

Feasibility Study on Manganese Nodules Recovery in the Clarion-Clipperton Zone

Baivau - Pan - Marco – Harrif - Jenny

Outline

- Motivations & Objectives & Case Study
- Proposed Engineering System
 - Collector
 - Black Box
 - Noise Assessment
 - Logistic & Commercial Analysis
 - Business Model
 - SWOT & Conclusion
 - Q&A

Pan Baivau Marco Jenny Harrif 2 P - B - M - J - H

Southamp

Motivations and Objective

Past

Collapse of world metal prices

Controversial UNCLOS III provisions

Insufficient technological advances

Inability to quantify and mitigate environmental damages

• Promote for full-scale deep sea nodules recovery;

Environmental friendly design.

University of Southampton Highfield Campu

Smaller footprint as less overburden needs to be dealt with

Less permanent infrastructure

Less populated ecosystem to be affected

Rich in mineral diversity

Educational

Figure 35: Existing nodule recovery concept

Educational

Trust

Lloyd's Register

Southampton

Our System for Nodule Recovery

Figure 36: Proposed nodule recovery concept

High Efficiency

Less Sediment

Disturbance

Collector

- Number of Collectors (mother ship): 3 working + 1 buffer
- Productivity → 274,000 wet tons/year → 180,000 dry tons /year

Figare 40: F

- Collector Speed: 0.20 m/s
- Collecting width/ Maximum width = 1

- Dome type forward shape
- Long & Narrow Collectors

Sediment Disturbance

- Crawler aided movement
- Multiple small units
- Streamlined body

HYDRAULIC:

- Water Jets
- Forward dome shape

Recent Studies	Daily Production of Dry Nodules	Estimated Suspended Sediments from Seafloor	Sediments/Dry Nodules
Herrouin (1999)	6,000 t (dry)	~ ª19,155 t ~ ^b 54,519 t	3.19 9.09
Morgan et al. (1999)	5,500 t (dry)	~ 54,000 t	9.82
The Proposed System	1,636 t (dry)	~ 3,266 t	2.00

(a = 2 cm penetration of the collector; b = 5 cm penetration of the collector)

The Black Box

- Washing process;
- In-situ waste discharge;
- Waste water utilization;
- Mass flow rate regulation;
- Reduce power/cost for vertical transfer

Figure 36: Proposed nodule recovery concept

2% saving in Power Consumption

<2% sediment in the waste water

The Black Box

Noise Assessment

Figure 36: Proposed nodule recovery concept

Power Requirement

Figure 36: Proposed nodule recovery concept

Total power requirement: ~ 16.7 MW

Power source: diesel generators on PSVs

PSV – Production Support Vessel; BB – Black Box

Clarion-Clipperton Zone

0

704E / 21'C

System Productivity

Figure 36: Proposed nodule recovery concept

Figure 36: Proposed nodule recovery concept

Commercial Viability

- 0.5	Components	Value	
Thr	Capital Cost (M \$)	660	Cu
- 1111	Operating Cost / year (M \$)	145	Cu
- Ave	Revenue (M \$)	275	
	Annual Profit (M \$)	130	nc
	Profit after Income Tax (M \$)	104	112
-	Payback Period (year)	10	5
- Cos	NPV at 8% Discount Rate (M \$)	361	
	IRR	14.75%	

Business Model

Educational Trust Southampton SWOT Analysis and Conclusions

STRENGTHS

Lloyd's Register

> Strong commitment to reduce impacts
> Propose green engineering system: innovative idea of the black box
> Platform for full-scale research

WEAKNESSES

- Lack of fully integrated solution: from raw

INTERNAL

EXTERNAL

- nodules to refined metals
- Requires multiple systems
- Lack of detailed analysis on each aspect

SWOT ANALYSIS

OPPORTUNITIES

- Favourable market condition
- Good investment prospect: IRR > 12%
- Recycle tailings for agriculture

THREATS

- Integrating all components together
- Loss of commercial interest in Co, Ni, Cu and Mn

NEGATIVE

POSITIVE

Questions & Answers

Baivau Agarwalvaibhavaero@gmail.comPan Hupanhu@civil.uwa.edu.auMarco Placidim.placidi@soton.ac.ukHarrif Santoceehs@nus.edu.sgJenny Jin Zhouzhou0141@ntu.edu.sg