Skin damage associated with incontinence devices

Mandy Fader
Professor or Continence Technology Faculty of Health Sciences
University of Southampton
UK

Medical Devices and Skin vulnerability sandpit
Background

Continence products are essential in enhancing the quality of life of those with bladder and/or bowel leakage who:

- Are unable to be (fully) cured.
- Are awaiting treatment.
- Are waiting for treatment to take effect.
- Elect not to pursue cure options.
Prevalence and costs (UK)

- Around 400,000 NHS pad users
 - £96 million pa (CF 2000)

- Around 40-50,000 ICath users
 - £60 million pa (PCA 2009)

- Around 50,000 LTCath users
 - £20 million pa (PCA 2009)

- Around £20 million pa other products
 - DH Prescription cost analysis (PCA 2009)
Products for managing toileting, urinary retention, UI and FI

- Pads
- Catheters
- Bags
- Mech. devices
- Sheaths
- Skincare & odour products
- Toileting aids
- Urinals
- FI devices
- Body-worn urinals
Absorbent pads

- Disposable insert
- Disposable pull-ups
- Disposable diaper/AIO
- Disposable T-shaped diaper
- Washable products
Median urine mass per pad (g)

<table>
<thead>
<tr>
<th></th>
<th>Insert</th>
<th>Diaper / AIO</th>
<th>Pull-up</th>
<th>T-shape</th>
<th>Wash-able</th>
</tr>
</thead>
<tbody>
<tr>
<td>Men</td>
<td>284</td>
<td>347</td>
<td>303</td>
<td>355</td>
<td>431</td>
</tr>
<tr>
<td>Women</td>
<td>147</td>
<td>203</td>
<td>176</td>
<td>186</td>
<td>311</td>
</tr>
<tr>
<td>N (pads)</td>
<td>1943</td>
<td>2196</td>
<td>2066</td>
<td>1426</td>
<td>819</td>
</tr>
</tbody>
</table>
Environment within wet pad:
• Skin over-hydration
 → Increased skin permeability
 → Higher skin friction coefficient
 → Lower skin abrasion resistance
 → Greater microbial load
 → Increasing pH

Aetiological factors:
• Faecal enzymes
• Mechanical action (friction, shear, pressure)
• Chemical irritation (topical products)

Clinical interventions to:
• Prevent water penetration (e.g. barrier products, pad changing, improved pads)
• Minimise faecal contact
• Prevent irritation (low irritant cleansers)
• Reduce friction (shear/pressure)
• Reduce inflammation (topical creams/medication)

Model of incontinence-associated skin damage (based on Berg 1986)
M Fader, S R Clark-O'Neill, W K R Wong, B Runeman, A Farbrot and A M Cottenden. Review of methods used for quantifying excess water in over-hydrated skin using evaporimetry (Skin Research and Technology February 2010 16, (1) 1-8.

Protecting skin from wet pads

- Apply cream
- Wear saline-soaked patch for 20 min
- Monitor SSWL for 10 min

10 subjects, one measurement per treatment + control
Peak pressures (SD) recorded from three mattresses (standard, visco-elastic, surface-cut foam) under three conditions (naked, dry pad, wet pad)

<table>
<thead>
<tr>
<th>Pad condition</th>
<th>Pressure mm Hg</th>
</tr>
</thead>
<tbody>
<tr>
<td>naked</td>
<td>50</td>
</tr>
<tr>
<td>dry pad</td>
<td>60-70</td>
</tr>
<tr>
<td>wet pad</td>
<td>80-90</td>
</tr>
</tbody>
</table>

Products and devices for men

- Pads
- Indwelling catheters
- Body-worn urinals
- Sheaths & bags
- Mechanical devices
Sheath
Body-worn urinals
Device briefs

- Purpose designed compression boxer briefs
- The design of the underwear enables Acti brief Plus to be used with a mini pad for faecal incontinence
- The collection pouch has a non-return valve
- Applies the right amount of pressure to the pubic area to support the base of the penis
Penile compression devices (clamp)
<table>
<thead>
<tr>
<th>% reporting</th>
<th>Pad</th>
<th>Sheath</th>
<th>BWU</th>
<th>Clamp</th>
</tr>
</thead>
<tbody>
<tr>
<td>No leak</td>
<td>21</td>
<td>49✓</td>
<td>36</td>
<td>75✓✓</td>
</tr>
<tr>
<td>No smell</td>
<td>38</td>
<td>69✓</td>
<td>53</td>
<td>70✓</td>
</tr>
<tr>
<td>Feels secure</td>
<td>46</td>
<td>38</td>
<td>32</td>
<td>68✓✓</td>
</tr>
<tr>
<td>Can wear any clothes</td>
<td>38</td>
<td>42</td>
<td>38</td>
<td>68✓✓</td>
</tr>
<tr>
<td>No pain</td>
<td>75</td>
<td>58</td>
<td>35**</td>
<td>11***</td>
</tr>
<tr>
<td>Comfortable (dry)</td>
<td>77✓</td>
<td>64✓</td>
<td>38</td>
<td>n/a</td>
</tr>
<tr>
<td>Easy to put on</td>
<td>84✓✓✓</td>
<td>43✓</td>
<td>25</td>
<td>51✓</td>
</tr>
</tbody>
</table>

Design differences for key performance characteristics

N=56

% = proportion of men rating as ‘good’ or ‘acceptable’ v ‘poor’
✓ and ✗ = designs performed significantly better or worse than one, two or all other designs (p=0.05)
Measuring skin damage from clamps

• Laser doppler
• Sebutape - inflammatory markers
• Interface pressure sensors
Methods

<table>
<thead>
<tr>
<th>Clamp geometry</th>
<th>Stiffness [kPa]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flat</td>
<td>25, 50, 100</td>
</tr>
<tr>
<td>Angled</td>
<td>25, 50, 100</td>
</tr>
<tr>
<td>Contoured</td>
<td>25, 50, 100</td>
</tr>
<tr>
<td>Cuff-type</td>
<td>None</td>
</tr>
<tr>
<td>Contoured with knob</td>
<td>50, 100</td>
</tr>
<tr>
<td>Tilt 5°</td>
<td>50</td>
</tr>
</tbody>
</table>

- 12 model variants were developed, representing five generic designs of incontinence clamps and three stiffnesses of interface materials
- Opposite vertical displacements were assigned to the top and bottom surfaces of every clamp to compress the mid-shaft
- Common target outcome of 50% occlusion of the urethra
Results

Effective Stress Distributions

Cuff-Type Clamp

Contoured with Knob

Contoured Clamp

[kPa]
Female devices
Female urinals
Urethral catheters
Faecal collectors
Skin damage associated with incontinence devices

Mandy Fader
Professor or Continence Technology
Faculty of Health Sciences
University of Southampton
UK

Medical Devices and Skin vulnerability sandpit