
Abhishek Das, Fatemeh Hossein-Nouri, Sukanta
Bose, Matt Duez



The Brief History of Mode-tide Coupling Instabilities in NSNS Systems

• Weinberg et al. (ApJ, 769, 121, 2015) proposed p -g tidal instability, in which the tidal bulge excites a 

low-frequency g-mode and a high frequency p-mode, can extract orbital energy, and cause a phase shift 

in the GW signal from the early inspiral phase, observable by gravitational wave detectors.

• Venumadhav et al. (ApJ, 781, 23, 2015) showed in second order perturbation, assuming a static tide, 

near-exact cancellation occurs between the three and four-mode couplings, which reduced the growth 

rate and implied that the instability cannot affect the inspiral significantly.

• Weinberg (ApJ, 819, 109, 2016) relaxed simplifying assumptions, allowing the stars become 

compressible under the influence of non-static linear tides. As a result, the near-exact cancellation is 

undone, and the instability becomes important once again.

• Zhou & Zhang (ApJ, 849,114, 2017) computed mode-tide coupling strength (MTCS) for TOV models 

using six different equations of state for both static (time-independent) and non-static tides. 



Zhou & Zhang’s MTCS studies (2017) 

Mode-tide coupling strength (MTCS) computed applying the same formalism introduced in Weinberg’s and 

Venumadhav’s works using perturbation theory, to study the effects of EOS on the MTCS.

1) Confirm the near-exact cancellation happens  between three and four mode couplings for static tides.

2) Stronger mode-tide coupling for non-static tides, trigger the instability in late inspiral phase.

Zhou & Zhang (ApJ, 849,114, 2017)



MTCS equations:
Static tide:
The tidal field (ϵ𝑈) is time-independent:

Non-static tide:
The tidal field (ϵ𝑈) is time-dependent:

The dimensionless MTCS value determines how much the g-mode frequency 
is shifted due to the coupling with the tide. 
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When MTCS > 1, the perturbed frequency 𝜔_ becomes imaginary and 
exponentially drives the mode to large amplitudes.

• 𝜅𝜒gg : coupling coefficient between g-mode 

and the tide. 

• Ugg : defined as

• ϵ : tidal strength defined as R3/A3

• ω- : is the perturbed g-mode frequency

• ω0 : characteristic frequency Τ𝐺𝑀
𝑅3
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g-mode frequency shift resulting from tidal 
perturbations. Keeping the leading order, we have:



New stuff added to our work:

Zhou & Zhang (2017):

o ADIPLS package used to derive eigen–modes of 

neutron stars, which means Newtonian adiabatic 

oscillation equations for a relativistic star!!!

o Some hydro variables are defined in Newtonian 

way, which are not consistent for a relativistic 

system.

o The Cowling approximation (neglecting 

the perturbation to gravitational potential from g-

mode) was used to compute MTCS, but has not 

been applied to the rest of the computations, i.e. 

eigenmodes.  

Our work:

• We add relativistic corrections to ZZ’s MTCS computation by:

• 1- Developing our own code to compute relativistic eigenmodes 

in the Cowling approximation.

• 2- Using the relativistic definition of hydro variables for 

consistency.

• 3- Using more updated relativistic nuclear equations of state 

(such as SFHo, DD2)

• For a better comparison and study how significant these 

relativistic components are, we compute MTCS in pure 

Newtonian formalism as well (the background star is still 

relativistic).



Equations of State 

Brunt-Vaisala frequency for different EOS

EOS SFHo DD2 Shen

R (km) 11.25 13.22 14.53

• The central density adjusted to have equal 

mass for all the TOV models, M = 1.4⊙

• We consider only core g-modes by 

resetting the Brunt-Vaisala frequency to 

zero in the crust region. 

• Crust-core boundary is determined 

by choosing the position where Ye hits its 

minimum.

• The neutron stars in the binary system are 

identical (equal mass and radius)
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Results: Static Tide

EOS MTCS (Newtonian)
(A = 2R)

MTCS (Relativistic)
(A = 2R)

MTCS (Newtonian)
(A = 100 km)

MTCS (Relativistic)
(A = 100 km)

Shen 0.2466 0.2621 0.000258 0.000282

DD2 0.2955 0.3901 0.000349 0.000418

SFHo 1.19 1.07 0.000312 0.000335

MTCS computed for static tide for two binary separations, A=100 km, and A=2R, for g-mode, n=32, lg=4

- The relativistic corrections change the MTCS only by a few percent.

- MTCS is still too small to trigger the instability during inspiral. 



Results: Non-static (Time-dependent) Tide
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Newtonian and relativistic MTCS for non-static tide verses binary separation for a stiff EOS (Shen), and for a 

soft EOS (SFHo) computed for n=32, l=4 g-mode.
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Results: Non-static tide and Instability Threshold 

EOS fg (N) (Hz) fg (R) (Hz) MTCS(N) MTCS(R) Threshold(N)

(km)
Threshold(R)

(km)

Shen 36.06 27.46 0.01384 0.01103 48.3* 47.2*

DD2 14.15 10.91 0.01866 0.01212 54* 52*

SFHo 11.45 8.91 0.5837 0.2688 86.8 75.9

The Newtonian and relativistic MTCS evaluated for g-mode n=32, l=4, for non-static tides with binary 

separation A=95 km. The instability threshold happens at the binary separation where MTCS exceeds 1.  

* These values are estimated based on other data points, and not very accurate.



Conclusions (so far)

• The relativistic corrections have the major effect in the softer equation of state, decrease the MTCS 

for non-static tide by more than 50% for SFHo.

• The relativistic corrections could only shift the MTCS for static tide by a few percent, the 

magnitude of the MTCS is still too low to cause any instability.

• For non-static tide, the relativistic corrections make the MTCS smaller over a wide range of binary 

separations, this would shift the instability threshold to smaller binary separations (late inspiral

phase).

• EOS with lower Brunt-Vaisala frequency has stronger MTCS.



Future Work

• Consider crust g-modes (we should probably add a suitable crust treatment first, 

i.e. adding a shear stress term, etc)

• Compute MTCS for Higher order g-modes. Based on what proposed by Weinberg 

et al. (2015), the coupling is stronger for higher modes, which can trigger the 

instability in earlier time of the inspiral phase. 

• Consider other EOS, to study the effects of stiffness on the MTCS. 



MTCS main equations:
Static tide:
Eq(33) from Zhou 
& Zhang (2017) 

Non-static tide:
Eq.(43-45) from Zhou 
& Zhang (2017) 


