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Energy-water-climate cycle
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VICIOUS INTERACTIONS: Water
implications of energy generation
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Growth in energy demand
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Global electricity generation by resource
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Water consumption to generate
power from different technologies

Water
consumed

(m3/MWh)

Energy type
Wind
Gas

PV=0.1

Coal
Nuclear
Qil/Petrol

Hydropower
Bio-fuel, 1% gen. (corn, US) 184
Bio-fuel, 15! gen. (sugar, Brazil) 293
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VICIOUS INTERACTIONS: Energy
implications of water services
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Growth in water demand

Evolution of Global Water Use
Withdrawal and Consumption by Sector
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Energy consumption in water
production

Type of water supply
Surface water (rivers & reservoirs)

Recycled water
Desalination
Bottled water

Approximate total energy
footprint of water supply

and treatment (KWh/m?)
05-4

1-6
4-8
1000 - 4000

- Sources: Henrik Larsen, DHI Water Policy, 2008



City energy demand for water services

WATER ENERGY

Source: General Electric



Energy consumption for UK water services

UK water industry consumes x
over 8000 GWh energy annually < i
to produce potable water and L
treat wastewater o
This translates to over 5 million
tonnes of CO, equivalent
emissions . Of these
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56 % of these emissions
derive from wastewater,

39 % from water supply and
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administration/transport by
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Energy and associated Carbon
footprint of water sector in the UK
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UK average CO,e emissions for water
service and usage in the home

External to household - 11%

g Wastewater :
treatment (7%)

Water in the
home - 89%

Water treatment

(2.0%)
Total carbon emissions of e
6.2 tCO,e per Ml water for ﬁﬂet‘i:)dlsmbu’ﬂﬂﬂ

water in the home. This
equates to 2.2 kg CO.e

daily per household Source, abstraction

& conveyance (0.4%)
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What should we prioritise?

In the UK, we use 8 TWh electrical energy for
water services

Saving 30% equates to 2.4 TWh savings

Water related energy use at home by
customers is at least 60 TWh

So users saving just 5% will have the same
overall impact!
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VIRTUOUS INTERVENTIONS:
Appliances
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Household appliances
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Micro-component based contributions to
energy, water and CO,e emissions
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Water use & CO,e emissions of
household micro-components
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Water use & CO,e emissions
including greywater reuse
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Ultralow flush toilet (ULFT)

A pneumatic flush WC that uses a
displaced air principle to operate.

A sealable lid allows air to force
waste from the bowl

* Requires only 1.5 litres per flush
and gives improved flushing and -
drainage performance.

* Looks and is used in the same way
as a conventional WC

« Generates its own air and requires
no ancillary equipment
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Operation

Copyright © Phoenix Product Development Limited



Test rig experiments
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Test rig experiments
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In-situ trials

In situ trials extended over 8 months at WRC

The purpose was to record water saved and
‘real world performance’

No reported blockages even after 5000
flushes

B No impact on the water seal traps of the
other connected appliances

e  58% of users thought ULFT was easy to use

I8 * Concern of hygiene of touching lid

UNIVERSITY OF

EXETER
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Resource saving potential

* Average volume of WCs at WRc: ~ 9 litres

e Average volume of ULFT: 1.3 litres
e Water saving: 86%
e Each ULFT flush (1.3 1) requires 500 J

e Each litre of water delivered requires 3200 J
e Net energy (and carbon) saving: 84%

*Net energy (and carbon) saving: 76% (c.f. 6 /| WC)
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VIRTUOUS INTERVENTIONS:
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Rainwater harvesting
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Rainwater harvesting

Traditional RWH
Roof * Below ground tank
* Direct-feed system
Rainfall
1 Downpipes
WCl1 I
Laundry
% | = Mains
& water
Garden back- _ B :
R up \_' Filter ___Q_f\‘ _ =
. A
m
— 1]
Pump Tank

Sewer

MELVILLE-SHREEVE, F., WARD, S., & BUTLER, D. (2016). Rainwater Harvesting Typologies for UK UNIVERSITY OF

Houses: A Multi Criteria Analysis of System Configurations, Water, 8, 129; DOI:10.3390/w8040129. E ETER
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Rainwater harvesting

 Benefits:

— Saves potable water (by displacing non-
potable water use)

— Saves energy/carbon (at least that
associated with the displaced water)

— Reduces flood risk (especially summer
storms & can be enhanced by better design)

— Reduces load on regional water resources
and central water infrastructure (and
potentially delays/limits expansion)
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Rainwater harvesting

* Drawbacks:

— Requires maintenance (to ensure reliability)

— Requires energy/carbon to construct and
operate (at least most current systems)

— Has potential water quality issues (although
these are minimised by careful
design/installation)

— Payback period depends on scale of
provision (shorter in bigger buildings)

— Owners may be unfamiliar and misuse or
remove system
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RWH energy consumption
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RWH energy use — office building

Rainfall !

v
Office !

7 Building 7P

r___________________!

il

Key

1 = Downpipe and guttering

2 = Underground tank (with coarse and 440 Jm filters)
3 = Pump (with 180 pm floating suction filter)

4 = Rainwater feed

5 = System control panel (with 35 pm filter)

6 = Sampling point

7 = Header tank

F-7777

8=WC
WARD, S., MEMON, F.A. & BUTLER, D. (2012). Operational energy consumption and carbon UNIVERSITY OF
dioxide emissions from rainwater harvesting systems. Chapter 19 in Water-Energy E ETER

Interactions in Water Reuse (Eds. V. Lazaravo, K-H Choo, P. Cornel), IWA Publishing Centre for Water Systems



RWH energy use — office building

1.2
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CO; (kg)
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WARD, S., MEMON, F.A. & BUTLER, D. (2012). Operational energy consumption and carbon
dioxide emissions from rainwater harvesting systems. Chapter 19 in Water-Energy
Interactions in Water Reuse (Eds. V. Lazaravo, K-H Choo, P. Cornel), IWA Publishing
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Low energy RWH

5 = Rooflocated RWH with

suction pump

« Loft located tank

* Low storage capacity ~500
lieres
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MELVILLE-SHREEVE, F., HORSTMAN, C., WARD, S., MEMON, F.A., & BUTLER, D. (2016). A Laboratory UNIVERSITY OF
Study into a Novel, Retrofittable Rainwater Harvesting System. British Journal of Environment and E ETER
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Low energy RWH

A) Chamber connected to downpipe

T

B) Illustration of chamber discharging to downpipe

14— Downpipe —»

A Vol
\ Oversized downpipe

N\

Weir
Suction hose
< (to loft pump) |
) < Debris filter —
B, . el —
downpipe

Weir

T

C) Illustration of chamber being pumped empty
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Low energy RWH - lab testing |




Low energy RWH - lab testing Il
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Low energy RWH - field trials

s . f 3 e
¢ g

.

A
3

UNIVERSITY OF

MELVILLE-SHREEVE P., WARD S.L, & BUTLER D (2016). “Evaluating FlushRain retrofittable rainwater E ETER
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Zero energy RWH - lab testing




The ultimate zero-energy system?
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Water supply
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Water supply system

The New York Tunnel has been L"“f"‘“j
largely studied as a single /@/ \’x@
objective optimisation problem. ({ }9

The network has a single source
(i.e. reservoir), 19 demand
nodes and 21 pipes.

Only pipe duplication is
considered (15 possible pipe
diameters + do nothing).
Design space = 16%! possible
solutions




Resilience vs GHG emissions
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Wastewater treatment
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Energy and GHGs in wastewater
treatment

High energy use in
wastewater treatment

N2

Carbon emissons

-

Wastewater also a
source of energy

Significant direct
emissions of CO,, CH,

an d N 20 GHGs from a conventional activated sludge wastewater treatment
plant (arrow height proportional to CO.e of emissions)
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EXETER

Centre for Water Systems



Energy and GHG reduction
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Minimising net energy imported
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Effects of energy reduction on GHGs

GHGs (kg CO2e/m°)

SWEETAPPLE, C., FU, G., & BUTLER, D. (2015). Does carbon reduction increase sustainability? A
study in wastewater treatment, Water Research, DOI:10.1016/j.watres.2015.06.047
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Conclusions

Household appliances:
* Key energy user in urban water cycle.

* Avoid unintended energy consequences of
reduced household water consumption.

Rainwater harvesting:

* Not as energy consuming as first thought.

* Potential to save water and energy.

Water supply:

* Significant mitigation — adaptation trade-off.



Conclusions

Wastewater treatment

* Energy reduction achievable with improved
control.

* Increased energy recovery does not necessarily
reduce carbon footprint

* Reducing the carbon footprint may increase
GHG emissions.

* Must consider energy use, energy recovery and
GHG emissions in combination.
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Conclusions

Balance between top down and bottom up,
plus small and large-scale solutions.

Need a system wide, integrated approach.
Prioritise combined mitigation & adaptation
solutions (win-win).

Engage & influence users.

Encourage innovation — including in the house.
Act now and work together to ensure that the
vicious cycle of today becomes the virtuous
cycle of tomorrow.
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