking given microphysics and combining it with the Einstein
equations to model gravitational-wave emission from realistic neutron stars, such as the NS-NS
merger GW????? ref[??]. To achieve this aim, we need an appreciation of the stress-energy tensor
and how it is obtained from microphysics.

5.1 General stress decomposition

Those familiar with Newtonian fluids will be aware of the roles that total internal energy, particle
flux, and the stress tensor play in the fluid equations. In special relativity we learn that in order to
have spacetime covariant theories (e.g. well-behaved with respect to the Lorentz transformations)
energy and momentum must be combined into a spacetime vector, whose zeroth component is the
energy and the spatial components give the momentum. The fluid stress must also be incorporated
into a spacetime object, hence the necessity for Tab. Because the Einstein tensor’s covariant
divergence vanishes identically [Mention di↵eomorphism invariance leading to Bianchi Identities?],
we must have also rbT

b
a = 0 (which we will later see happens automatically once the fluid field

equations are satisfied).
To understand what the various components of Tab mean physically we will write them in terms

of projections into the timelike and spacelike directions associated with a given observer. In order
to project a tensor index along the observer’s timelike direction we contract that index with the
observer’s unit four-velocity U

a. A projection of an index into spacelike directions perpendicular
to the timelike direction defined by U

a (see [116] for the idea from a “3+ 1” point of view, or [28]
from the “brane” point of view) is realized via the operator ?

a
b , defined as

?
a
b= �

a
b + U

a
Ub , U

a
Ua = �1 . (151)

Any tensor index that has been “hit” with the projection operator will be perpendicular to the
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b = 0. Figure 6 [NOTE: Indices need
to be changed to a, b, etc.] is a local view of both projections of a vector V
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We will make frequent use of this idea as we proceed.
More general tensors are projected by acting with U

a or ?
a
b on each index separately (i.e.

multi-linearly).

35

5 Case Study: Single Fluids

Without an a priori, physically-based specification for Tab, solutions to the Einstein equations
are devoid of physical content, a point which has been emphasized, for instance, by Geroch and
Horowitz (in [63]). Unfortunately, the following algorithm for producing “solutions” has been
much abused: (i) specify the form of the metric, typically by imposing some type of symmetry,
or symmetries, (ii) work out the components of Gab based on this metric, (iii) define the energy
density to be G00 and the pressure to be G11, say, and thereby “solve” those two equations, and
(iv) based on the “solutions” for the energy density and pressure solve the remaining Einstein
equations. The problem is that this algorithm is little more than a mathematical game. It is only
by sheer luck that it will generate a physically relevant solution for a non-vacuum spacetime. As
such, the strategy is antithetical to the raison d’être of, say, gravitational-wave astrophysics, which
is to use gravitational-wave data as a probe the microphysics, say, in the cores of neutron stars.
Much e↵ort is currently going into taking given microphysics and combining it with the Einstein
equations to model gravitational-wave emission from realistic neutron stars, such as the NS-NS
merger GW????? ref[??]. To achieve this aim, we need an appreciation of the stress-energy tensor
and how it is obtained from microphysics.

5.1 General stress decomposition

Those familiar with Newtonian fluids will be aware of the roles that total internal energy, particle
flux, and the stress tensor play in the fluid equations. In special relativity we learn that in order to
have spacetime covariant theories (e.g. well-behaved with respect to the Lorentz transformations)
energy and momentum must be combined into a spacetime vector, whose zeroth component is the
energy and the spatial components give the momentum. The fluid stress must also be incorporated
into a spacetime object, hence the necessity for Tab. Because the Einstein tensor’s covariant
divergence vanishes identically [Mention di↵eomorphism invariance leading to Bianchi Identities?],
we must have also rbT

b
a = 0 (which we will later see happens automatically once the fluid field

equations are satisfied).
To understand what the various components of Tab mean physically we will write them in terms

of projections into the timelike and spacelike directions associated with a given observer. In order
to project a tensor index along the observer’s timelike direction we contract that index with the
observer’s unit four-velocity U

a. A projection of an index into spacelike directions perpendicular
to the timelike direction defined by U

a (see [116] for the idea from a “3+ 1” point of view, or [28]
from the “brane” point of view) is realized via the operator ?

a
b , defined as

?
a
b= �

a
b + U

a
Ub , U

a
Ua = �1 . (151)

Any tensor index that has been “hit” with the projection operator will be perpendicular to the
timelike direction defined locally by U

a in the sense that ?
a
b U

b = 0. Figure 6 [NOTE: Indices need
to be changed to a, b, etc.] is a local view of both projections of a vector V

a for an observer with
unit four-velocity U

a. It is easy to see that any vector can be expressed in terms of it component
along a given U

a and a component orthogonal (in the spacetime sense) to it. That is,

V
a = �

a
b V

b + (Ua
UbV

b
� U

a
UbV

b)| {z }
=0

= �(UbV
b)Ua+ ?

a
b V

b (152)

We will make frequent use of this idea as we proceed.
More general tensors are projected by acting with U

a or ?
a
b on each index separately (i.e.

multi-linearly).

35

5 Case Study: Single Fluids

Without an a priori, physically-based specification for Tab, solutions to the Einstein equations
are devoid of physical content, a point which has been emphasized, for instance, by Geroch and
Horowitz (in [63]). Unfortunately, the following algorithm for producing “solutions” has been
much abused: (i) specify the form of the metric, typically by imposing some type of symmetry,
or symmetries, (ii) work out the components of Gab based on this metric, (iii) define the energy
density to be G00 and the pressure to be G11, say, and thereby “solve” those two equations, and
(iv) based on the “solutions” for the energy density and pressure solve the remaining Einstein
equations. The problem is that this algorithm is little more than a mathematical game. It is only
by sheer luck that it will generate a physically relevant solution for a non-vacuum spacetime. As
such, the strategy is antithetical to the raison d’être of, say, gravitational-wave astrophysics, which
is to use gravitational-wave data as a probe the microphysics, say, in the cores of neutron stars.
Much e↵ort is currently going into taking given microphysics and combining it with the Einstein
equations to model gravitational-wave emission from realistic neutron stars, such as the NS-NS
merger GW????? ref[??]. To achieve this aim, we need an appreciation of the stress-energy tensor
and how it is obtained from microphysics.

5.1 General stress decomposition

Those familiar with Newtonian fluids will be aware of the roles that total internal energy, particle
flux, and the stress tensor play in the fluid equations. In special relativity we learn that in order to
have spacetime covariant theories (e.g. well-behaved with respect to the Lorentz transformations)
energy and momentum must be combined into a spacetime vector, whose zeroth component is the
energy and the spatial components give the momentum. The fluid stress must also be incorporated
into a spacetime object, hence the necessity for Tab. Because the Einstein tensor’s covariant
divergence vanishes identically [Mention di↵eomorphism invariance leading to Bianchi Identities?],
we must have also rbT

b
a = 0 (which we will later see happens automatically once the fluid field

equations are satisfied).
To understand what the various components of Tab mean physically we will write them in terms

of projections into the timelike and spacelike directions associated with a given observer. In order
to project a tensor index along the observer’s timelike direction we contract that index with the
observer’s unit four-velocity U

a. A projection of an index into spacelike directions perpendicular
to the timelike direction defined by U

a (see [116] for the idea from a “3+ 1” point of view, or [28]
from the “brane” point of view) is realized via the operator ?

a
b , defined as

?
a
b= �

a
b + U

a
Ub , U

a
Ua = �1 . (151)

Any tensor index that has been “hit” with the projection operator will be perpendicular to the
timelike direction defined locally by U

a in the sense that ?
a
b U

b = 0. Figure 6 [NOTE: Indices need
to be changed to a, b, etc.] is a local view of both projections of a vector V

a for an observer with
unit four-velocity U

a. It is easy to see that any vector can be expressed in terms of it component
along a given U

a and a component orthogonal (in the spacetime sense) to it. That is,

V
a = �

a
b V

b + (Ua
UbV

b
� U

a
UbV

b)| {z }
=0

= �(UbV
b)Ua+ ?

a
b V

b (152)

We will make frequent use of this idea as we proceed.
More general tensors are projected by acting with U

a or ?
a
b on each index separately (i.e.

multi-linearly).

35

5 Case Study: Single Fluids

Without an a priori, physically-based specification for Tab, solutions to the Einstein equations
are devoid of physical content, a point which has been emphasized, for instance, by Geroch and
Horowitz (in [63]). Unfortunately, the following algorithm for producing “solutions” has been
much abused: (i) specify the form of the metric, typically by imposing some type of symmetry,
or symmetries, (ii) work out the components of Gab based on this metric, (iii) define the energy
density to be G00 and the pressure to be G11, say, and thereby “solve” those two equations, and
(iv) based on the “solutions” for the energy density and pressure solve the remaining Einstein
equations. The problem is that this algorithm is little more than a mathematical game. It is only
by sheer luck that it will generate a physically relevant solution for a non-vacuum spacetime. As
such, the strategy is antithetical to the raison d’être of, say, gravitational-wave astrophysics, which
is to use gravitational-wave data as a probe the microphysics, say, in the cores of neutron stars.
Much e↵ort is currently going into taking given microphysics and combining it with the Einstein
equations to model gravitational-wave emission from realistic neutron stars, such as the NS-NS
merger GW????? ref[??]. To achieve this aim, we need an appreciation of the stress-energy tensor
and how it is obtained from microphysics.

5.1 General stress decomposition

Those familiar with Newtonian fluids will be aware of the roles that total internal energy, particle
flux, and the stress tensor play in the fluid equations. In special relativity we learn that in order to
have spacetime covariant theories (e.g. well-behaved with respect to the Lorentz transformations)
energy and momentum must be combined into a spacetime vector, whose zeroth component is the
energy and the spatial components give the momentum. The fluid stress must also be incorporated
into a spacetime object, hence the necessity for Tab. Because the Einstein tensor’s covariant
divergence vanishes identically [Mention di↵eomorphism invariance leading to Bianchi Identities?],
we must have also rbT

b
a = 0 (which we will later see happens automatically once the fluid field

equations are satisfied).
To understand what the various components of Tab mean physically we will write them in terms

of projections into the timelike and spacelike directions associated with a given observer. In order
to project a tensor index along the observer’s timelike direction we contract that index with the
observer’s unit four-velocity U

a. A projection of an index into spacelike directions perpendicular
to the timelike direction defined by U

a (see [116] for the idea from a “3+ 1” point of view, or [28]
from the “brane” point of view) is realized via the operator ?

a
b , defined as

?
a
b= �

a
b + U

a
Ub , U

a
Ua = �1 . (151)

Any tensor index that has been “hit” with the projection operator will be perpendicular to the
timelike direction defined locally by U

a in the sense that ?
a
b U

b = 0. Figure 6 [NOTE: Indices need
to be changed to a, b, etc.] is a local view of both projections of a vector V

a for an observer with
unit four-velocity U

a. It is easy to see that any vector can be expressed in terms of it component
along a given U

a and a component orthogonal (in the spacetime sense) to it. That is,

V
a = �

a
b V

b + (Ua
UbV

b
� U

a
UbV

b)| {z }
=0

= �(UbV
b)Ua+ ?

a
b V

b (152)

We will make frequent use of this idea as we proceed.
More general tensors are projected by acting with U

a or ?
a
b on each index separately (i.e.

multi-linearly).

35

Figure 6: The projections of a vector V
a onto the worldline defined by U

a and into the perpendicular
hypersurface (obtained from the action of ?

a
b ).

First, let us see how we can use the projection to give physical “meaning” to the components
of the stress-energy tensor. The energy density " as perceived by the observer is (see Eckart [56]
for one of the earliest discussions)

" = U
a
U

b
Tab , (160)

while
Pa = � ?

b
a U

c
Tbc (161)

is the spatial momentum density (as it does not have a contribution along U
a it is a three vector),

and the spatial stresses are encoded in

Sab =?
c
a?

d
b Tcd . (162)

The manifestly spatial component Sij is understood to be the i
th-component of the force across a

unit area that is perpendicular to the j
th-direction. With respect to the observer, the stress-energy

tensor can now be written (in full generality) as the decomposition

Tab = " UaUb + 2U(aPb) + Sab, (163)
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General observer measures:
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Figure 6: The projections of a vector V
a onto the worldline defined by U
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First, let us see how we can use the projection to give physical “meaning” to the components
of the stress-energy tensor. The energy density " as perceived by the observer is (see Eckart [56]
for one of the earliest discussions)
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is the spatial momentum density (as it does not have a contribution along U
a it is a three vector),

and the spatial stresses are encoded in
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The manifestly spatial component Sij is understood to be the i
th-component of the force across a

unit area that is perpendicular to the j
th-direction. With respect to the observer, the stress-energy

tensor can now be written (in full generality) as the decomposition

Tab = " UaUb + 2U(aPb) + Sab, (163)
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The two projections (of a vector V
a for an observer with unit four-velocity U

a) are illustrated in
figure 6. More general tensors are projected by acting with U
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a
U

b
Tab , (160)

while
Pa = � ?

b
a U

c
Tbc (161)

is the spatial momentum density (as it does not have a contribution along U
a it is a three vector),

and the spatial stresses are encoded in

Sab =?
c
a?

d
b Tcd . (162)

The manifestly spatial component Sij is understood to be the i
th-component of the force across a

unit area that is perpendicular to the j
th-direction. With respect to the observer, the stress-energy

tensor can now be written (in full generality) as the decomposition

Tab = " UaUb + 2U(aPb) + Sab, (163)
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In a coordinate frame moving with the fluid, the four 
velocity measures the progression of (proper) time. This 
allows us to “fibrate” spacetime.

stars collapsing under their own weight). The first step we have to take is natural – we need to
consider how a given fluid element moves through spacetime and how the fluid motion enters the
Einstein field equations. To some extent this is a text-book problem with a well-known solution
(=the perfect fluid model). However, as we will see learn along the way, more realistic matter
descriptions (including for example superfluidity, as expected in the core of a mature neutron star,
or the elasticity of the star’s crust)) require a more sophisticated approach. Nevertheless, the first
step we have to take is natural.

The explicit trajectories that enter the Einstein equations are those of the fluid elements, not the
much smaller (generally fundamental) particles that are “confined”, on average, to the elements.
Hence, when we talk about the fluid velocity, we mean the velocity of fluid elements. In this sense,
the use of the phrase “fluid particle” is very apt. For instance, each fluid element will trace out a
timelike trajectory in spacetime x

a(⌧), such that the unit tangent vector

u
a =

dx
a

d⌧
, with uau

a = �1 (1)

where ⌧ is time measured on a co-moving clock (proper time), provides the four velocity of the
particle. The idea is illustrated in Figure 3.
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Figure 3: An illustration of the fibration of spacetime associated with a set of fluid “observers”,
each with their own four velocity u

a and notion of time (the proper time measured on a co-moving
clock). In the fluid model, individual worldlines are assigned to specific fluid elements (which
involve averages over the assumed large number of constituent particles).

The fundamental variable that enters the fluid equations is the particle flux density, in the
following given by n

a = nu
a, where n ⇡ N/L

3 is the particle number density of the fluid element
whose worldline is given by u

a. An object like a neutron star is then modelled as a collection of
particle flux density worldlines that fill out continuously a portion of spacetime. In fact, we will
see later that the relativistic Euler equation is little more than an “integrability” condition that
guarantees that this filling (or fibration) of spacetime can be performed.

Equivalently, we may consider the family of three-dimensional hypersurfaces that are pierced
by the worldlines at given instants of time, as illustrated in Figure 8. The integrability condition in
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a. An object like a neutron star is then modelled as a collection of
particle flux density worldlines that fill out continuously a portion of spacetime. In fact, we will
see later that the relativistic Euler equation is little more than an “integrability” condition that
guarantees that this filling (or fibration) of spacetime can be performed.

Equivalently, we may consider the family of three-dimensional hypersurfaces that are pierced
by the worldlines at given instants of time, as illustrated in Figure 8. The integrability condition in
this case will guarantee that the family of hypersurfaces continuously fill out a portion of spacetime.
In this view, a fluid is a so-called three-brane (see [36] for a general discussion of branes). In fact
the method used in Section 6 to derive the relativistic fluid equations is based on thinking of a fluid
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where 2U(aPb) ⌘ UaPb + UbPa. Because U
a
Pa = 0, we see that the trace T = T

a
a is

T = S � ", (164)

where S = S
a

a.

5.2 “O↵-the-shelf” analysis

As we have already suggested, there are many di↵erent ways of deriving the general relativistic
fluid equations. Our purpose here is not to review all possible methods, but rather to focus on a
couple: (i) an “o↵-the-shelf” consistency analysis for the simplest fluid a la Eckart [56], to establish
some key ideas, and then (ii) a more powerful method based on an action principle that varies fluid
element world lines. We now consider the first of these points. The second avenue will be explored
in section XXX.

We have just seen how the components of a general stress-energy tensor can be projected onto
the axes of a coordinate system carried by an observer moving with four-velocity U

a. Let us now
connect this with the motion of a fluid model. The simplest fluid is one for which there is only one
four-velocity u

a. As both four velocities are normalized (to unity) we must have

u
a = �(Ua + v

a) , with Uav
a = 0 and � = (1 � v

2)�1/2 (165)

the familiar redshift factor from special relativity. Clearly, the problem simplifies if we let the
observer ride along with the fluid. That is, we introduce a preferred frame defined by u

a, and
then simply take U

a = u
a. With respect to the fluid there will be no momentum flux, i.e. Pa = 0.

Moreover, since we use a fully spacetime covariant formulation, i.e. there are only spacetime indices,
the resulting stress-energy tensor will transform properly under general coordinate transformations,
and hence can be used for any observer.

The spatial stress is a two-index, symmetric tensor, and the only objects that can be used to
carry the indices (in the simple model we are considering) are the four-velocity u

a and the metric
gab. Furthermore, because the spatial stress must also be symmetric, the only possibility is a linear
combination of gab and u

a
u

b. Given that u
b
Sba = 0, we find

Sab =
1

3
S(gab + uaub). (166)

As the system is assumed to be locally isotropic, it is possible to diagonalize the spatial-stress
tensor. This also implies that its three independent diagonal elements should actually be equal to
the same quantity, which turns out to be the local pressure. Hence we have p = S/3 and

Tab = (" + p) uaub + pgab = "uaub + p ?ab . (167)

This is the well-established result for a perfect fluid.
Given a relation p = p(") (an equation of state), there are four independent fluid variables.

Because of this the equations of motion are often understood to be given by (157). Let us proceed
along these lines, but first simplify matters by assuming that equation of state is given by a relation
of the form " = "(n) where n is the particle number density. As discussed in Section XXX, the
chemical potential µ is then given by

d" =
@"

@n
dn ⌘ µ dn , (168)

and we know from the Euler relation (9) that

µn = p + ". (169)
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For fluid observer, we have (assume isotropic):

And the equations of motion follow from 
(although… see later)
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5 Case Study: Single Fluids

Without an a priori, physically-based specification for Tab, solutions to the Einstein equations
are devoid of physical content, a point which has been emphasized, for instance, by Geroch and
Horowitz (in [74]). Unfortunately, the following algorithm for producing “solutions” has been
much abused: (i) specify the form of the metric, typically by imposing some type of symmetry,
or symmetries, (ii) work out the components of Gab based on this metric, (iii) define the energy
density to be G00 and the pressure to be G11, say, and thereby “solve” those two equations, and
(iv) based on the “solutions” for the energy density and pressure solve the remaining Einstein
equations. The problem is that this algorithm is little more than a mathematical game. It is
only by sheer luck that it will generate a physically relevant solution for a non-vacuum spacetime.
As such, the strategy is antithetical to the raison d’être of, say, gravitational-wave astrophysics,
which is to use gravitational-wave data as a probe the microphysics, say, in the cores of neutron
stars. Much e↵ort is currently going into taking given microphysics and combining it with the
Einstein equations to model gravitational-wave emission from astrophysical scenarios, like binary
neutron star mergers [Rezzolla-Baiotti review] To achieve this aim, we need an appreciation of
the stress-energy tensor and how it is obtained from microphysics.

5.1 General stress decomposition

Readers familiar with Newtonian fluids will be aware of the roles that the internal energy (recall the
discussion in Section XXX), the particle flux, and the stress tensor play in the fluid equations. In
special relativity we learn that in order to have spacetime covariant theories (e.g. well-behaved with
respect to the Lorentz transformation) energy and momentum must be combined into a spacetime
vector, whose zeroth component is the energy while the spatial components give the momentum (as
measured by a given observer). The fluid stress must also be incorporated into a spacetime object,
hence the necessity for Tab. Because the Einstein tensor’s covariant divergence vanishes identically
[Mention di↵eomorphism invariance leading to Bianchi Identities earlier?], we must have

rbT
b
a = 0 . (157)

This provides us with four equations, often interpreted as the equations for relativistic fluid dy-
namics. As we will soon see, this interpretation makes “sense” (as the equations we arrive at
reduce to the familiar Newtonian ones in the appropriate limit). However, from a formal point
of view the argument is somewhat misleading. It leaves us with the impression that the job is
done, but this is not (quite) the case. Sure, we are able to speedily write down the equations for
a perfect fluid. But, we still have work to do if we want to consider more complex setting (e.g.
including relative flows). The requires additional assumptions or a di↵erent approach altogether.
One of the main aims with this review is to develop such an alternative and explore the results in
a variety of settings. Having done this, we will see that the (157) follows automatically once the
“fluid equations” are satisfied. This may seem like splitting hairs at the moment, but the point we
are trying to make should become clear as we progress.

The fact that we will advocate a di↵erent strategy does not mean that the importance of the
stress-energy tensor is (somehow) reduced. Not at all. We still need Tab to provide the matter input
for the Einstein equations and we may opt to use (157) to get (some of) the dynamical equations
we need. Given this, it is important to understand the physical meaning of the components of Tab.
In order to do this, we have to introduce a suitable observer (someone has measure energy etc for
us). This then allows us to express the tensor components in terms of projections into the timelike
and spacelike directions associated with the observer.

In order to project a tensor along the observer’s timelike direction we contract that index with
the observer’s four-velocity, U

a. A projection of a tensor into spacelike directions perpendicular
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In essence, we have connected the model to the thermodynamics.
Let us now get rid of the free index of rbT

b
a = 0 in two ways: first, by contracting with u

a

and second, by projecting with ?
a
b (recalling that U

a = u
a). Given that that u

a
ua = �1 we have

the identity
ra

�
u

b
ub

�
= 0 �! ubrau

b = 0. (170)

Contracting (157) with u
a and using this identity gives

u
a
ra" + (" + p)rau

a = 0 . (171)

The definition of the chemical potential µ and the Euler relation allow us to rewrite this as

µu
a
ran + µnrau

a = 0 �! ran
a = 0 , (172)

where we have introduced the particle flux, n
a

⌘ nu
a. The equation we have derived simply

represents the fact that the particles are conserved.
Meanwhile, projection of the free index in (157) using ?

b
a leads to

(" + p)aa = � ?
b
a rbp , (173)

where aa ⌘ u
b
rbua is the fluid (four) acceleration. This is reminiscent of the familiar Euler

equation for Newtonian fluids. In fact, we demonstrate in the next section [???] that the non-
relativistic limit of exactly how this leads to the Newtonian result.

However, we should not be too quick to think that this is the only way to understand (157)!
There is an alternative form that makes the perfect fluid have much in common with vacuum
electromagnetism. If we define

µa = µua , (174)

then the stress-energy tensor can be written in the form

T
a

b = p�
a

b + n
a
µb . (175)

We have here our first encounter with the fluid element momentum µa that is conjugate to the
particle number density current n

a. Its importance will become clearer as this review develops,
particularly when we discuss the two-fluid case. For now, we simply note that uadu

a = 0, implies
that we will have

d" = �µa dn
a

. (176)

This relation will serve as the starting point for the fluid action principle presented in Section 6,
where it will be taken that �" is the fluid Lagrangian.

If we now project onto the free index of (157) using ?
b
a, as before, we arrive at

fa +
�
rbn

b
�
µa = 0 , (177)

where the force density fa is
fa = n

b
!ba , (178)

and the vorticity !ab is defined as

!ab ⌘ 2r[aµb] = raµb � rbµa . (179)

Contracting Equation (177) with n
a we see (since !ab = �!ba) that

ran
a = 0 (180)
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From energy to baryon number:
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b
a = 0 in two ways: first, by contracting with u

a

and second, by projecting with ?
a
b (recalling that U

a = u
a). Given that that u

a
ua = �1 we have

the identity
ra

�
u

b
ub

�
= 0 �! ubrau

b = 0. (170)

Contracting (157) with u
a and using this identity gives

u
a
ra" + (" + p)rau

a = 0 . (171)

The definition of the chemical potential µ and the Euler relation allow us to rewrite this as

µu
a
ran + µnrau

a = 0 �! ran
a = 0 , (172)

where we have introduced the particle flux, n
a

⌘ nu
a. The equation we have derived simply

represents the fact that the particles are conserved.
Meanwhile, projection of the free index in (157) using ?

b
a leads to

(" + p)aa = � ?
b
a rbp , (173)

where aa ⌘ u
b
rbua is the fluid (four) acceleration. This is reminiscent of the familiar Euler

equation for Newtonian fluids. In fact, we demonstrate in the next section [???] that the non-
relativistic limit of exactly how this leads to the Newtonian result.

However, we should not be too quick to think that this is the only way to understand (157)!
There is an alternative form that makes the perfect fluid have much in common with vacuum
electromagnetism. If we define

µa = µua , (174)

then the stress-energy tensor can be written in the form

T
a

b = p�
a

b + n
a
µb . (175)

We have here our first encounter with the fluid element momentum µa that is conjugate to the
particle number density current n

a. Its importance will become clearer as this review develops,
particularly when we discuss the two-fluid case. For now, we simply note that uadu

a = 0, implies
that we will have

d" = �µa dn
a

. (176)

This relation will serve as the starting point for the fluid action principle presented in Section 6,
where it will be taken that �" is the fluid Lagrangian.

If we now project onto the free index of (157) using ?
b
a, as before, we arrive at

fa +
�
rbn

b
�
µa = 0 , (177)

where the force density fa is
fa = n

b
!ba , (178)

and the vorticity !ab is defined as

!ab ⌘ 2r[aµb] = raµb � rbµa . (179)

Contracting Equation (177) with n
a we see (since !ab = �!ba) that

ran
a = 0 (180)
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where 2U(aPb) ⌘ UaPb + UbPa. Because U
a
Pa = 0, we see that the trace T = T

a
a is

T = S � ", (164)

where S = S
a

a.

5.2 “O↵-the-shelf” analysis

As we have already suggested, there are many di↵erent ways of deriving the general relativistic
fluid equations. Our purpose here is not to review all possible methods, but rather to focus on a
couple: (i) an “o↵-the-shelf” consistency analysis for the simplest fluid a la Eckart [56], to establish
some key ideas, and then (ii) a more powerful method based on an action principle that varies fluid
element world lines. We now consider the first of these points. The second avenue will be explored
in section XXX.

We have just seen how the components of a general stress-energy tensor can be projected onto
the axes of a coordinate system carried by an observer moving with four-velocity U

a. Let us now
connect this with the motion of a fluid model. The simplest fluid is one for which there is only one
four-velocity u

a. As both four velocities are normalized (to unity) we must have

u
a = �(Ua + v

a) , with Uav
a = 0 and � = (1 � v

2)�1/2 (165)

the familiar redshift factor from special relativity. Clearly, the problem simplifies if we let the
observer ride along with the fluid. That is, we introduce a preferred frame defined by u

a, and
then simply take U

a = u
a. With respect to the fluid there will be no momentum flux, i.e. Pa = 0.

Moreover, since we use a fully spacetime covariant formulation, i.e. there are only spacetime indices,
the resulting stress-energy tensor will transform properly under general coordinate transformations,
and hence can be used for any observer.

The spatial stress is a two-index, symmetric tensor, and the only objects that can be used to
carry the indices (in the simple model we are considering) are the four-velocity u

a and the metric
gab. Furthermore, because the spatial stress must also be symmetric, the only possibility is a linear
combination of gab and u

a
u

b. Given that u
b
Sba = 0, we find

Sab =
1

3
S(gab + uaub). (166)

As the system is assumed to be locally isotropic, it is possible to diagonalize the spatial-stress
tensor. This also implies that its three independent diagonal elements should actually be equal to
the same quantity, which turns out to be the local pressure. Hence we have p = S/3 and

Tab = (" + p) uaub + pgab = "uaub + p ?ab . (167)

This is the well-established result for a perfect fluid.
Given a relation p = p(") (an equation of state), there are four independent fluid variables.

Because of this the equations of motion are often understood to be given by (157). Let us proceed
along these lines, but first simplify matters by assuming that equation of state is given by a relation
of the form " = "(n) where n is the particle number density. As discussed in Section XXX, the
chemical potential µ is then given by

d" =
@"

@n
dn ⌘ µ dn , (168)

and we know from the Euler relation (9) that

µn = p + ". (169)

37

In essence, we have connected the model to the thermodynamics.
Let us now get rid of the free index of rbT

b
a = 0 in two ways: first, by contracting with u

a

and second, by projecting with ?
a
b (recalling that U

a = u
a). Given that that u
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b = 0. (170)

Contracting (157) with u
a and using this identity gives

u
a
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The definition of the chemical potential µ and the Euler relation allow us to rewrite this as

µu
a
ran + µnrau

a = 0 �! ran
a = 0 , (172)

where we have introduced the particle flux, n
a

⌘ nu
a. The equation we have derived simply

represents the fact that the particles are conserved.
Meanwhile, projection of the free index in (157) using ?

b
a leads to

(" + p)aa = � ?
b
a rbp , (173)

where aa ⌘ u
b
rbua is the fluid (four) acceleration. This is reminiscent of the familiar Euler

equation for Newtonian fluids. In fact, we demonstrate in the next section [???] that the non-
relativistic limit of exactly how this leads to the Newtonian result.

However, we should not be too quick to think that this is the only way to understand (157)!
There is an alternative form that makes the perfect fluid have much in common with vacuum
electromagnetism. If we define

µa = µua , (174)

then the stress-energy tensor can be written in the form

T
a

b = p�
a

b + n
a
µb . (175)

We have here our first encounter with the fluid element momentum µa that is conjugate to the
particle number density current n

a. Its importance will become clearer as this review develops,
particularly when we discuss the two-fluid case. For now, we simply note that uadu

a = 0, implies
that we will have

d" = �µa dn
a

. (176)

This relation will serve as the starting point for the fluid action principle presented in Section 6,
where it will be taken that �" is the fluid Lagrangian.

If we now project onto the free index of (157) using ?
b
a, as before, we arrive at
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�
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b
�
µa = 0 , (177)

where the force density fa is
fa = n

b
!ba , (178)

and the vorticity !ab is defined as

!ab ⌘ 2r[aµb] = raµb � rbµa . (179)

Contracting Equation (177) with n
a we see (since !ab = �!ba) that

ran
a = 0 (180)
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From momentum to vorticity:

In essence, we have connected the model to the thermodynamics.
Let us now get rid of the free index of rbT

b
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µu
a
ran + µnrau

a = 0 �! ran
a = 0 , (172)

where we have introduced the particle flux, n
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b
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where aa ⌘ u
b
rbua is the fluid (four) acceleration. This is reminiscent of the familiar Euler

equation for Newtonian fluids. In fact, we demonstrate in the next section [???] that the non-
relativistic limit of exactly how this leads to the Newtonian result.

However, we should not be too quick to think that this is the only way to understand (157)!
There is an alternative form that makes the perfect fluid have much in common with vacuum
electromagnetism. If we define

µa = µua , (174)

then the stress-energy tensor can be written in the form

T
a

b = p�
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b + n
a
µb . (175)

We have here our first encounter with the fluid element momentum µa that is conjugate to the
particle number density current n

a. Its importance will become clearer as this review develops,
particularly when we discuss the two-fluid case. For now, we simply note that uadu

a = 0, implies
that we will have

d" = �µa dn
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. (176)

This relation will serve as the starting point for the fluid action principle presented in Section 6,
where it will be taken that �" is the fluid Lagrangian.
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b
a, as before, we arrive at
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�
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b
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µa = 0 , (177)

where the force density fa is
fa = n

b
!ba , (178)

and the vorticity !ab is defined as
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Contracting Equation (177) with n
a we see (since !ab = �!ba) that
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In essence, we have connected the model to the thermodynamics.
Let us now get rid of the free index of rbT
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where aa ⌘ u
b
rbua is the fluid (four) acceleration. This is reminiscent of the familiar Euler

equation for Newtonian fluids. In fact, we demonstrate in the next section [???] that the non-
relativistic limit of exactly how this leads to the Newtonian result.

However, we should not be too quick to think that this is the only way to understand (157)!
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then the stress-energy tensor can be written in the form
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We have here our first encounter with the fluid element momentum µa that is conjugate to the
particle number density current n

a. Its importance will become clearer as this review develops,
particularly when we discuss the two-fluid case. For now, we simply note that uadu

a = 0, implies
that we will have
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a

. (176)

This relation will serve as the starting point for the fluid action principle presented in Section 6,
where it will be taken that �" is the fluid Lagrangian.

If we now project onto the free index of (157) using ?
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a, as before, we arrive at

fa +
�
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b
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where the force density fa is
fa = n
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!ba , (178)

and the vorticity !ab is defined as
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Contracting Equation (177) with n
a we see (since !ab = �!ba) that
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In essence, we have connected the model to the thermodynamics.
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where we have introduced the particle flux, n
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a. The equation we have derived simply

represents the fact that the particles are conserved.
Meanwhile, projection of the free index in (157) using ?
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a leads to
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b
a rbp , (173)

where aa ⌘ u
b
rbua is the fluid (four) acceleration. This is reminiscent of the familiar Euler

equation for Newtonian fluids. In fact, we demonstrate in the next section [???] that the non-
relativistic limit of exactly how this leads to the Newtonian result.

However, we should not be too quick to think that this is the only way to understand (157)!
There is an alternative form that makes the perfect fluid have much in common with vacuum
electromagnetism. If we define

µa = µua , (174)

then the stress-energy tensor can be written in the form

T
a

b = p�
a

b + n
a
µb . (175)

We have here our first encounter with the fluid element momentum µa that is conjugate to the
particle number density current n

a. Its importance will become clearer as this review develops,
particularly when we discuss the two-fluid case. For now, we simply note that uadu

a = 0, implies
that we will have

d" = �µa dn
a

. (176)

This relation will serve as the starting point for the fluid action principle presented in Section 6,
where it will be taken that �" is the fluid Lagrangian.

If we now project onto the free index of (157) using ?
b
a, as before, we arrive at

fa +
�
rbn

b
�
µa = 0 , (177)

where the force density fa is
fa = n

b
!ba , (178)

and the vorticity !ab is defined as

!ab ⌘ 2r[aµb] = raµb � rbµa . (179)

Contracting Equation (177) with n
a we see (since !ab = �!ba) that
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a = 0 (180)
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In essence, we have connected the model to the thermodynamics.
Let us now get rid of the free index of rbT
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where we have introduced the particle flux, n
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a. The equation we have derived simply

represents the fact that the particles are conserved.
Meanwhile, projection of the free index in (157) using ?
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a leads to
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where aa ⌘ u
b
rbua is the fluid (four) acceleration. This is reminiscent of the familiar Euler

equation for Newtonian fluids. In fact, we demonstrate in the next section [???] that the non-
relativistic limit of exactly how this leads to the Newtonian result.

However, we should not be too quick to think that this is the only way to understand (157)!
There is an alternative form that makes the perfect fluid have much in common with vacuum
electromagnetism. If we define

µa = µua , (174)

then the stress-energy tensor can be written in the form

T
a

b = p�
a

b + n
a
µb . (175)

We have here our first encounter with the fluid element momentum µa that is conjugate to the
particle number density current n

a. Its importance will become clearer as this review develops,
particularly when we discuss the two-fluid case. For now, we simply note that uadu

a = 0, implies
that we will have

d" = �µa dn
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. (176)

This relation will serve as the starting point for the fluid action principle presented in Section 6,
where it will be taken that �" is the fluid Lagrangian.

If we now project onto the free index of (157) using ?
b
a, as before, we arrive at

fa +
�
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b
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µa = 0 , (177)

where the force density fa is
fa = n

b
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and the vorticity !ab is defined as

!ab ⌘ 2r[aµb] = raµb � rbµa . (179)

Contracting Equation (177) with n
a we see (since !ab = �!ba) that
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In essence, we have connected the model to the thermodynamics.
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where aa ⌘ u
b
rbua is the fluid (four) acceleration. This is reminiscent of the familiar Euler

equation for Newtonian fluids. In fact, we demonstrate in the next section [???] that the non-
relativistic limit of exactly how this leads to the Newtonian result.

However, we should not be too quick to think that this is the only way to understand (157)!
There is an alternative form that makes the perfect fluid have much in common with vacuum
electromagnetism. If we define

µa = µua , (174)

then the stress-energy tensor can be written in the form

T
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µb . (175)

We have here our first encounter with the fluid element momentum µa that is conjugate to the
particle number density current n

a. Its importance will become clearer as this review develops,
particularly when we discuss the two-fluid case. For now, we simply note that uadu

a = 0, implies
that we will have
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. (176)

This relation will serve as the starting point for the fluid action principle presented in Section 6,
where it will be taken that �" is the fluid Lagrangian.

If we now project onto the free index of (157) using ?
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a, as before, we arrive at
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�
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b
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!ba , (178)

and the vorticity !ab is defined as
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In essence, we have connected the model to the thermodynamics.
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where aa ⌘ u
b
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relativistic limit of exactly how this leads to the Newtonian result.
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In essence, we have connected the model to the thermodynamics.
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where it will be taken that �" is the fluid Lagrangian.
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relativistic limit of exactly how this leads to the Newtonian result.

However, we should not be too quick to think that this is the only way to understand (157)!
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We have here our first encounter with the fluid element momentum µa that is conjugate to the
particle number density current n

a. Its importance will become clearer as this review develops,
particularly when we discuss the two-fluid case. For now, we simply note that uadu

a = 0, implies
that we will have

d" = �µa dn
a

. (176)

This relation will serve as the starting point for the fluid action principle presented in Section 6,
where it will be taken that �" is the fluid Lagrangian.

If we now project onto the free index of (157) using ?
b
a, as before, we arrive at

fa +
�
rbn

b
�
µa = 0 , (177)

where the force density fa is
fa = n

b
!ba , (178)

and the vorticity !ab is defined as

!ab ⌘ 2r[aµb] = raµb � rbµa . (179)

Contracting Equation (177) with n
a we see (since !ab = �!ba) that

ran
a = 0 (180)
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For simulations, we need to replace the fibration with a 
foliation of spacetime. 

12 Numerical simulations: Fluid dynamics in a live space-
time

Many astrophysical phenomena involve violent nonlinear matter dynamics. Such systems can-
not (meaningfully) be described within perturbation theory. Instead, the modelling requires fully
nonlinear (and multi-dimensional, given the lack of symmetry of (say) turbulent flows) simulations
taking into account the live spacetime of general relativity. The last decades have seen considerable
progress in the development of the relevant computational tools, especially for gravitational-wave
sources like supernova core collapse [110] and neutron star mergers [19]. The state-of-the-art tech-
nology includes the consideration of fairly sophisticated matter models. In the case of supernova
modelling, neutrinos are expected to play an important role in triggering the explosion [82] and
the role of magnetic fields may also be significant [109]. Meanwhile, for neutron star mergers,
finite temperature e↵ects are central as shock heating ramps up the temperature of the merged
object to levels beyond that expected even during core collapse (see, e.g., [23] or [86]). Dynamical
magnetic fields are expected to have decisive impact on the post-merger dynamics and may leave
an observational signature, e.g. in terms of short gamma-ray bursts (e.g., [92]).

12.1 Spacetime foliation

We have already explored some aspects of the problem (like the thermodynamics and the matter
equation of state, see Section XXX) and we have considered features that arise in models of
increasing complexity (in particular when we need to account for the relative flow of distinct fluid
components). So far, the discussion has assumed a fibration of spacetime associated with a specific
set of fluid observers. This approach is natural if one is mainly interested in the local fluid dynamics
(e.g. wave propagation) and it also leads to the 1+3 formulation often used in cosmology (where
“clocks” associated with the fluid observers define the notion of cosmic time), see [20] for a relevant
discussion. The strategy is, however, not natural for numerical simulations with a live spacetime.
Instead, most such work makes use of a 3+1 spacetime foliation (see [21] for a relevant discussion),
where progression towards the “future” is associated with a set of Eulerian observers. Hence, it is
relevant to extend the multifluid model from fibration to foliation.

The standard approach to numerical simulations takes as its starting point a “foliation”of
spacetime into a family of spacelike hypersurfaces ⌃t which arise as level surfaces of a scalar time
t (see, e.g. [2]). Given the normal to this surface

Na = �↵rat , (526)

we have
Na = (�↵, 0, 0, 0) , (527)

and the normalisation NaN
a = �1 (we are thinking of the normal as associated with an observer

moving through spacetime in the usual way) leads to ↵
2 = �1/g

tt. The sign in (526) ensures that
time flows into the future. The function ↵ is known as the lapse. The dual to rat leads to a time
vector

t
a = ↵N

a + �
a

, (528)

where the so-called shift vector �
a is spatial, which means that Na�

a = 0. It follows that

N
a = ↵

�1(1, ��
i) , (529)

and the spacetime can be written in the standard Arnowitt-Deser-Misner (ADM) form [ref]:

ds
2 = �↵

2
dt

2 + �ij

�
dx

i + �
i
dt

� �
dx

j + �
j
dt

�
, (530)
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12.2 Perfect fluids

The spacetime foliation provides us with the tools we need to formulate relativistic fluid dynamics
in a way suitable for numerical simulations (and which is compatible with the solution of the
Einstein field equations for the spacetime metric, which needs to be carried out in parallel [2, 22]).
However, our main focus is on the equations of fluid dynamics (see [60] for more details).

Let us start with the simple case of baryon number conservation. That is, we assume the flux
nu

a is conserved, where n is the baryon number density according to an observer moving along
with the fluid. Thus we have

ra(nu
a) = ra[Wn(Na + v̂

a)] = 0 . (546)

First we note that the particle number density measured by the Eulerian observer is

n̂ = �Nanu
a = nW , (547)

so we have
N

a
ran̂ + ri(n̂v̂

i) = �n̂raN
a = n̂K , (548)

(since v̂
i is spatial). Making use of the Lie derivative and (543) we have

N
a
ran̂ = LN n̂ =

1

↵
(@t � L�)n̂ = �ri(n̂v̂

i) + n̂K , (549)

or
@tn̂ + (↵v̂

i
� �

i)rin̂ + ↵n̂riv̂
i = ↵n̂K . (550)

Finally, since v̂
i and �

i are already spatial, we have

@tn̂ + (↵v̂
i
� �

i)Din̂ + ↵n̂Div̂
i = ↵n̂K = �n̂@t ln �

1/2 + n̂Di�
i

, (551)

or
@t

⇣
�

1/2
n̂

⌘
+ Di

h
�

1/2
n̂(↵v̂

i
� �

i)
i

= 0 , (552)

where we have used the fact that
(�g)1/2 = ↵�

1/2
, (553)

so
ra(�g)1/2 = ra(↵�

1/2) = 0 . (554)

For future reference, it is also worth noting that

Di�
1/2 = @i�

1/2
� �j

ji�
1/2 = 0 , (555)

where the Christo↵el symbol is the one associated with the covariant derivative in the hypersurface.
The final result, (552), simply represents the advection of the baryons along the flow, as seen

by an Eulerian observer.
[State version in terms of partial derivaties and mention flux conservation?]

As a slight aside, we have expressed (552) in the usual flux-conservative form. However, in some
situations it may be useful to pay closer attention to the local physics experienced by a family of
observers that ride along with the fluid (e.g. when we consider the microphysics). Then we have
(at least) two alternatives. We can choose to describe the physics in a local fluid frame associated
with the four velocity u

a (as before) or we can try to make the equations look “similar” to the more
familiar flat space (Newtonian) ones. In this latter approach [see for example Thorne+Macdonald]
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Baryon number (again):
we can introduce the decomposition 12

u
a = W (Na + v̂

a) =
W

↵
(ta � �

a + ↵v̂
a) , (534)

where Nav̂
a = 0 and the Lorentz factor is given by

W = �Nau
a = ↵u

t = (1 � v̂iv̂
i)�1/2

, (535)

(the last equality follows from u
a
ua = �1, as usual). From this relation it is easy to see that

v̂
t = 0 , v̂

i =
u

i

W
� N

i =
1

↵

✓
u

i

ut
+ �

i

◆
, (536)

and it then follows that

v̂t = gtav̂
a = �iv̂

i
, v̂i = �iav̂

a =
�ij

↵

✓
u

j

ut
+ �

j

◆
. (537)

We also need to consider derivatives. First of all, we need to introduce a derivative associated
with the hypersurface. Thus we introduce the (totally) projected derivative

Da = �
b
arb , (538)

where all free indices should be projected into the surface. This derivative is compatible with the
spatial metric in the sense that

Da�bc = �
d
a�

e
b�

f
c rd�ef = 0 , (539)

which means that it acts as a covariant derivative in the surface orthogonal to N
a. The upshot of

this is that we can construct a tensor algebra for the three-dimensional spatial slices. In particular,
we can introduce a three-dimensional Riemann tensor. This projected Riemann tensor does not
contain all the information from its four-dimensional cousin; the missing information is encoded in
the extrinsic curvature, Kab. This is a symmetric spatial tensor, such that N

a
Kab = 0. The extrin-

sic curvature provides a measure of how the ⌃t surfaces curve relative to the spacetime. In practice,
we measure how the normal Na changes as it is parallel transported along the hypersurface. That
is, we define

Kac = �DaNc = ��
b
a�

d
c rbNd = �raNc � Na(N b

rbNc) , (540)

where the second term is analogous to the fluid four-acceleration. We also have

K = K
a
a = g

ab
Kab = �

ab
�ab = �raN

a
. (541)

Alternatively, we can use the properties of the Lie derivative to show that

Kij = �
1

2
LN�ij , (542)

but since

LN =
1

↵
(Lt � L�) =

1

↵
(@t � L�) , (543)

we have
@t�ij = �2↵Kij + L��ij . (544)

From the trace of this expression we get

↵K = �@t ln �
1/2 + Di�

i
, (545)

where � = g
ab

�ab and �
ij

@t�ij = @t ln �.

12In order to make the distinction clear, we are using the convention that all velocities measured by the Eulerian
observer have hats, while the velocities relative to the fluid frame do not.
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12.2 Perfect fluids

The spacetime foliation provides us with the tools we need to formulate relativistic fluid dynamics
in a way suitable for numerical simulations (and which is compatible with the solution of the
Einstein field equations for the spacetime metric, which needs to be carried out in parallel [2, 22]).
However, our main focus is on the equations of fluid dynamics (see [60] for more details).

Let us start with the simple case of baryon number conservation. That is, we assume the flux
nu

a is conserved, where n is the baryon number density according to an observer moving along
with the fluid. Thus we have
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where the Christo↵el symbol is the one associated with the covariant derivative in the hypersurface.
The final result, (552), simply represents the advection of the baryons along the flow, as seen

by an Eulerian observer.
[State version in terms of partial derivaties and mention flux conservation?]

As a slight aside, we have expressed (552) in the usual flux-conservative form. However, in some
situations it may be useful to pay closer attention to the local physics experienced by a family of
observers that ride along with the fluid (e.g. when we consider the microphysics). Then we have
(at least) two alternatives. We can choose to describe the physics in a local fluid frame associated
with the four velocity u

a (as before) or we can try to make the equations look “similar” to the more
familiar flat space (Newtonian) ones. In this latter approach [see for example Thorne+Macdonald]
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At each “time step” we need to connect:

to

This inversion (conservative to primitive) 
becomes more complicated for more “realistic” 
physics.

If we let " = E/V denote the total energy density, s = S/V the total entropy density, and n = N/V

the total particle number density, then

p + " = Ts + µn. (9)

The nicest feature of an extensive system is that the number of parameters required for a
complete specification of the thermodynamic state can be reduced by one, and in such a way that
only intensive thermodynamic variables remain. To see this, let � = 1/V , in which case

S̃ = s, Ṽ = 1, Ñ = n. (10)

The re-scaled energy becomes just the total energy density, i.e. Ẽ = E/V = ", and moreover
" = "(s, n) since

" = Ẽ(S̃, Ṽ , Ñ) = Ẽ(S/V, 1, N/V ) = Ẽ(s, n). (11)

The first law thus becomes

dẼ = T̃ dS̃ � p̃ dṼ + µ̃ dÑ = T ds + µ dn, (12)

or
d" = T ds + µ dn. (13)

This implies

T =
@"

@s

����
n

, µ =
@"

@n

����
s

. (14)

That is, µ and T are the chemical potentials5 associated with the particles and entropy, respectively.
The Euler relation (9) then yields the pressure as

p = �" + s
@"

@s

����
n

+ n
@"

@n

����
s

. (15)

We can think of a given relation "(s, n) as the equation of state, to be determined in the flat,
tangent space at each point of the manifold, or, physically, small enough patches across which the
changes in the gravitational field are negligible, but also large enough to contain a large number of
particles. For example, for a neutron star Glendenning [67] has reasoned that the relative change in
the metric over the size of a nucleon with respect to the change over the entire star is about 10�19,
and thus one must consider many internucleon spacings before a substantial change in the metric
occurs. In other words, it is su�cient to determine the properties of matter in special relativity,
neglecting e↵ects due to spacetime curvature. The equation of state is the major link between
the microphysics that governs the local fluid behavior and global quantities (such as the mass and
radius of a star).

In what follows we will use a thermodynamic formulation that satisfies the fundamental scaling
relation, meaning that the local thermodynamic state (modulo entrainment, see later) is a function
of the variables N/V , S/V , etc. This is in contrast to the fluid formulation of “MTW” [108]. In
their approach one fixes from the outset the total number of particles N , meaning that one simply
sets dN = 0 in the first law of thermodynamics. Thus without imposing any scaling relation, one
can write

d" = d (E/V ) = T ds +
1

n
(p + " � Ts) dn. (16)

This is consistent with our starting point for fluids, because we assume that the extensive variables
associated with a fluid element do not change as the fluid element moves through spacetime.
However, we feel that the use of scaling is necessary in that the fully conservative, or non-dissipative,
fluid formalism presented below can be adapted to non-conservative, or dissipative, situations where
dN = 0 cannot be imposed.

5Loosely speaking, the “energy” associated with adding or removing one particle of the given species from the
system.

10

In the simple case we consider here, the evolution system (552) and (572) provides (assuming
that �

1/2 is known from the evolution of the Einstein equations)

n̂ = nW = n(1 � v̂
2)�1/2

, where v̂
2 = �ij v̂

i
v̂

j
, (575)

and
S

i = (p + ")W 2
v̂

i
. (576)

We need to invert these two relations to extract the primitive variables, n and v̂
i. This can be

formulated as a one-dimensional root-finding problem. For example, we may start by guessing a
value for n = n̄. This then allows us to work out " from the equation of state and p from (574).
With these variables in hand we can solve

S
2

(p + ")2
= W

4
v̂
2

, with S
2 = �ijS

i
S

j
, (577)

for v̂
2. This, in turn, allows us to work out the Lorentz factor W and then v̂

i follows from (888).
Finally, we get n = n̂/W from (575). The result can be compared to our initial guess n̄. Iterating
the procedure gives a solution consistent with the conserved quantities, and hence all primitive
quantities.

Unfortunately, the numerical implementation of this strategy many not be straightforward.
For example, the result may be sensitive to the initial guess and the algorithm may not converge.
This is particularly true for more complex situations (e.g. multi-parameter equations of state).
However, our aim here is not to resolve the possible numerical issues. We are only outlining the
logic of the approach.

From a formal point of view, the procedure is straightforward but it is easy to see that the
inversion may become much more involved for more general problems. Consider for example
problems involving electromagnetism. The electromagnetic energy will contribute to the evolved
energy and therefore must be accounted for in the inversion (see [refs] for a discussion of the
subtleties of this problem).

13 The current state of the art

[To be written:] A brief summary of recent simulations, including GW170817?
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The spacetime foliation provides us with the tools we need to formulate relativistic fluid dynamics
in a way suitable for numerical simulations (and which is compatible with the solution of the
Einstein field equations for the spacetime metric, which needs to be carried out in parallel [2, 22]).
However, our main focus is on the equations of fluid dynamics (see [60] for more details).

Let us start with the simple case of baryon number conservation. That is, we assume the flux
nu

a is conserved, where n is the baryon number density according to an observer moving along
with the fluid. Thus we have

ra(nu
a) = ra[Wn(Na + v̂

a)] = 0 . (546)

First we note that the particle number density measured by the Eulerian observer is

n̂ = �Nanu
a = nW , (547)

so we have
N

a
ran̂ + ri(n̂v̂

i) = �n̂raN
a = n̂K , (548)

(since v̂
i is spatial). Making use of the Lie derivative and (543) we have

N
a
ran̂ = LN n̂ =

1

↵
(@t � L�)n̂ = �ri(n̂v̂

i) + n̂K , (549)

or
@tn̂ + (↵v̂

i
� �

i)rin̂ + ↵n̂riv̂
i = ↵n̂K . (550)

Finally, since v̂
i and �

i are already spatial, we have

@tn̂ + (↵v̂
i
� �

i)Din̂ + ↵n̂Div̂
i = ↵n̂K = �n̂@t ln �

1/2 + n̂Di�
i

, (551)

or
@t

⇣
�

1/2
n̂

⌘
+ Di

h
�

1/2
n̂(↵v̂

i
� �

i)
i

= 0 , (552)

where we have used the fact that
(�g)1/2 = ↵�

1/2
, (553)

so
ra(�g)1/2 = ra(↵�

1/2) = 0 . (554)

For future reference, it is also worth noting that

Di�
1/2 = @i�

1/2
� �j

ji�
1/2 = 0 , (555)

where the Christo↵el symbol is the one associated with the covariant derivative in the hypersurface.
The final result, (552), simply represents the advection of the baryons along the flow, as seen

by an Eulerian observer.
[State version in terms of partial derivaties and mention flux conservation?]

As a slight aside, we have expressed (552) in the usual flux-conservative form. However, in some
situations it may be useful to pay closer attention to the local physics experienced by a family of
observers that ride along with the fluid (e.g. when we consider the microphysics). Then we have
(at least) two alternatives. We can choose to describe the physics in a local fluid frame associated
with the four velocity u

a (as before) or we can try to make the equations look “similar” to the more
familiar flat space (Newtonian) ones. In this latter approach [see for example Thorne+Macdonald]
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If we let " = E/V denote the total energy density, s = S/V the total entropy density, and n = N/V

the total particle number density, then

p + " = Ts + µn. (9)

The nicest feature of an extensive system is that the number of parameters required for a
complete specification of the thermodynamic state can be reduced by one, and in such a way that
only intensive thermodynamic variables remain. To see this, let � = 1/V , in which case

S̃ = s, Ṽ = 1, Ñ = n. (10)

The re-scaled energy becomes just the total energy density, i.e. Ẽ = E/V = ", and moreover
" = "(s, n) since

" = Ẽ(S̃, Ṽ , Ñ) = Ẽ(S/V, 1, N/V ) = Ẽ(s, n). (11)

The first law thus becomes

dẼ = T̃ dS̃ � p̃ dṼ + µ̃ dÑ = T ds + µ dn, (12)

or
d" = T ds + µ dn. (13)

This implies

T =
@"

@s

����
n

, µ =
@"

@n

����
s

. (14)

That is, µ and T are the chemical potentials5 associated with the particles and entropy, respectively.
The Euler relation (9) then yields the pressure as

p = �" + s
@"

@s

����
n

+ n
@"

@n

����
s

. (15)

We can think of a given relation "(s, n) as the equation of state, to be determined in the flat,
tangent space at each point of the manifold, or, physically, small enough patches across which the
changes in the gravitational field are negligible, but also large enough to contain a large number of
particles. For example, for a neutron star Glendenning [67] has reasoned that the relative change in
the metric over the size of a nucleon with respect to the change over the entire star is about 10�19,
and thus one must consider many internucleon spacings before a substantial change in the metric
occurs. In other words, it is su�cient to determine the properties of matter in special relativity,
neglecting e↵ects due to spacetime curvature. The equation of state is the major link between
the microphysics that governs the local fluid behavior and global quantities (such as the mass and
radius of a star).

In what follows we will use a thermodynamic formulation that satisfies the fundamental scaling
relation, meaning that the local thermodynamic state (modulo entrainment, see later) is a function
of the variables N/V , S/V , etc. This is in contrast to the fluid formulation of “MTW” [108]. In
their approach one fixes from the outset the total number of particles N , meaning that one simply
sets dN = 0 in the first law of thermodynamics. Thus without imposing any scaling relation, one
can write

d" = d (E/V ) = T ds +
1

n
(p + " � Ts) dn. (16)

This is consistent with our starting point for fluids, because we assume that the extensive variables
associated with a fluid element do not change as the fluid element moves through spacetime.
However, we feel that the use of scaling is necessary in that the fully conservative, or non-dissipative,
fluid formalism presented below can be adapted to non-conservative, or dissipative, situations where
dN = 0 cannot be imposed.

5Loosely speaking, the “energy” associated with adding or removing one particle of the given species from the
system.
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