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Introduction (1)

• I will consider the problem of estimating
the effect of some exposure A on an outcome Y
based on data from an observational study.

• Exposed and unexposed subjects in such studies usually differ
in many observed (pre-exposure) characteristics L.

• This can make it difficult to make contrasts of
the mean outcome between exposed and unexposed subjects
with the same characteristics.

• The curse of dimensionality thus forces us
to adopt some form of modelling.

• E.g. a linear model

E(Y |A,L) = ψA + β′L
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Introduction (2)

• Adjusting for all available characteristics L can be detrimental,
or even impossible.

• It can inflate bias and variance.

Exposure A Outcome Y

Covariates L2Covariates L1 Covariates L3

• There may be more covariates than observations.
• This is not uncommon, considering the possible need

for interactions or other higher-order terms...
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Introduction (3)

• Stepwise variable selection strategies and penalisation
methods (e.g. the lasso) are therefore routinely employed.

• One common strategy is to adjust for L
iff it is significantly associated with outcome,
conditional on exposure, at e.g. the 5% level.

• A related common strategy is the lasso,
without penalisation of the exposure effect.

• How well does this work?
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Outcome-based selection

• Suppose that the exposure has no effect.
• Suppose that L has a moderate effect on outcome,

but a strong effect on exposure.
• Then when fitting model

E(Y |A,L) = ψA + βL

one will typically have little power to detect that β 6= 0.

• Upon removing L from the model,
one is likely to find ‘strong evidence’ of an exposure effect.

• This can result in highly inflated Type I error rates
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Type I error rate inflation (n = 100)

R2y : R2 of Y -L association; R2a: R2 of A-L association
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Convergence with increasing sample size

• This problem persists at all sample sizes.
• No matter how large the sample size,

one can always choose correlations between Y -L and A-L,
at which outcome-based selection inflates Type I error rates.

• We therefore say that convergence of the test statistic
to a normal limit (centered around the truth) is non-uniform.

• Lack of uniform convergence is a concern.
• It implies that we can never guarantee

that the procedure will do well in finite samples.
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Outcome-based selection (n = 1000)

R2y : R2 of Y -L association; R2a: R2 of A-L association
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Propensity-score-based selection (1)

• One key reason why this procedure is problematic,
is that it prioritises the exposure:
it prioritises the elimination of covariates
over the elimination of the exposure.
(Robins and Greenland, 1986)

• This problem can be overcome using propensity scores.
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Propensity-score-based selection (2)

• Consider stepwise selection in a propensity score model,
then regressing outcome on exposure and propensity score.

• By always adjusting for the propensity score,
this strategy does not prioritise the exposure.

• With linear models for Y and A, and a single covariate L,
this strategy is tantamount to adjusting for L
iff it is significantly associated with exposure,
at e.g. the 5% level.
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Propensity-score-based selection (2)

• By not prioritising the exposure,
the problem of Type I error inflation is much less severe.

• In fact, ignoring the variable selection process
often results in conservative inferences.

• This is line with the property
that ignoring estimation of the propensity score
typically results in conservative inferences.

• Also this persists at all sample sizes.
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Propensity-score-based selection (n = 1000)

R2y : R2 of Y -L association; R2a: R2 of A-L association
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Problem solved?

• The conclusion so far is that propensity-score based selection
is much less vulnerable to Type I error inflation
than outcome-based selection.

• Problem solved?

• Its typical conservatism implies a lack of power.
• What if there are many covariates?
• What if the models are non-linear?
• In view of this, the aim of this talk will be

to develop uniformly valid tests that incorporate selection.
• The propensity score will continue to play a crucial role...
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Post-selection inference

• This problem of post-selection inference has been
quite thoroughly studied for some selection strategies.
(e.g. Leeb and Pötscher, 2005; Berk et al., 2013; Taylor et al., 2014; ...)

• Most proposed solutions infer the distribution of the estimator or
test statistic after selection.
(e.g. Claeskens and Hjört, 2006)

• This has the disadvantage that the results
• are often complex,
• not immediately accessible for routine data analysis,
• and sometimes dependent on the choice of procedure.
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Aim

• Inspired by others,
(Chernozhukov et al., 2017; Farrell, 2015)

I will instead propose specific tests for treatment effect
in combination with a specific selection strategy.

• Their combination is such that the test statistic
converges uniformly to a normal distribution centred at the truth.
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Hypothesis-test-based selection

• Reconsider model E(Y |A,L) = ψA + βL
(where A and L are mean centred).

• Perform a score test of ψ = 0 based on the test statistic

1√
n

n∑
i=1

Ai(Yi − β̂Li)

where β̂ is the OLS estimator if we have selected L
and 0 otherwise.

• What is the distribution of the test statistic?
• Consider outcome-based selection...
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What is the distribution of the test statistic? (1)

By a Taylor expansion,

1√
n

n∑
i=1

Ai{Yi − β̂′Li}

=
1√
n

n∑
i=1

Ai{Yi − β′Li}+
√

n(β̂ − β)
{

1
n

n∑
i=1

AiLi

}
+ Remainder

• When β is of the order 1/
√

n,
we will often erroneously set β̂ to zero.

• This results in bias, which affects the score test.
•
√

n(β̂ − β) then moreover has a complex distribution.
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Inference after variable selection (2)

This may cause bias, excess variability,
and may invalidate inference.
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What is the distribution of the test statistic? (2)

• Convergence of
1√
n

n∑
i=1

Ai{Yi − β̂′Li}

to a mean zero normal distribution is therefore non-uniform.
• We will remedy this

using bias-reduced double-robust estimators.
(Vermeulen and Vansteelandt, 2015)
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Double-robust estimation

• Consider the test statistic

1√
n

n∑
i=1

{Ai − π(Li ; γ)} {Yi −m(Li ;β)}

where we use
• a parametric propensity score model A:

E(A|L) = π(L; γ)

e.g. expit(γ′L) for binary A.
• a parametric outcome model B:

E(Y |L) = m(L;β)

e.g. β′L for continuous Y .

• This test statistic has mean zero under the null
when either model A or model B is correct.

• We therefore call it double-robust.
(Robins and Rotnkitzky, 2001; see Rotnitzky and Vansteelandt, 2014, for a review)
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What is the distribution of the test statistic now?

• In practice, we need estimators of γ and β.
• Then

1√
n

n∑
i=1

Ui(γ̂, β̂)

=
1√
n

n∑
i=1

Ui(γ, β) +
√

n(γ̂ − γ)
{

1
n

n∑
i=1

∂

∂γ
Ui(γ, β)

}

+
√

n(β̂ − β)
{

1
n

n∑
i=1

∂

∂β
Ui(γ, β)

}
+ Remainder

• If we could set those gradients to zero,
then local changes in these estimators
would not affect the double-robust test.
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Bias-reduced double-robust estimation

• Bias-reduced double-robust estimators achieve this
by estimating γ by solving

1
n

n∑
i=1

∂

∂β
Ui(γ, β) = 0

and β by solving
1
n

n∑
i=1

∂

∂γ
Ui(γ, β) = 0.

(Vermeulen and Vansteelandt, 2015)

• Is this a valid proposal?
• Suppose model A is correct with true value γ∗.
• Then Ui(γ

∗, β) has mean zero for all β, so that

E
{
∂

∂β
Ui(γ

∗, β)

}
= 0
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Incorporating variable selection

• So far, I have not considered variable selection.

• We will incorporate it by penalising the estimating equations
with a bridge penalty:

0 =
1
n

n∑
i=1

∂

∂β
Ui(γ, β) + λβδ|β|δ−1 ◦ sign(β)

0 =
1
n

n∑
i=1

∂

∂γ
Ui(γ, β) + λγδ|γ|δ−1 ◦ sign(γ)

where λγ > 0 and λβ > 0 are penalty parameters, and δ → 1+.
(Avagyan and Vansteelandt, 2017; Dukes, Avagyan and Vansteelandt, 2018)

• Standard choices of penalty (of the order
√

log(p)/n)
make these gradients sufficiently close to zero.
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Incorporating variable selection

• So far, I have not considered variable selection.
• We will incorporate it by penalising the estimating equations

with a bridge penalty:

0 =
1
n

n∑
i=1

∂

∂β
Ui(γ, β) + λβδ|β|δ−1 ◦ sign(β)
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n
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∂
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Example - Y continuous, A binary

• Consider models π(L; γ) = expit(γ′L) and m(L;β) = β′L.
• Then we estimate γ and β as the solutions to

0 =
1
n

n∑
i=1

{Ai − expit(γ′Li)}Li + λγδ|γ|δ−1 ◦ sign(γ)

0 =
1
n

n∑
i=1

wi(γ){Yi − β′Li}Li + λβδ|β|δ−1 ◦ sign(β)

where wi(γ) = expit(γ′Li){1− expit(γ′Li)}.
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Example - Y continuous, A binary

• In practice, we let δ → 1+ and solve the following problems:

min
γ
F(γ) = 1

n

n∑
i=1

log{1 + exp(γ′Li)} − Ai(γ
′Li) + λγ ||γ||1

min
β
F(β) = 1

2n

n∑
i=1

[ŵi{Yi − β′Li}2] + λβ||β||1

• Components of η̂ may be shrunk to zero,
in view of which we recommend refitting the selected model.

• The test statistic is then

Tn =
1
n
∑n

i=1{Ai − expit(γ̂′Li)}{Yi − β̂′Li}√
1
n{

1
n−1

∑n
i=1[{Ai − expit(γ̂′Li)}{Yi − β̂′Li}]2}
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Asymptotic properties - both models correct

• Let sγ and sβ be the sparsity indices of models A and B.
• Suppose that (in addition to mild regularity conditions),

the following sparsity assumptions hold:
(i) sγ log(p) = o(n)
(ii) sβ log(p) = o(n)
(iii) sγsβ log2(p) = o(n).

Theorem
When model A and B are correct, the test statistic Tn
converges uniformly to a standard normal distribution.
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A closer look at the conditions...

• Conditions
(i) sγ log(p) = o(n)
(ii) sβ log(p) = o(n)
are quite standard to guarantee consistency
of the lasso-based estimators.

• Condition
(iii) sγsβ log2(p) = o(n)
determines the rate of convergence of the estimators.

• It suggests that if one model is sparse,
the other can be more dense.

• When evaluating medical treatments, this is arguably satisfied
as clinicians may use a limited number of variables to decide on
treatment, whereas outcome may be affected by many more.
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Relationship to existing literature

Compared with other recent proposals from high-dimensional
inference in GLMs:
(van de Geer et al., 2014; Belloni et al., 2016)

• We have weakened the assumptions on sparsity
by making use of double robustness.
(see also Farrell, 2015, for the ATE)

• Other approaches usually require ultra-sparsity,
e.g. sγ

√
log(p) = o(

√
n) instead of sγ log(p) = o(n).

• Unlike others, we do not require sample-splitting
to obtain weaker rates.
(Chernozhukov et al., 2017)
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Asymptotic properties - model misspecification

Suppose that (in addition to the previous conditions),
the following sparsity assumptions hold:
(iv) Either (a) sγ

√
log(p) = o(

√
n) (if model A is correct)

or (b) sβ
√

log(p) = o(
√

n) (if model B is correct).

Theorem
When model A or B is correct, the test statistic Tn converges
uniformly to a standard normal distribution.

Note the tradeoff between modelling and sparsity conditions.
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Relationship to existing literature

• Other proposals from high-dimensional inference in GLMs
assume A and B to be linear,
and B to be correctly specified and ultra-sparse.
(van de Geer et al., 2014; Belloni et al., 2016; Shah and Bühlmann, 2017)

• By using specific bias-reduction strategies, our tests
• allow arbitrary conditional mean models for A and B,
• remain valid when A or B is misspecified,
• use weaker sparsity assumptions.

• Weaker sparsity assumptions do not suffice for Wald tests.
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Simulation study

• n = 200
• linear models with Z1, ...,Zp for p = 140 mutually independent,

standard normal variates.
• 19 confounders, generally strongly associated with exposure,

and more weakly with outcome.
• No pure exposure predictors.
• 40 pure outcome predictors.
• Covariates explain 80% of the variability in exposure and

outcome.
• 1000 simulation experiments.
• Penalty parameters chosen via cross-validation (1 SE).
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Simulation results: n = 200,p = 100

Correct outcome model

Method Type I error
Standard naı̈ve 0.212
hdm DS 0.470
hdm OI 0.451
Proposal 0.063
Proposal (Unweighted) 0.063
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Simulation results: n = 200,p = 200

Correct outcome model

Method Type I error
Standard naı̈ve 0.399
hdm DS 0.454
hdm OI 0.435
Proposal 0.074
Proposal (Unweighted) 0.087
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Simulation results: n = 200,p = 100

Misspecified outcome model

Method Type I error
Standard naı̈ve 0.156
hdm DS 0.194
hdm OI 0.191
Proposal 0.072
Proposal (Unweighted) 0.059
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Simulation results: n = 200,p = 200

Misspecified outcome model

Method Type I error
Standard naı̈ve 0.266
hdm DS 0.233
hdm OI 0.233
Proposal 0.060
Proposal (Unweighted) 0.067
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Discussion

• Routine outcome-based variable selection strategies
are problematic.

• Propensity-score-based selection has much greater validity,
but is not guaranteed to result in tests with the nominal size.

• Double-robust tests enable uniformly valid inference
in high-dimensional settings with correct model specification.
(Chernozhukov et al., 2017; Farrell, 2015)

• For testing the null, we have shown that weaker conditions
are attainable without the need for sample-splitting.

• We have extended this to allow for model misspecification.
• This required the use of special ‘bias-reduced’ fitting strategies.

(Vermeulen and Vansteelandt, 2015)
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This talk was based on...

Avagyan, V. and Vansteelandt, S. (2017). Honest data-adaptive

inference for the average treat- ment effect under model

misspecification using penalised bias-reduced double-robust

estimation. arXiv:1708.03787

Dukes, O., Avagyan, V. and Vansteelandt, S. (2018).

High-Dimensional Doubly Robust Inference for Regression

Parameters. Technical Report.

Vermeulen, K. and Vansteelandt, S. (2015). Bias-Reduced Doubly

Robust Estimation. Journal of the American Statistical Association,

110(511):1024-1036.
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Bias in function of the nuisance parameters
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