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We study how vortices in dense superfluid hadronic matter can connect to vortices in superfluid quark
matter, as in rotating neutron stars, focusing on the extent to which quark-hadron continuity can be
maintained. As we show, a singly quantized vortex in three-flavor symmetric hadronic matter can connect
smoothly to a singly quantized non-Abelian vortex in three-flavor symmetric quark matter in the color-
flavor locked phase, without the necessity for boojums appearing at the transition.
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I. INTRODUCTION

In a rotating neutron star, the superfluid components—
the nuclear liquid at lower densities and a possible color-
flavor locked (CFL) quark phase [1] at higher densities
in the interior—carry angular momentum in the form of
quantized vortices. How, we ask, are the vortices in these
two phases connected? Can one have continuity or must
there be a discontinuity? How do the possible connections
depend on the particular flavor structure of the matter? In
the ground state of dense matter, the picture of quark-
hadron continuity [2,3] is that as the baryon density is
increased matter undergoes a smooth crossover from the
hadronic phase to the quark phase. By studying how such
vortices connect we can shed further light on whether the
notion of quark-hadron continuity can be extended to
angular momentum carrying states of dense hadronic matter.
To summarize the problem in matching hadronic with

CFL vortices we note that superfluid vortices in the
Bardeen-Cooper-Schrieffer (BCS)-paired hadronic phase
have quantized circulation, CB, i.e.,

CB ¼
I

C
v⃗ · dl⃗ ¼ 2π

νB
2μB

; ð1Þ

where the contour C of integration encircles the vortex, μB
is the baryon chemical potential, and νB is an integer. We

detail this result further below. (We work in units ℏ ¼
c ¼ 1.) All but singly quantized vortices (νB ¼ $1) are
unstable. In a BCS-paired CFL quark phase on the other
hand, the simple Abelian vortex [4,5], the analog of the
hadronic vortex, has circulation [6]

CA ¼
I

C
v⃗ · dl⃗ ¼ 2π

νA
2μq

; ð2Þ

where μq ¼ μB=3 is the quark chemical potential, and again
νA is an integer. Singly quantizedUð1ÞB Abelian vortices in
the quark phase have three times the circulation of singly
quantized hadronic vortices.
Thus if one were to imagine a singly quantized hadronic

vortex turning into a singly quantized Abelian CFL vortex,
the baryon velocity would have to jump discontinuously
by a factor of 3 from the hadronic to the quark phase,
eliminating any possibility of quark-hadron continuity.
Indeed, to make the velocity continuous one would have
to join three hadronic vortices to a single Abelian quark
vortex, as illustrated in Fig. 1(a). Such a join is known as a
boojum [7].
Single Abelian vortices in the CFL phase, however, are

unstable against separating into three non-Abelian vortices
[8–10], each of which has 1=3 the circulation of the Abelian
vortex.1 Thus one might envisage a join with a continuous
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1In Ref. [8] these configurations were referred to as “semi-
superfluid strings”; however, we call them “non-Abelian vorti-
ces” to emphasize the presence of non-Abelian color magnetic
flux in the core combined with vortexlike global rotation of the
quark condensate.
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Question 
In a rotating neutron star (NS) 
the superfluid components  

-nuclear liquid and quark matter‒ 
carry angular momentum  

in the form of quantized vortices 

How are these vortices connected? 

? 



Physics = Fertile research arena  
                of Matters and Space-time

★ What matters are made of？ 

★ How matters are created and     
                 change in different conditions? 

★ How the universe was born and will be? 

Approaches: Experiment, Observation,  
                                 Theory, Computer



          A child-like question: 
 
What happens to matter 
   as we squeeze it harder and harder, 
       and/or make it hotter and hotter? 



Phases of Matter 

Solid(ice) Liquid(water) Gas(vapor)

T, P

Ex.) H2O 



H2O 

�http://boojum.hut.fi/research/theory/typicalpt.html 

4He 

Phase diagrams 

What a
bout 

quark
? 



★ Phases are described by 
     symmetries of underlying theory 

★ What is the theory of quarks? 
             What are the symmetries? 

Convention 



 Properties of  
            strongly-interacting matter 

Quantum field theory  
       with Non-Abelian symmetry 

⬇ 

⬇ 
Quantum Chromo Dynamics  

QCD 



€ 

LQCD = q α iγµDµ −mq( )αβ qβ −
1
4

Fµν
a F aµν

    QCD Lagrangian 
 (Han-Nambu, 1965) 

Just one line, but very rich in physics and math 
 

Testing field for any kind of new ideas 
 Yes! We love Q

CD ♥   



                Grand Challenge 
    - Space-time evolution of QCD matter - 

The answer to the ultimate question  
“Why the matter of our universe can be stable?”

Neutron/quark star SupernovaeEarly universe

Nuclear 
force 

   

Nucleons NucleiHadrons 

   

No Q
CD, n

o life
 



classical QCD symmetry  (m=0)   

Quantum QCD vacuum (m=0)  
         Chiral condensate :  
 spontaneous mass generation 

          Axial anomaly :   
 quantum violation of U(1)A  

Chiral basis : 

   QCD Lagrangian :  

■Symmetries of QCD and their breaking patterns 



Phases are characterized by “condensates” 

qq :

qq :

Chiral condensation 

Diquark condensation 

QCD phase diagram via Occam’s razor 

 “order parameters” �

chiral condensate 

diquark condensate 

μ

T 

  Hadron 
(confining) 

Color superconductor 
          (Higgs) 

 “Schematic phase diagram” 

 Quark-gluon plasma 
       (deconfining) 



    χSB 
CSC 

QGP 

  

1. Competition among different  orders�
2. Strong coupling/correlation ��

Common features in QCD, HTS, and ultracold atoms  

Similarity between QCD  
                    and High Tc Superconductor 
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Continuity of Quark and

Hadron Matter

Thomas Schäfer1

and

Frank Wilczek2

School of Natural Sciences
Institute for Advanced Study

Princeton, NJ 08540

Abstract

We review, clarify, and extend the notion of color-flavor locking.
We present evidence that for three degenerate flavors the qualitative
features of the color-flavor locked state, reliably predicted for high
density, match the expected features of hadronic matter at low density.
This provides, in particular, a controlled, weak-coupling realization of
confinement and chiral symmetry breaking in this (slight) idealization
of QCD.
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Idea of Quark-Hadron continuity 

hep-ph/9811473 

       3 flavor hadron matter 
     is smoothly connected to 
       3 flavor quark matter 
 as baryon density is increased Impac

ts on
 NS p

hysic
s? 



Hadronic (confinement) 
 

SU(3)L×SU(3)R×U(1)B 
→ SU(3) L+R 

 
chiral condensate 

 
broken in the dibaryon channels  

 
Pseudo-scalar mesons (π etc) 

 
vector mesons (ρ etc) 

 
baryons 

Color-flavor locked(Higgs) 
 

SU(3)L×SU(3)R×SU(3)C×U(1)B 
→ SU(3)L+R+C 

 
diquak condensate  

 
broken by d 

 
NG bosons 

 
massive gluons 

 
massive quarks (CFL gap)  

Phase 
 
 

Symmetry  
breaking  
Pattern 

 

Order  
parameter 

 

U(1)B 
 
 
 

Elementary  
Excitations 

  
	

Table of Quark-Hadron continuity 

A realization of Fradkin-Shenker complementarity 



Diquark condensations 

Nf=2 (2-flavor colorsuperconductivity [2SC]) 

Nf=3 (Color-flavor locking [CFL]) 

qαiCγ5qβ j ∝Δ2SCε
αβ3ε ij

qαiCγ5qβ j = ΔCFLεαβIε
ijI ∝ΔCFL δα

iδβ
j −δα

jδβ
i( )



 “Anomaly driven critical point in high density QCD 
             as a realization of quark-hadron continuity” 

    χSB 
CSC 

QGP   

Yamamoto, Hatsuda, Baym & Tachibana,  PRL 97  (’06) 



Thought experiment 
Pour quarks  
       into your “bucket” 

Then, rotate the bucket 

Upper: Hadronic matter 
Lower: Quark matter 

Hadronic matter�

Quark matter�

??? 

Upper: Hadronic vortex 
Lower: Quark vortex 

Hadronic vortex�

Quark vortex�
How 

are th
ey co

nnect
ed? 



Notations 

Φ
!r, t( ) = Φ(

!r ) eiφ (
!r )−iµt : complex scalar

φ
!r, t( ) = pν xν =

!p ⋅ !r −µt, !v =
!p
µ

C ≡ !v ⋅d
"
l

C#∫ = 2π ν
µ

ν :winding #



Circulation matching 

Hadronic Quark 

CH = 2π
νH

2µB

CA = 2π
νA

2µq

µq =
1
3
µB

Since Then 

νH = 3νA

Oct. 9, 2018 @ CCNU (Wuhan)
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in the CFL phase at finite rotation for the future.

II. VORTEX QUANTIZATION AND
CIRCULATION

We first review the basics of vortex quantization, circu-
lation, and angular momentum which are common to all
the vortices we discuss here: hadronic vortices, Abelian
CFL vortices, and CFL vortices carrying non-Abelian
color flux.

Quantized vortices arise in superfluids under rotation.
A superfluid can be described by a complex scalar field;
the ground state expectation value �(~r, t) of the field,
in the conventional description in terms of broken sym-
metry, represents the condensate of bosons (or Cooper
pairs of fermions) that gives rise to superfluidity. The
Hamiltonian for the field is invariant under a global U(1)
symmetry, so that the number of bosons or fermions is
conserved by the dynamics. However, if � is nonzero
then the ground state of the Hamiltonian spontaneously
breaks the U(1) symmetry.

In general, the condensate can be written in terms of
its modulus and phase � as,

� = e

i�|�| . (3)

In the local rest frame of the condensate,

� = �µst , (4)

where µs is the chemical potential of the conserved par-
ticles in the ground state, namely the minimum energy
required to add one boson or one pair of fermions to the
system. Boosting to a frame in which the condensate is
in uniform motion [24], we find

� = p⌫x
⌫ = ~p · ~r � µt , (5)

where p⌫p
⌫ = �µ

2
s and µ = �(v)µs with �(v) ⌘

1/
p
1� v

2. The superfluid velocity is simply

~v =
~p

|p0|
=

~p

µ

. (6)

We can thus write the momentum carried by the unit of
conserved charge and the chemical potential as

~p = ~r�(~r, t) , µ = �@�(~r, t)

@t

(7)

for general space-time dependent �.
For a static superfluid vortex, �(~r, t) = �(~r)�µt; thus

�(~r ) = e

i�(~r )�iµt|�(~r )| , (8)

where |�(~r )| is zero at the center of the vortex and in
uniform density matter is independent of position well
outside the vortex core. Far from the vortex core the
only spatial variation is in the phase �(~r ).

For the mathematically simplest vortex aligned along
the z axis, � = ⌫', where ' is the azimuthal angle. Thus
the momentum per particle or pair is

~p (r) = ~r� =
⌫

r

'̂ (9)

where r is the distance from the vortex core and '̂ is a
unit vector in the ' direction. From Eq. (6) the super-
fluid velocity is

v(r) =
⌫

µr

'̂ . (10)

Integrating ~p along a closed contour C surrounding the
vortex we obtain the total change �� in the phase,

�� =

I

C
~p · d~` = 2⇡ ⌫ . (11)

In a three dimensional system, the winding number ⌫

must be an integer. From Eqs. (6) and (11) [or from
Eq. (10)] the superfluid velocity obeys the circulation
condition,

C =

I

C
~v · d~` = 2⇡

⌫

µ

, (12)

as mentioned in the introduction.
Lastly we compute the angular momentum, Lz, of a

vortex centered on the z axis. From Eq. (7) the local az-
imuthal momentum density is p'n where n is the particle
density (as distinguished from the condensate density),
which is independent of '. Thus

Lz =

Z
d

3
r rp' n(r) = ⌫

Z
2⇡rdrdz n(r) = N⌫ ,(13)

where N is the total number of particles or pairs. The
angular momentum per particle for bosons or per fermion
pair is simply ⌫, the winding number of the vortex.

III. VORTICES IN HADRONIC AND CFL
QUARK MATTER

We now consider the circulation and the angular mo-
mentum associated with vortices in hadronic and CFL
quark matter.

A. Hadronic vortices

In SU(3) flavor symmetric matter we expect the
baryons to pair in the flavor-singlet spin-singlet chan-

nel, which is h�
q

1
8⇤⇤+

q
3
8⌃ ·⌃+

q
4
8N ·⌅i [25] where

N = (p, n) is the nucleon doublet, ⌅ = (⌅0
,⌅�) is the

“cascade” doublet, and ⌃ = (⌃+
,⌃0

,⌃�) is the sigma
triplet.
The chemical potential entering Eq. (12) is 2µB, that

of a pair of baryons. A hadronic vortex with winding

Circulation

Winding number n should match.

Circulation differs between nuclear and quark matter? 
(Difference comes from chemical potentials)

Quark Vortices

Hadronic 
Vortices

Boojum ?
  Boojum 
(Wikipedia) 
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Wikipedia

Boojum



Non-Abelian CFL vortex 
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Non-Abelian CFL Vortex
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Proton
vortex

npe
phase

CFL
phase

Interface

Boojum
(Dirac monopole)

J✓

~BM

~B
0

(a)

Neutron
vorticesnpe

phase

CFL
phase

Interface
Boojum

Color and U(1)em
magnetic monopole

Pure color-magnetic
monopole

b̄ r̄

ḡ
ḡḡ

(b)

FIG. 1: (a) A superconducting proton vortex ending on the interface between the npe and CFL

phases. A boojum forms at the contact point in the CFL phase region. The pure magnetic flux of

the vortex splits into a ~BM component, which is screened by a surface current and bent along the

interface, and a ~B
0

component emanating from the boojum, which looks like a Dirac monopole.

(b) Three neutron vortices ending in a boojum at the interface. The three BDM (r̄), CP 1

+

(ḡ) and

CP 1

+

(b̄) vortices are depicted. The black arrows along the three vortices represent U(1)em magnetic

flux. The two monopole junctions described in the text are also depicted.

a neutron vortex in the npe phase. In the CFL phase, the order parameter is hqqi, which

behaves hqqi ⇠ e

i✓ for a U(1)

B

vortex or a triplet of semi-superfluid vortices, indicating that

the quark fields get a phase 2⇡/2 corresponding to 1/2 U(1)

B

winding, when they travel

around a U(1)

B

vortex or a triplet of semi-superfluid vortices. Then, one concludes that

three neutron vortices have to join at the boojum.

At a typical distance ⇠ from the interface, though, the BDM and the CP 1

� solutions will

“decay” to the CP 1

+

vortex, due to their instability. We can estimate the length scale ⇠ by

referring to the low-energy effective action (10). Following the same steps of [38] we obtain:

⇠ ⇠ m

�1

s

✓
µ

�✏

◆
2

log

✓
µ

�✏

◆�1/2

⇠ 4GeV

�1

, (13)

with the physical quantities being: µ ⇠ 10GeV,�✏ ⇠ 100MeV, K

3

= 9. This length has

to be compared with the thickness d of the interface, which can be seen as a domain wall

between the two different phases [15]. Using the same values for physical parameters, we

get d ' 10

�10

⇠. Then the vortices decay at large distances from the interface. Since vortices

decay into others with different fluxes, each junction corresponds in fact to a monopole.

8

Cipiriani-Vinci-Nitta (2012)

Conjectured based  
on color-flux conservation
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Abelian vortex.1 Thus one might envisage a join with a
continuous baryon velocity, as shown in Fig. 1(b), where a
boojum connects three hadronic vortices with three non-
Abelian CFL vortices [10, 11]. However, as we discuss in
this paper, one does not have to make a join involving
three vortices in the hadronic phase, but rather one can
make a baryon-velocity conserving join between a single
hadronic vortex and a single non-Abelian vortex in the
CFL phase, as shown in Fig. 1(c), without any need for a
boojum. To the extent that the various flavor quantum
numbers permit a smooth transition from the hadronic
to the CFL quark phase, angular momentum carrying
states remain consistent with quark-hadron continuity.

To spell out this picture in detail, we first discuss more
precisely the nature of quark-hadron continuity between
the hadronic and quark phases. On the deconfined quark
side the (ideal) CFL phase contains u (up), d (down),
and s (strange) quarks, all with the same mass, with a
Fermi sea equally populated with all three flavors and
all three colors of quarks. The corresponding hadronic
phase, three-flavor hyperonic matter, contains all mem-
bers of the light baryon flavor octet – n, p, ⇤, ⌃0, ⌃±,
⌅0, and ⌅� – all of the same mass. In the ground state
at finite density, the particles populate a Fermi sea with
all states of the octet equally present.

Both phases break chiral symmetry [1] and U(1)B, with
the same symmetry breaking pattern [SU(3)L⌦SU(3)R⌦
U(1)B ! SU(3)V]. In both phases BCS pairing leads
to breaking of U(1)B symmetry and superfluidity. The
hadronic dibaryon condensate is a flavor singlet formed
from two paired flavor octets. The CFL phase is usu-
ally described in the unitary gauge, in which the ground
state has a diquark condensate with the same color-flavor
orientation everywhere.2 In the hadronic phase, chiral
symmetry is spontaneously broken by a quark-antiquark
chiral condensate, producing a light octet of pseudoscalar
mesons, i.e., ⇡0, ⇡±, K0, K̄0, K±, and ⌘. The CFL con-
densate spontaneously breaks chiral symmetry, produc-
ing a light octet of pseudoscalar mesons [14–16]. Pre-
vious studies [2, 3, 17, 18] have established the conti-
nuity between the low-energy excitations of such three-
flavor hadronic and three-flavor quark matter.3 The nine
single-quark excitations of di↵erent colors and flavors can
be mapped, in the unitary gauge, onto the baryon octet
plus a baryon singlet which is usually not mentioned in
discussions of the confined phase because it is much heav-
ier than the octet baryons [3].

1 In Ref. [8] these configurations were referred to as “semi-
superfluid strings,” however we will call them “non-Abelian vor-
tices” to emphasize the presence of non-Abelian color magnetic
flux in the core combined with vortex-like global rotation of the
quark condensate.

2 With full three-flavor symmetry, CFL pairing is the most sta-
ble [12, 13].

3 This continuity is an example of the complementarity between
the confined and Higgs phases of a non-Abelian gauge theory
[19].

q

qq q qq q

q
qq
qq

FIG. 2. Schematic illustration of the smooth evolution of
a hadronic vortex into a non-Abelian CFL vortex. In the
hadronic phase, the phase of the condensate corresponding
to paired baryons (six quarks) increases by 2⇡ in winding
around the vortex core. In the CFL phase in the gauge-fixed
picture, one component of the order parameter picks up a
phase 2⇡ in winding, as shown. In the gauge-invariant picture
the phase of the entire six-quark order parameter changes by
2⇡ in winding.

One can further understand quark-hadron continuity
in terms of the anomaly-induced coupling between the
chiral and diquark condensates [20, 21]. The implica-
tions of quark-hadron continuity for the QCD phase di-
agram are reviewed in Ref. [22], and for neutron stars in
Ref. [23].

Figure 2 summarizes our results. In the confined phase
(upper half of the figure) the hadronic vortex carries an-
gular momentum via the circulation of a gauge-invariant
dibaryon condensate which acquires a phase of 2⇡ when
transported around the core. This vortex can be con-
tinuously connected to a non-Abelian CFL vortex [8] in
the CFL quark phase (lower half of the figure) where the
vortex has the same baryon circulation, but it arises in
the unitary gauge from three diquark condensates, one of
which acquires a phase of 2⇡ when transported around
the core. On the other hand, in the gauge-invariant pic-
ture, described in detail in Sec. IIID, the phase increase
is attributed to the entire six quark order parameter.

This paper is organized as follows. In Sec. II we re-
view the generic properties of vortices in a superfluid. In
Sec. III we discuss the vortex configurations that exist
in three-flavor hadronic and quark matter. After dis-
cussions of hadronic vortices in Sec. III A, we describe
two di↵erent vortex configurations that have been con-
structed in three-flavor quark matter, the Abelian CFL
vortices in Sec. III B and the non-Abelian CFL vortices
in Sec. III C. and then we show how the non-Abelian
vortex can be continuously connected with the hadronic
vortex. In Sec. IIID we show how these non-Abelian
vortices can be understood in a gauge-invariant descrip-
tion, and in Sec. III E we explore the consequences of
explicit breaking of the SU(3) flavor symmetry. Finally,
in Sec. IV we discuss the role of color magnetic flux. We
focus throughout on the properties of connecting single
vortices, and leave the discussion of an array of vortices

Alford-Baym-Fukushima-Hatsuda-Tachibana (2018)
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coexist with the flavor-singlet pairing, e.g., the stan-
dard nucleon pairing in the spin-singlet isospin-triplet

channel, �(27)
B = h[NN ]symi, and the possible pairing

in the spin-singlet isospin-doublet channel, �
(8sym)
B =

h� 1
10 [N⇤]sym +

q
9
10 [N⌃]symi [27].

In any of these pairings, the chemical potential enter-
ing Eq. (12) is 2µB , that of a pair of baryons. Therefore,
no matter whether it is flavor singlet or non-singlet, a
hadronic vortex with winding number ⌫B has circulation
2⇡⌫B/(2µB), Eq. (1). The corresponding angular mo-
mentum per baryon is [see Eq. (13)]

LBz

NB
=

1

2
⌫B , (15)

since there are NB/2 pairs in the system.

B. Abelian CFL Vortices

The order parameter of quark matter in the CFL phase
in the unitary gauge can be written in terms of the color
and flavor triplet diquark operator [1]

�̂↵i = N ✏

↵��
✏

ijk
q�jC�5q�k , (16)

where C = i�0�2 is the charge conjugation operator, and
Greek and Latin letters denote color and flavor indices,
respectively; N is a normalization constant. The order
parameter is then

�↵i = h�̂↵ii . (17)

The matrix �↵i can be diagonalized by a combination of
color and flavor rotations, so that without loss of gener-
ality we write

� =

0

@
�r̄ū 0 0
0 �ḡd̄ 0
0 0 �b̄s̄

1

A
, (18)

where r, g, b (r̄, ḡ, b̄) denote colors (anti-colors) and u, d, s

flavors; in the ground state, �r̄ū = �ḡd̄ = �b̄s̄ = �CFL.
Naively one would expect the angular momentum car-

rying states with lowest energy per unit of angular mo-
mentum, to be global U(1)B or “Abelian CFL” vortices.
In these vortices each of the three non-zero components
of the order parameter winds around the core of the vor-
tex, so for an Abelian CFL vortex aligned along the z

axis the order parameter assumes the form

�A = �CFL e
i⌫

A
'

0

@
f(r) 0 0
0 f(r) 0
0 0 f(r)

1

A
, (19)

where f(r) varies monotonically from zero at r = 0 to
unity as r ! 1, with ⌫A the winding number of the
Abelian CFL vortex.

The quark chemical potential is µq = µB/3, and thus
the chemical potential per quark pair is 2µq = 2

3µB , so

from Eqs. (6) and (7) and the total momentum per quark
pair in the condensate is

~p =
2

3
µB ~v , (20)

where as before ~v is the superfluid velocity, so the circu-
lation is

C

A =
3⌫A

2µB

I
d

~

` · ~r' =
3⌫A

2
· 2⇡
µB

. (21)

The angular momentum per baryon of the vortex is

LAz

NB
=

3

2
⌫A . (22)

We now ask how the vortices in hadronic matter would
match on to Abelian vortices in CFL quark matter at a
crossover between these phases. If the superfluid veloc-
ity, and hence the circulation, Eq. (12), and angular mo-
mentum per baryon, Eq. (13), do not match in the two
phases, then quark-hadron continuity would be violated.
By comparing Eqs. (1) and (21), or equivalently (15) and
(22), we see that matching would require

⌫B = 3⌫A . (23)

The matching relation (23) implies that three singly
quantized hadronic vortices should merge into one
Abelian CFL vortex, violating quark-hadron continuity
in states with finite angular momentum. This merging
would require a boojum [7] at the interface between the
two phases, as sketched in Fig. 1(a). As we discuss in
the next section, the violation need not be present for
the more stable non-Abelian vortices in the CFL phase.

C. Non-Abelian CFL Vortices

An Abelian CFL vortex is energetically unstable
against formation of three “non-Abelian” vortices [8, 9].
The condensate of the anti-red–anti-up (r̄ū) non-Abelian
vortex is

�(1) = �CFL

0

@
e

i⌫1'
f(r) 0 0
0 g(r) 0
0 0 g(r)

1

A
, (24)

with corresponding gluon field

A

(1)
' = � ⌫1

gcr
[1� h(r)]

0

@
� 2

3 0 0
0 1

3 0
0 0 1

3

1

A
, (25)

where gc is the QCD coupling and the boundary condi-
tions are

f ! 0, g

0 ! 0, h ! 1 as r ! 0 ,
f ! 1, g ! 1, h ! 0 as r ! 1 .

(26)

Single-valuedness of the condensate requires that ⌫1 be an
integer. Anti-green–anti-down (ḡd̄) and anti-blue–anti-
strange (b̄s̄) versions, �(2) with ⌫2 and �(3) with ⌫3, can
be obtained by permuting the diagonal elements.

Gap matrix in color-flavor spaceΦ diagonalized via color-flavor space rotation 

Color and flavor 3plet diquark order parameter 

Φ̂αi ∝εαβγε ijkqβ jCγ5qγk
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Abelian CFL vortex

4

coexist with the flavor-singlet pairing, e.g., the stan-
dard nucleon pairing in the spin-singlet isospin-triplet

channel, �(27)
B = h[NN ]symi, and the possible pairing

in the spin-singlet isospin-doublet channel, �
(8sym)
B =

h� 1
10 [N⇤]sym +

q
9
10 [N⌃]symi [27].

In any of these pairings, the chemical potential enter-
ing Eq. (12) is 2µB , that of a pair of baryons. Therefore,
no matter whether it is flavor singlet or non-singlet, a
hadronic vortex with winding number ⌫B has circulation
2⇡⌫B/(2µB), Eq. (1). The corresponding angular mo-
mentum per baryon is [see Eq. (13)]

LBz

NB
=

1

2
⌫B , (15)

since there are NB/2 pairs in the system.

B. Abelian CFL Vortices

The order parameter of quark matter in the CFL phase
in the unitary gauge can be written in terms of the color
and flavor triplet diquark operator [1]

�̂↵i = N ✏

↵��
✏

ijk
q�jC�5q�k , (16)

where C = i�0�2 is the charge conjugation operator, and
Greek and Latin letters denote color and flavor indices,
respectively; N is a normalization constant. The order
parameter is then

�↵i = h�̂↵ii . (17)

The matrix �↵i can be diagonalized by a combination of
color and flavor rotations, so that without loss of gener-
ality we write

� =

0

@
�r̄ū 0 0
0 �ḡd̄ 0
0 0 �b̄s̄

1

A
, (18)

where r, g, b (r̄, ḡ, b̄) denote colors (anti-colors) and u, d, s

flavors; in the ground state, �r̄ū = �ḡd̄ = �b̄s̄ = �CFL.
Naively one would expect the angular momentum car-

rying states with lowest energy per unit of angular mo-
mentum, to be global U(1)B or “Abelian CFL” vortices.
In these vortices each of the three non-zero components
of the order parameter winds around the core of the vor-
tex, so for an Abelian CFL vortex aligned along the z

axis the order parameter assumes the form

�A = �CFL e
i⌫

A
'

0

@
f(r) 0 0
0 f(r) 0
0 0 f(r)

1

A
, (19)

where f(r) varies monotonically from zero at r = 0 to
unity as r ! 1, with ⌫A the winding number of the
Abelian CFL vortex.

The quark chemical potential is µq = µB/3, and thus
the chemical potential per quark pair is 2µq = 2

3µB , so

from Eqs. (6) and (7) and the total momentum per quark
pair in the condensate is

~p =
2

3
µB ~v , (20)

where as before ~v is the superfluid velocity, so the circu-
lation is

C

A =
3⌫A

2µB

I
d

~

` · ~r' =
3⌫A

2
· 2⇡
µB

. (21)

The angular momentum per baryon of the vortex is

LAz

NB
=

3

2
⌫A . (22)

We now ask how the vortices in hadronic matter would
match on to Abelian vortices in CFL quark matter at a
crossover between these phases. If the superfluid veloc-
ity, and hence the circulation, Eq. (12), and angular mo-
mentum per baryon, Eq. (13), do not match in the two
phases, then quark-hadron continuity would be violated.
By comparing Eqs. (1) and (21), or equivalently (15) and
(22), we see that matching would require

⌫B = 3⌫A . (23)

The matching relation (23) implies that three singly
quantized hadronic vortices should merge into one
Abelian CFL vortex, violating quark-hadron continuity
in states with finite angular momentum. This merging
would require a boojum [7] at the interface between the
two phases, as sketched in Fig. 1(a). As we discuss in
the next section, the violation need not be present for
the more stable non-Abelian vortices in the CFL phase.

C. Non-Abelian CFL Vortices

An Abelian CFL vortex is energetically unstable
against formation of three “non-Abelian” vortices [8, 9].
The condensate of the anti-red–anti-up (r̄ū) non-Abelian
vortex is

�(1) = �CFL

0

@
e

i⌫1'
f(r) 0 0
0 g(r) 0
0 0 g(r)

1

A
, (24)

with corresponding gluon field

A

(1)
' = � ⌫1

gcr
[1� h(r)]

0

@
� 2

3 0 0
0 1

3 0
0 0 1

3

1

A
, (25)

where gc is the QCD coupling and the boundary condi-
tions are

f ! 0, g

0 ! 0, h ! 1 as r ! 0 ,
f ! 1, g ! 1, h ! 0 as r ! 1 .

(26)

Single-valuedness of the condensate requires that ⌫1 be an
integer. Anti-green–anti-down (ḡd̄) and anti-blue–anti-
strange (b̄s̄) versions, �(2) with ⌫2 and �(3) with ⌫3, can
be obtained by permuting the diagonal elements.

Non-Abelian CFL vortex

4

coexist with the flavor-singlet pairing, e.g., the stan-
dard nucleon pairing in the spin-singlet isospin-triplet

channel, �(27)
B = h[NN ]symi, and the possible pairing

in the spin-singlet isospin-doublet channel, �
(8sym)
B =

h� 1
10 [N⇤]sym +

q
9
10 [N⌃]symi [27].

In any of these pairings, the chemical potential enter-
ing Eq. (12) is 2µB , that of a pair of baryons. Therefore,
no matter whether it is flavor singlet or non-singlet, a
hadronic vortex with winding number ⌫B has circulation
2⇡⌫B/(2µB), Eq. (1). The corresponding angular mo-
mentum per baryon is [see Eq. (13)]

LBz

NB
=

1

2
⌫B , (15)

since there are NB/2 pairs in the system.

B. Abelian CFL Vortices

The order parameter of quark matter in the CFL phase
in the unitary gauge can be written in terms of the color
and flavor triplet diquark operator [1]

�̂↵i = N ✏

↵��
✏

ijk
q�jC�5q�k , (16)

where C = i�0�2 is the charge conjugation operator, and
Greek and Latin letters denote color and flavor indices,
respectively; N is a normalization constant. The order
parameter is then

�↵i = h�̂↵ii . (17)

The matrix �↵i can be diagonalized by a combination of
color and flavor rotations, so that without loss of gener-
ality we write

� =

0

@
�r̄ū 0 0
0 �ḡd̄ 0
0 0 �b̄s̄

1

A
, (18)

where r, g, b (r̄, ḡ, b̄) denote colors (anti-colors) and u, d, s

flavors; in the ground state, �r̄ū = �ḡd̄ = �b̄s̄ = �CFL.
Naively one would expect the angular momentum car-

rying states with lowest energy per unit of angular mo-
mentum, to be global U(1)B or “Abelian CFL” vortices.
In these vortices each of the three non-zero components
of the order parameter winds around the core of the vor-
tex, so for an Abelian CFL vortex aligned along the z

axis the order parameter assumes the form

�A = �CFL e
i⌫

A
'

0

@
f(r) 0 0
0 f(r) 0
0 0 f(r)

1

A
, (19)

where f(r) varies monotonically from zero at r = 0 to
unity as r ! 1, with ⌫A the winding number of the
Abelian CFL vortex.

The quark chemical potential is µq = µB/3, and thus
the chemical potential per quark pair is 2µq = 2

3µB , so

from Eqs. (6) and (7) and the total momentum per quark
pair in the condensate is

~p =
2

3
µB ~v , (20)

where as before ~v is the superfluid velocity, so the circu-
lation is

C

A =
3⌫A

2µB

I
d

~

` · ~r' =
3⌫A

2
· 2⇡
µB

. (21)

The angular momentum per baryon of the vortex is

LAz

NB
=

3

2
⌫A . (22)

We now ask how the vortices in hadronic matter would
match on to Abelian vortices in CFL quark matter at a
crossover between these phases. If the superfluid veloc-
ity, and hence the circulation, Eq. (12), and angular mo-
mentum per baryon, Eq. (13), do not match in the two
phases, then quark-hadron continuity would be violated.
By comparing Eqs. (1) and (21), or equivalently (15) and
(22), we see that matching would require

⌫B = 3⌫A . (23)

The matching relation (23) implies that three singly
quantized hadronic vortices should merge into one
Abelian CFL vortex, violating quark-hadron continuity
in states with finite angular momentum. This merging
would require a boojum [7] at the interface between the
two phases, as sketched in Fig. 1(a). As we discuss in
the next section, the violation need not be present for
the more stable non-Abelian vortices in the CFL phase.

C. Non-Abelian CFL Vortices

An Abelian CFL vortex is energetically unstable
against formation of three “non-Abelian” vortices [8, 9].
The condensate of the anti-red–anti-up (r̄ū) non-Abelian
vortex is

�(1) = �CFL

0

@
e

i⌫1'
f(r) 0 0
0 g(r) 0
0 0 g(r)

1

A
, (24)

with corresponding gluon field

A

(1)
' = � ⌫1

gcr
[1� h(r)]

0

@
� 2

3 0 0
0 1

3 0
0 0 1

3

1

A
, (25)

where gc is the QCD coupling and the boundary condi-
tions are

f ! 0, g

0 ! 0, h ! 1 as r ! 0 ,
f ! 1, g ! 1, h ! 0 as r ! 1 .

(26)

Single-valuedness of the condensate requires that ⌫1 be an
integer. Anti-green–anti-down (ḡd̄) and anti-blue–anti-
strange (b̄s̄) versions, �(2) with ⌫2 and �(3) with ⌫3, can
be obtained by permuting the diagonal elements.
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To obtain the superfluid velocity and angular momen-
tum per baryon of the non-Abelian vortex, we rewrite
Eq. (24) as

�(1) = �CFLe
i
3 ⌫1'

0

@
e

2i
3 ⌫1'

f(r) 0 0
0 e

� i
3 ⌫1'

g(r) 0
0 0 e

� i
3 ⌫1'

g(r)

1

A
.

(27)
In this form the overall factor of e

i
3 ⌫1' is the U(1)B phase,

while the phase factors within the matrix are a color ro-
tation. [We note for later computation of the covariant
derivative of �(1) that the gradients of these phases are
compensated by the color gauge field (25).]

The chemical potential per quark pair is 2µq = 2
3µB ,

so from Eqs. (6), (7), and (9) the total momentum per
quark pair is related to the superfluid velocity ~v by

~p =
1

3
· ⌫1
r

'̂ =
2

3
µB~v . (28)

The circulation around the vortex, Eq. (12), is

C(1) =

I

C
~v · d~` = ⇡⌫1

µB

. (29)

Correspondingly, the angular momentum per baryon of
the vortex of the form (24) or (27) is

L(1)z

NB
=

1

2
⌫1 . (30)

The same relations also hold for �(2) with ⌫2 and �(3)

with ⌫3.
We see from Eqs. (1) and (29) and from Eqs. (15) and

(30) that singly quantized (⌫B = 1) vortices in hadronic
matter can match onto singly quantized (⌫1 = 1, ⌫2 = 1,
or ⌫3 = 1) non-Abelian vortices in CFL quark matter at
a crossover between these phases, with no discontinuity
in baryon velocity and angular momentum.

This result can be understood intuitively as follows. In
the hadronic vortex, the dibaryon condensate acquires a
phase of 2⇡ as one follows it along a contour encircling
the vortex core. Since the dibaryon can be viewed as 3
diquarks, this corresponds to each diquark acquiring a
phase of 2⇡/3. The non-Abelian vortex in the CFL con-
densate has exactly the same circulation: each diquark
acquires a phase4 of 2⇡/3.

We conclude, in agreement with Ref. [11], that a sin-
gle non-Abelian CFL vortex has the same circulation as
a hadronic vortex. However, Ref. [11] suggests that, in
order to neutralize the color flux contained in the non-
Abelian vortices, three non-Abelian CFL vortices must
merge to form a boojum at the CFL-hadronic bound-
ary to which three hadronic vortices then connect [see

4 If U(1)B were a local gauge symmetry, the vortex would become
a U(1)B flux tube. The hadronic vortex and the non-Abelian
vortex would both have the same U(1)B flux in their cores.

Fig. 1(b)]. As we argue below, there is no need for such a
boojum: a single non-Abelian CFL vortex can smoothly
evolve into a single hadronic vortex [as in Fig. 1(c)]. To
show this, further consideration of the flavor structure
of the vortices is necessary in the hadronic and the CFL
phases, as we discuss in Sec. IIID.

D. Gauge-invariant description

In Sec. III we described the CFL condensate in the
unitary gauge. Although such a gauge-fixed description
is convenient for writing down the non-Abelian vortex
solution explicitly and showing the continuity of the cir-
culation and angular momentum between the hadronic
phase and the CFL phase, it is not clear how the flavor
structures in the two phases are connected. To resolve
this problem, in this section we describe vortices in the
CFL phase in a gauge-invariant manner [28] using di-
quarks in Eqs. (16) and (17) as building blocks. We can
write down meson-like and baryon-like gauge-invariant
combinations of diquark operators,

M̂j
i (~r ) ⌘ �̂†

i↵�̂
↵j

, (31)

⌥̂ijk(~r ) ⌘ 1

6
✏↵���̂

↵i�̂�j�̂�k
. (32)

We will focus on ⌥̂ijk(~r ) for the moment and will con-
sider M̂j

i (~r ) later in Sec. IIID 3. According to quark-
hadron continuity, h⌥̂ijk(~r )i is nonzero in both the CFL
and hadronic phases because both phases break baryon
number, via diquark and dibaryon condensates respec-
tively. In Secs. IIID 1 and IIID 2 below we will discuss
the projection of ⌥̂ijk(~r ) onto specific flavor representa-
tions.
In the CFL phase, in the mean field approximation,

⌥ijk(~r ) ⌘ h⌥̂ijk(~r )i = 1

6
✏↵���

↵i��j��k
. (33)

⌥ijk(~r ) provides a gauge-invariant description of the
non-Abelian vortex originally defined through the gauge-
dependent condensate �.
Note that the irreducible flavor SU(3) decomposition

of ⌥ijk(~r ) is

3⇤ ⌦ 3⇤ ⌦ 3⇤ = 1� 8� 8� 10⇤
, (34)

so that not only flavor-singlet but also flavored vor-
tices can be obtained from � by appropriate projections.
These would match to certain of the hadronic vortices
classified in Eq. (14).
According to (33) the total number of 6-quark con-

densates in the CFL phase is 3 ⇥ 3 ⇥ 3 = 27, while the
number of pairs of octet baryons in the hadronic phase is
8⇥8 = 64. One might think that there is a mismatch, but
this is because our diquark condensate � only includes
flavor antisymmetric diquarks. We will discuss this point
in Sec. IIID 2.

Abelian Phase 
(Global Vortex) Non-Abelian Phase (T3 and T8) 

(Gauged Vortex)

4

coexist with the flavor-singlet pairing, e.g., the stan-
dard nucleon pairing in the spin-singlet isospin-triplet

channel, �(27)
B = h[NN ]symi, and the possible pairing

in the spin-singlet isospin-doublet channel, �
(8sym)
B =

h� 1
10 [N⇤]sym +

q
9
10 [N⌃]symi [27].

In any of these pairings, the chemical potential enter-
ing Eq. (12) is 2µB , that of a pair of baryons. Therefore,
no matter whether it is flavor singlet or non-singlet, a
hadronic vortex with winding number ⌫B has circulation
2⇡⌫B/(2µB), Eq. (1). The corresponding angular mo-
mentum per baryon is [see Eq. (13)]

LBz

NB
=

1

2
⌫B , (15)

since there are NB/2 pairs in the system.

B. Abelian CFL Vortices

The order parameter of quark matter in the CFL phase
in the unitary gauge can be written in terms of the color
and flavor triplet diquark operator [1]

�̂↵i = N ✏

↵��
✏

ijk
q�jC�5q�k , (16)

where C = i�0�2 is the charge conjugation operator, and
Greek and Latin letters denote color and flavor indices,
respectively; N is a normalization constant. The order
parameter is then

�↵i = h�̂↵ii . (17)

The matrix �↵i can be diagonalized by a combination of
color and flavor rotations, so that without loss of gener-
ality we write

� =

0

@
�r̄ū 0 0
0 �ḡd̄ 0
0 0 �b̄s̄

1

A
, (18)

where r, g, b (r̄, ḡ, b̄) denote colors (anti-colors) and u, d, s

flavors; in the ground state, �r̄ū = �ḡd̄ = �b̄s̄ = �CFL.
Naively one would expect the angular momentum car-

rying states with lowest energy per unit of angular mo-
mentum, to be global U(1)B or “Abelian CFL” vortices.
In these vortices each of the three non-zero components
of the order parameter winds around the core of the vor-
tex, so for an Abelian CFL vortex aligned along the z

axis the order parameter assumes the form

�A = �CFL e
i⌫

A
'

0

@
f(r) 0 0
0 f(r) 0
0 0 f(r)

1

A
, (19)

where f(r) varies monotonically from zero at r = 0 to
unity as r ! 1, with ⌫A the winding number of the
Abelian CFL vortex.

The quark chemical potential is µq = µB/3, and thus
the chemical potential per quark pair is 2µq = 2

3µB , so

from Eqs. (6) and (7) and the total momentum per quark
pair in the condensate is

~p =
2

3
µB ~v , (20)

where as before ~v is the superfluid velocity, so the circu-
lation is

C

A =
3⌫A

2µB

I
d

~

` · ~r' =
3⌫A

2
· 2⇡
µB

. (21)

The angular momentum per baryon of the vortex is

LAz

NB
=

3

2
⌫A . (22)

We now ask how the vortices in hadronic matter would
match on to Abelian vortices in CFL quark matter at a
crossover between these phases. If the superfluid veloc-
ity, and hence the circulation, Eq. (12), and angular mo-
mentum per baryon, Eq. (13), do not match in the two
phases, then quark-hadron continuity would be violated.
By comparing Eqs. (1) and (21), or equivalently (15) and
(22), we see that matching would require

⌫B = 3⌫A . (23)

The matching relation (23) implies that three singly
quantized hadronic vortices should merge into one
Abelian CFL vortex, violating quark-hadron continuity
in states with finite angular momentum. This merging
would require a boojum [7] at the interface between the
two phases, as sketched in Fig. 1(a). As we discuss in
the next section, the violation need not be present for
the more stable non-Abelian vortices in the CFL phase.

C. Non-Abelian CFL Vortices

An Abelian CFL vortex is energetically unstable
against formation of three “non-Abelian” vortices [8, 9].
The condensate of the anti-red–anti-up (r̄ū) non-Abelian
vortex is

�(1) = �CFL

0

@
e

i⌫1'
f(r) 0 0
0 g(r) 0
0 0 g(r)

1

A
, (24)

with corresponding gluon field

A

(1)
' = � ⌫1

gcr
[1� h(r)]

0

@
� 2

3 0 0
0 1

3 0
0 0 1

3

1

A
, (25)

where gc is the QCD coupling and the boundary condi-
tions are

f ! 0, g

0 ! 0, h ! 1 as r ! 0 ,
f ! 1, g ! 1, h ! 0 as r ! 1 .

(26)

Single-valuedness of the condensate requires that ⌫1 be an
integer. Anti-green–anti-down (ḡd̄) and anti-blue–anti-
strange (b̄s̄) versions, �(2) with ⌫2 and �(3) with ⌫3, can
be obtained by permuting the diagonal elements.

Non-Abelian vortex carries Non-Abelian Magnetic Flux

In this case, 

CNA = 2π

1
3
νNA

2µq

= 2π νNA

2 ⋅3µq

= 2π νNA

2µB

νH =νNA
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To obtain the superfluid velocity and angular momen-
tum per baryon of the non-Abelian vortex, we rewrite
Eq. (24) as

�(1) = �CFLe
i
3 ⌫1'

0

@
e

2i
3 ⌫1'

f(r) 0 0
0 e

� i
3 ⌫1'

g(r) 0
0 0 e

� i
3 ⌫1'

g(r)

1

A
.

(27)
In this form the overall factor of e

i
3 ⌫1' is the U(1)B phase,

while the phase factors within the matrix are a color ro-
tation. [We note for later computation of the covariant
derivative of �(1) that the gradients of these phases are
compensated by the color gauge field (25).]

The chemical potential per quark pair is 2µq = 2
3µB ,

so from Eqs. (6), (7), and (9) the total momentum per
quark pair is related to the superfluid velocity ~v by

~p =
1

3
· ⌫1
r

'̂ =
2

3
µB~v . (28)

The circulation around the vortex, Eq. (12), is

C(1) =

I

C
~v · d~` = ⇡⌫1

µB

. (29)

Correspondingly, the angular momentum per baryon of
the vortex of the form (24) or (27) is

L(1)z

NB
=

1

2
⌫1 . (30)

The same relations also hold for �(2) with ⌫2 and �(3)

with ⌫3.
We see from Eqs. (1) and (29) and from Eqs. (15) and

(30) that singly quantized (⌫B = 1) vortices in hadronic
matter can match onto singly quantized (⌫1 = 1, ⌫2 = 1,
or ⌫3 = 1) non-Abelian vortices in CFL quark matter at
a crossover between these phases, with no discontinuity
in baryon velocity and angular momentum.

This result can be understood intuitively as follows. In
the hadronic vortex, the dibaryon condensate acquires a
phase of 2⇡ as one follows it along a contour encircling
the vortex core. Since the dibaryon can be viewed as 3
diquarks, this corresponds to each diquark acquiring a
phase of 2⇡/3. The non-Abelian vortex in the CFL con-
densate has exactly the same circulation: each diquark
acquires a phase4 of 2⇡/3.

We conclude, in agreement with Ref. [11], that a sin-
gle non-Abelian CFL vortex has the same circulation as
a hadronic vortex. However, Ref. [11] suggests that, in
order to neutralize the color flux contained in the non-
Abelian vortices, three non-Abelian CFL vortices must
merge to form a boojum at the CFL-hadronic bound-
ary to which three hadronic vortices then connect [see

4 If U(1)B were a local gauge symmetry, the vortex would become
a U(1)B flux tube. The hadronic vortex and the non-Abelian
vortex would both have the same U(1)B flux in their cores.

Fig. 1(b)]. As we argue below, there is no need for such a
boojum: a single non-Abelian CFL vortex can smoothly
evolve into a single hadronic vortex [as in Fig. 1(c)]. To
show this, further consideration of the flavor structure
of the vortices is necessary in the hadronic and the CFL
phases, as we discuss in Sec. IIID.

D. Gauge-invariant description

In Sec. III we described the CFL condensate in the
unitary gauge. Although such a gauge-fixed description
is convenient for writing down the non-Abelian vortex
solution explicitly and showing the continuity of the cir-
culation and angular momentum between the hadronic
phase and the CFL phase, it is not clear how the flavor
structures in the two phases are connected. To resolve
this problem, in this section we describe vortices in the
CFL phase in a gauge-invariant manner [28] using di-
quarks in Eqs. (16) and (17) as building blocks. We can
write down meson-like and baryon-like gauge-invariant
combinations of diquark operators,

M̂j
i (~r ) ⌘ �̂†

i↵�̂
↵j

, (31)

⌥̂ijk(~r ) ⌘ 1

6
✏↵���̂

↵i�̂�j�̂�k
. (32)

We will focus on ⌥̂ijk(~r ) for the moment and will con-
sider M̂j

i (~r ) later in Sec. IIID 3. According to quark-
hadron continuity, h⌥̂ijk(~r )i is nonzero in both the CFL
and hadronic phases because both phases break baryon
number, via diquark and dibaryon condensates respec-
tively. In Secs. IIID 1 and IIID 2 below we will discuss
the projection of ⌥̂ijk(~r ) onto specific flavor representa-
tions.
In the CFL phase, in the mean field approximation,

⌥ijk(~r ) ⌘ h⌥̂ijk(~r )i = 1

6
✏↵���

↵i��j��k
. (33)

⌥ijk(~r ) provides a gauge-invariant description of the
non-Abelian vortex originally defined through the gauge-
dependent condensate �.
Note that the irreducible flavor SU(3) decomposition

of ⌥ijk(~r ) is

3⇤ ⌦ 3⇤ ⌦ 3⇤ = 1� 8� 8� 10⇤
, (34)

so that not only flavor-singlet but also flavored vor-
tices can be obtained from � by appropriate projections.
These would match to certain of the hadronic vortices
classified in Eq. (14).
According to (33) the total number of 6-quark con-

densates in the CFL phase is 3 ⇥ 3 ⇥ 3 = 27, while the
number of pairs of octet baryons in the hadronic phase is
8⇥8 = 64. One might think that there is a mismatch, but
this is because our diquark condensate � only includes
flavor antisymmetric diquarks. We will discuss this point
in Sec. IIID 2.
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In the hadronic phase a nonzero expectation value of
⌥̂ijk(~r ) is an order parameter for baryon number viola-
tion, which is manifest with ⌥̂ijk(~r ) rewritten in terms
of the baryon-interpolating operator, B̂i a

j ⌘  ̂↵i
q̂

a
↵j ; the

spin-1/2 is represented by the index a on q

a
↵j . In writ-

ing B̂

i a
j as interpolating operators for spin-1/2 baryons,

we simplify the operator structure by neglecting the ax-
ial vector diquark (called the “bad diquark” in hadron
structures), which is a reasonable approximation for low-
lying baryons. The operator B̂i a

m can be written as a sum
of flavor-singlet and flavor-octet operators as

B̂

i a
m = B̂

a
1(�

i
m/

p
6) + B̂

A a
8 (tA)im, (35)

where the t

A are the SU(3) generators (A = 1, . . . , 8) in
flavor space, with the normalization tr(tA)2 = 1/2. Then
B̂

a
1 ⌘ 2 tr(B̂a)/

p
6 and B̂

A a
8 ⌘ 2 tr(tAB̂a).

Forming B̂

i a
j by combining the quark operator with

the diquark operator written in terms of two quarks, (16),
we find the operator relation

⌥̂ijk(~r ) =
1

3
✏

kmn(C�5)ab B̂
i a
m B̂

j b
n . (36)

Clearly, a dibaryon condensate hB̂B̂i 6= 0 in the hadronic
phase, makes ⌥ijk nonzero.

1. Flavor-singlet vortex

We first consider vortices in the flavor-singlet projec-
tion of the gauge-invariant order parameter,

⌥̂1(~r ) = ✏ijk⌥̂
ijk(~r ) . (37)

We can equivalently express this expectation value using
Eq. (36) in terms of the baryon operators, (35),

⌥1(~r ) =
1

3
(C�5)ab

�
�

m
i �

n
j � �

n
i �

m
j

�
hB̂i a

m B̂

j b
n i

=
1

3
(C�5)ab

✓
hB̂a

1B̂
b
1i �

1

2
hB̂A a

8 B̂

A b
8 i

◆
; (38)

in hadronic language ⌥1(~r ) corresponds to a flavor-
singlet condensate made with flavor-singlet and flavor-
octet baryons.

In the CFL phase insertion of any of �(1), �(2) or �(3)

gives the same form

⌥1 = e

i⌫q'�3
CFLf(r)g

2(r), (39)

which implies that the non-Abelian vortices �(1,2,3) have
a common flavor-singlet component. A singly quantized
(⌫q = 1) vortex has the same circulation 2⇡/2µB as a
singly quantized (⌫B = 1) hadronic vortex in the flavor-
singlet channel; its phase winds by 2⇡ on a contour en-
circling the vortex core, consistent with our finding that
these two vortices match smoothly onto each other, with
quantized vortex circulation 2⇡/2µB .

If, on the other hand, were we to substitute the field
configuration for an Abelian vortex �(A) in Eq. (19) into
Eq. (37), we would find

⌥A = e

3i⌫
A
'�3

CFLf
3(r) ; (40)

the gauge-invariant form of a singly quantized Abelian
vortex winds three times more (by 6⇡) on a contour en-
circling the vortex core. This winding is consistent with
needing three hadronic vortices to match to one Abelian
vortex [11].
We now consider the vortex energy in terms of the

gauge-invariant order parameter. Because of the bound-
ary condition (26), the extra energy density of a vortex
far away from its core arises from the derivative terms;
for a non-Abelian vortex the energy density is asymptot-
ically

✏

(1) = tr |D�(1)|2 , (41)

where the covariant derivative is D = r� igcA, and the
trace is taken with respect to color-flavor matrix indices.
The gluon field (25) in D exactly cancels the derivatives

of the phases in the color-flavor matrix part of �(1)
↵i in

Eq. (27). As a result only the derivative of the U(1)B
phase contributes to the energy density at large distance
from the vortex core,

✏

(1) = 3 · ⌫1
2

9r2
|�CFL|2 . (42)

Calculating r⌥1 from Eq. (39) we can write the energy
in terms of the gauge-invariant order parameter as

✏1 =
1

3(�CFL)4
|r⌥1|2 . (43)

This is the kinetic term of a Ginzburg-Landau theory
[29] at large distance for the gauge-invariant flavor-singlet
order parameter ⌥1.
We can write the full gauge-invariant Ginzburg-

Landau free energy in two-dimensions in the form:

F = N
Z

d

2
r

✓
|r⌥̃1|2 �m

2|⌥̃1|2 +
�

2
|⌥̃1|4

◆
, (44)

where we rescale ⌥1 ! ⌥̃1 to make the coe�cient of
the gradient term be unity at the mean-field level. The
full determination of the coe�cients, m

2 and �, from
QCD is a challenging future problem. This form of the
Ginzburg-Landau free energy describes the interaction
between the flavor-singlet parts of non-Abelian vortices
(see also Ref. [30]).
As in simple superfluids, e.g., 4He, the interaction en-

ergy of two non-Abelian vortices in the gauge-invariant
picture is essentially the integral of the product of the
two vortex velocities, v1 · v2, which is generally negative
between two similarly quantized vortices; for two singly
quantized vortices whose cores are separated by L, as-
sumed much greater than the coherence length 1/m, the

6 quark objects = 3 diquarks = 2 baryons
Quantum numbers match
Non-Abelian vortices = Flavor singlet + Non-singlets

(~ LL)



Other topics 

1. Flavor symmetry (breaking) 
Flavor structure of vortices 
 (e.g. Neutron superfluidity)  

2. Vortex interaction 
Ginzburg-Landau analysis 

MWHC theorem 



Summary of today’s talk 

① Quark-hadron continuity hypothesis 
    (Fradkin/Shenker=Schafer/Wilczek) 

② Study of superfluid vortices in light 
    of QH continuity 

③ Possible applications of our findings 
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