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Setting

• We consider settings with a binary exposure A, an outcome Y , and a
number of covariates/confounders L.

• Loosely speaking, we are interested in the effect of A on Y , and in order
to estimate this we will account for L in some way.

• We’ll introduce propensity-score-based methods for accounting for L.

• In particular we’ll discuss the reasons for and the situations in which one
might prefer such an approach over ‘traditional’ regression, as well as
pointing out some incorrectly held beliefs on this issue.
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Traditional regression

• Traditional regression methods proceed by fitting one model for Y given
A and L, eg

E (Y |A, L) = α+ βA + γ′L.

• The field known as causal inference has formalised the causal
interpretation of the above:

• What is the causal quantity (hopefully) being estimated?
• On what structural assumptions does this rely?
• What sorts of variables can/should we include in L? Which ones

should we omit? (DAGs)
[Pearl (2009) Causality, CUP.]

• On what parametric assumptions are we additionally relying?
[eg Hernán and Robins (2018) Causal Inference, Chapman & Hall.]

• We return to these questions in a moment.
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WHAT?
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Propensity score methods: overview

• Propensity score methods take a different approach.
[Rosenbaum and Rubin (1983) Biometrika, 70(1):41–55.]

• The propensity score is defined as:
π(L) = E (A|L),

the probability of being exposed as a function of covariates L.
• The key property of the scalar π(L) is this: if L is sufficient to adjust for

confounding, then so is π(L).
• π(·) is typically an unknown function. A regression model is often fitted

to estimate it, eg
π(L) = E (A|L) = expit (ν + η′L) .

• Propensity score methods use the key property and replace the
multivariate L with the scalar π̂(L) in the analysis, eg by fitting

E (Y |A, L) = θ + ψA + φπ̂(L).
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PS methods: adjusting, stratifying, matching, weighting

• As well as adjusting for the estimated propensity score in a regression
model:

E (Y |A, L) = θ + ψA + φπ̂(L),

since π̂(L) is a scalar, alternative non-model based adjustments are
feasible, such as stratifying on π̂(L), matching on π̂(L) and inverse
weighting by π̂(L).

• At least as far as adjusting/stratifying go, we can think of this use of the
propensity score as a dimension-reduction approach on L, but one that
preserves the confounding adjustment property of the full set L.
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WHY (NOT)?
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So much controversy and confusion!

• It is natural to ask why, when and according to what measure is one of
these approaches (traditional regression vs propensity score methods)
preferable to the other.

• When might this dimension reduction be particularly valuable? Can it
also be harmful?

• In one approach we have to specify a model for E (Y |A, L) and in the
other we have to specify a model for E (A|L). In what situations might
one of these be easier to do than the other?

• It is perhaps surprising that so much controversy and confusion have been
generated through trying to answer these seemingly simple questions!

• Before we can discuss these questions and resolve some of the confusing
answers, we need to revisit traditional regression as viewed through a
causal inference lens. . .
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Traditional regression through the causal inference lens (1)

eg
E (Y |A, L) = g−1 (α+ βA + γ′L) (†)

• What is the causal quantity (hopefully) being estimated?

— The average treatment effect (ATE) is defined as E (Y 1 − Y 0), where
Y a is the potential outcome that would be seen if A were set to a.
— Under the assumptions given on the next slide, linear regression (eg
(†) with g(·) the identity link) directly targets the ATE’s conditional
counterpart E (Y 1 − Y 0| L), but this (β) is equal to the ATE if there is
no effect modification.
— Otherwise, the ATE can be obtained via a small additional step. Eg
for (†), and under the assumptions on the next slide,

E (Y 1 − Y 0) = E
{

g−1 (α+ β + γ′L)− g−1 (α+ γ′L)
}
.

— NB propensity score methods also target the ATE, or can be made to
via a simple step as above.
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Traditional regression through the causal inference lens (2)

eg
E (Y |A, L) = g−1 (α+ βA + γ′L) (†)

• On what structural assumptions does this causal interpretation rely?

— The key one is conditional exchangeability, Y a ⊥⊥ A|L, a = 0, 1.
— Also no interference, consistency, positivity. (More details at the end.)
[eg Hernán and Robins (2018) Causal Inference, Chapman & Hall.]

• What sorts of variables can/should we include in L? Which ones should
we omit?

— To avoid bias, we need to choose L so that conditional exchangeability
holds. For efficiency, other variables may be useful/detrimental without
affecting conditional exchangeability. See next slides.

• On what parametric assumptions are we additionally relying?

— The regression model needs to have the correct functional form, eg if
L1

2 is wrongly omitted from (†) then our estimator of the ATE will be
biased.
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Trad reg: which variables should be included in L? (1)
Pearl’s work has taught us. . .

A

L

U
/

ε1 ε2

Y

//

• Assuming conditional exchangeability given L means there can exist no
unmeasured common causes U of A and Y .

• And also it means that L should not include any consequences M of
exposure. . .

• . . . nor any ‘unresolved’ colliders K .
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Trad reg: which variables should be included in L? (2)

A

L

Y

U

, ,/
/

• We can explicitly split L. . .

• . . . into confounders C , instruments Z and risk factors V .
• Adjustment for C is necessary for consistent estimation

, adjustment for V
is helpful for precision, but adjustment for Z is detrimental for precision.

• Adjustment for Z also amplifies bias due to any unmeasured confounders
U.
[Wooldridge (2016) Research in Economics, 70(2):232–7.]
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[Wooldridge (2016) Research in Economics, 70(2):232–7.]
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What about when using propensity score methods? (1)

A

L

U
/

ε1 ε2

Y

//

• The story is the same when considering methods based on the propensity
score: unmeasured confounders U are bad news. Anecdotally, this is not
always appreciated.

• L still can’t include any consequence M of exposure. . .
• . . . nor any ‘unresolved’ colliders K . Rubin refuses to acknowledge this!

[Rubin (2007) Statistics in Medicine, 26(1): 20–36 and the letters that followed by Shrier, Rubin, Pearl, Sjölander.]
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What about when using propensity score methods? (2)

A
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/

• What about the choice between C , V and Z when using a propensity
score approach? One might naïvely imagine that the arguments change
when we model E (A|L) instead of E (Y |A, L).

• But no. Including C in the PS model is necessary for consistent
estimation

, including V is helpful for precision (even though its true
coefficient is zero), and including Z is detrimental for precision.
[Brookhart et al (2006) AJE 163:1149–56.]

• Again, including Z in the PS model amplifies bias due to any unmeasured
confounders U.
[Pearl (2011) AJE, 174:1223–7.]
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What then is the difference?

• So far, we have noted that traditional regression and propensity score
approaches demand that we collect the same set of covariates L, namely
those given which conditional exchangeability holds (for bias reduction)
plus any variables that predict the outcome (for precision). Predictors of
exposure (only) are harmful (precision, bias amplification) for both
approaches.

• The choice then is between, for traditional regression, specifying a
parametric model for E (Y |A, L), and, for propensity score methods,
specifying a parametric model for E (A|L).

• If we misspecify the functional form of E (Y |A, L), the traditional
regression estimator (of the ATE) will be biased. If we misspecify the
functional form of E (A|L), the propensity score estimators (of the ATE)
will be biased.

• The dimension of L is the same in both, so aren’t both jobs equally hard,
and the consequences of mistakes equally severe?

Well, no. . .
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Poor overlap (1)

— An important and common situation is one in which there is little
overlap between the L-values of the exposed and unexposed groups.

— Consider what then happens to the traditional regression estimator,
which relies on correctly specifying the functional form of E (Y |A, L).
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Poor overlap (2)

There is little information in the data to choose between this linear model
. . .
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Poor overlap (3)

. . . and this quadratic model, even though the estimated ATEs are v
different.
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Poor overlap (4)

• Both models fit the data almost equally well, but lead to different
estimates of the ATE.

• We can only check how well the model fits the observed data, but,
whenever there is poor overlap, the traditional regression estimator relies
on the extrapolation of these fitted relationships to regions where there is
little data to support the model choice.

• Regression methods flag this only very mildly (via slightly increased
estimated SEs) and proceed to give ‘precise’ estimates based on
extrapolations.
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A very simple simulation

gen b_reg_c=.
gen b_reg_w=.
gen b_ps=.

forvalues i=1(1)500 {
qui gen C=.7*(rnormal())^2 if _n<=100
qui replace C=C+rnormal() if _n<=100

qui gen X=runiform()<1/(1+exp(-(5*(C-.7)))) if _n<=100
qui gen Y=C+1.5*C^2+5*X+5*rnormal() if _n<=100

qui logit X C if _n<=100
qui predict ps if _n<=100

qui gen Csq=C^2 if _n<=100
qui reg Y C Csq X if _n<=100
qui replace b_reg_c=_b[X] in ‘i’

qui gen CX=C*X if _n<=100
qui summ C if _n<=100
local m=r(mean)
qui reg Y C X CX if _n<=100
qui replace b_reg_w=_b[X]+_b[CX]*‘m’ in ‘i’

qui reg Y ps X if _n<=100
qui replace b_ps=_b[X] in ‘i’

keep b_*
}
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Simulations to demonstrate this (true value of ATE = 5)

— When the model for E (Y |A, L) is correctly specified, all is well, and,
indeed, traditional regression is more efficient than adjustment for the
estimated propensity score, as theory dictates.
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Simulations to demonstrate this (true value of ATE = 5)

— But more relevant is the performance of traditional regression with an
incorrectly-specified model: it is biased.

Rhian Daniel @statnav/Propensity scores: what, why and why not? 22/41



Simulations to demonstrate this (true value of ATE = 5)

Trad reg Trad reg PS adjusted Trad reg Trad reg PS adjusted Trad reg Trad reg PS adjusted
correct      incorrect correct      incorrect correct      incorrect 

High overlap Moderate 
overlap Low overlap
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Some remarks (1)

• As the overlap decreases, traditional regression based on a
correctly-specified model stays unbiased and efficient, but the bias in the
corresponding estimator with an incorrectly-specified model gets worse.

• As the overlap decreases, we are increasingly likely to choose the wrong
model, so low overlap stings traditional regression twice.

• In contrast, there is no reason to believe that low overlap increases the
risk of getting the PS model wrong.
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Some remarks (2)

• Note how the (correctly-specified) PS adjusted estimator gets less precise
as the overlap decreases.

• This is because (for linear regression in the absence of effect
modification), the propensity score adjusted estimator of the ATE is:

ψ̂ =

∑n
i=1 {Ai − π̂ (Li)}

{
Y i − θ̂ − φ̂π̂ (Li)

}
∑n

i=1 {Ai − π̂ (Li)}Ai

Note how regions of low overlap are down-weighted.

• As the overlap decreases, the PS-adjusted estimator more honestly
reflects the loss of information regarding the treatment effect.

• The estimated SEs for other propensity score methods also become
increasingly large as overlap decreases and the poor overlap is flagged up
by small strata, no available matches, extreme weights.
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Another issue: finite sample bias (1)

• The parameters of regression models are typically estimated by maximum
likelihood.

• ML estimators are, in general, only asymptotically unbiased.

• For logistic and Cox regression, ML parameter estimators can be
noticeably biased in small samples.

• In particular, bias increases as the number of events per parameter
decreases.

• The more confounders L we adjust for, the larger this finite-sample bias.

• Rule of thumb: “need 10 or more events per parameter being estimated”.
[Peduzzi et al (1995) J Clin Epidemiol.]
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Another issue: finite sample bias (2)

• Why is this more of a problem for traditional regression than PS
methods?

• Often outcomes are rare but exposures are not, so the events per
parameter can be far lower for E (Y |A, L) than for E (A|L).

• More importantly, the finite sample bias affects individual parameter
estimators but not the estimator of the conditional expectation (the
predictions).

• So, for both reasons, π̂(L) can be estimated without bias while the
individual parameter estimates for the parameters of E (Y |A, L) are
severely biased.

• This is so even in the absence of any model misspecification.

Rhian Daniel @statnav/Propensity scores: what, why and why not? 27/41



Another issue: finite sample bias (2)

• Why is this more of a problem for traditional regression than PS
methods?

• Often outcomes are rare but exposures are not, so the events per
parameter can be far lower for E (Y |A, L) than for E (A|L).

• More importantly, the finite sample bias affects individual parameter
estimators but not the estimator of the conditional expectation (the
predictions).

• So, for both reasons, π̂(L) can be estimated without bias while the
individual parameter estimates for the parameters of E (Y |A, L) are
severely biased.

• This is so even in the absence of any model misspecification.

Rhian Daniel @statnav/Propensity scores: what, why and why not? 27/41



Another issue: finite sample bias (2)

• Why is this more of a problem for traditional regression than PS
methods?

• Often outcomes are rare but exposures are not, so the events per
parameter can be far lower for E (Y |A, L) than for E (A|L).

• More importantly, the finite sample bias affects individual parameter
estimators but not the estimator of the conditional expectation (the
predictions).

• So, for both reasons, π̂(L) can be estimated without bias while the
individual parameter estimates for the parameters of E (Y |A, L) are
severely biased.

• This is so even in the absence of any model misspecification.

Rhian Daniel @statnav/Propensity scores: what, why and why not? 27/41



Another issue: finite sample bias (2)

• Why is this more of a problem for traditional regression than PS
methods?

• Often outcomes are rare but exposures are not, so the events per
parameter can be far lower for E (Y |A, L) than for E (A|L).

• More importantly, the finite sample bias affects individual parameter
estimators but not the estimator of the conditional expectation (the
predictions).

• So, for both reasons, π̂(L) can be estimated without bias while the
individual parameter estimates for the parameters of E (Y |A, L) are
severely biased.

• This is so even in the absence of any model misspecification.

Rhian Daniel @statnav/Propensity scores: what, why and why not? 27/41



Another issue: finite sample bias (2)

• Why is this more of a problem for traditional regression than PS
methods?

• Often outcomes are rare but exposures are not, so the events per
parameter can be far lower for E (Y |A, L) than for E (A|L).

• More importantly, the finite sample bias affects individual parameter
estimators but not the estimator of the conditional expectation (the
predictions).

• So, for both reasons, π̂(L) can be estimated without bias while the
individual parameter estimates for the parameters of E (Y |A, L) are
severely biased.

• This is so even in the absence of any model misspecification.

Rhian Daniel @statnav/Propensity scores: what, why and why not? 27/41



Another very quick simulation

forvalues j=1(1)50 {
qui gen epp_‘j’=.
qui gen b_reg_‘j’=.
qui gen b_ps_‘j’=.
forvalues i=1(1)100 {
qui gen X=runiform()<0.5 if _n<=100
forvalues k=1(1)‘j’ {
qui gen C‘k’=runiform()<0.5 if _n<=100
}
qui gen Y=runiform()<1/(1+exp(-(-0.5+X))) if _n<=100
cap qui logit Y X C* if _n<=100, asis
if _rc==0 {
qui replace b_reg_‘j’=_b[X] in ‘i’
}
qui count if Y==1 & _n<=100
qui replace epp_‘j’=r(N)/(2+‘j’) in ‘i’
cap qui logit X C* if _n<=100, asis
if _rc==0 {
qui predict ps if _n<=100
cap qui logit Y X ps if _n<=100
}
if _rc==0 {
qui replace b_ps_‘j’=_b[X] in ‘i’
}
keep b_* epp_*
}
}
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Simulations to demonstrate this (true value = 1)
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Remark

• It may seem that we are ‘getting something for nothing’ on the previous
slide.

• It’s reassuring to note that there is a price to pay.

• When adjusting for π̂(L) instead of L, we stop learning anything about
the individual ‘effects’ of variables in L.

• Scientifically, this is usually a price we are happy to pay for the reward of
removing the finite sample bias in the parameter of interest.
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Other criticisms

Rhian Daniel @statnav/Propensity scores: what, why and why not? 31/41



Stephen Senn deserves a slide to himself ,

• Senn et al (Statistics in Medicine, 2007) were critical of propensity score
methods, showing that they are always less efficient than traditional
regression methods.

• They considered only linear regression, hence missed the issue of finite
sample bias.

• They also only considered correctly-specified models, hence poor overlap
and misspecification were not considered.

• Stephen Senn (and many others) stress that estimated standard errors
should always be adjusted when using a propensity score approach to
allow for the fact that the propensity scores were estimated, not known.
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Another controversy
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Bayesian propensity score

• Another interesting debate is whether or not Bayesians are allowed even
to mention the concept of the propensity score!

• Logically, it seems that the propensity score is irrelevant to a Bayesian,
even when it is known. And yet, many so-called Bayesian propensity
score approaches exist. . .

• See Robins et al Biometrics 71(2): 296–9 for an excellent and amusing
account.
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Finally. . .
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Double robust methods, machine learning, longitudinal data

• Arguably the most valuable use of the propensity score is not instead of
traditional regression but in addition to it.

• Many, many methods exist that combine the two working models under a
so-called double robust approach.

• As well as being appealing in the sense of having two bites at the cherry,
double robust estimators also have many other nice properties such as
faster convergence and more tangible analytical inferences.

• This means that machine learning methods are often made more feasible
when used in conjunction with double robust estimators.

• Another area related to propensity scores is when making causal
inferences from longitudinal data in the presence of time-dependent
confounders affected by previous exposures.
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In summary
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PS: why and why not?

The bad news:
• PS methods are not a solution to unmeasured confounding.

• PS methods are not a solution to collider stratification bias.
• PS methods are typically less efficient than traditional regression methods

when all models are correctly specified.
• PS methods are logically off limits if you’re a Bayesian.

The good news:
• PS methods can give less biased and more honest inference in situations

when there is poor overlap.
• PS methods suffer far less from finite sample bias in non-linear regression

models when the number of confounders is large.
• PS methods, particularly adjustment and weighting, extend well to more

complex settings.
• The two approaches can be combined leading to, in some cases, the best

of both worlds.
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Extra slides
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Additional slides
More details on the assumptions

• No interference: The potential outcome for individual i doesn’t depend on
the hypothetical level that the exposure for individual j 6= i is set to. This
means that a single index a on the potential outcome Y a is sufficient.

• Consistency: Y a = Y for any individual for whom A = a.

• Positivity: For all l and for any ε > 0 such that the density fL(l) of L
evaluated at l is greater than ε, there exists a δ > 0 such that
δ < π(l) < 1− δ.

• Conditional exchangeability: Y a ⊥⊥ A|L, a = 0, 1.
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Additional slides
More details on identification

Suppose the regression model is

E (Y |A, L) = g−1 {m(A, L)} (†)

where m(A, L) is the linear predictor (and may contain product terms
between A and elements in L). Then,

E (Y a) = E {E (Y a|L)}
= E {E (Y a|A = a, L)} (by cond. exch.)
= E {E (Y |A = a, L)} (by consistency*)
= E

[
g−1 {m(a, L)}

]
(by (†))

*positivity ensures that this conditional expectation exists.
Thus,

E (Y 1 − Y 0) = E
[
g−1 {m(1, L)} − g−1 {m(0, L)}

]

Rhian Daniel @statnav/Propensity scores: what, why and why not? 41/41


