

Thin Film Crystalline Silicon Solar Cells

H S Reehal London South Bank University, UK

Acknowledgements

- UK's EPSRC and PV-21 consortium for financial support
- J Ball
- Tony Centeno, Imperial College, London
- B Mendez / L Bowen, Durham

Plan of Talk

- Introduction to Si PV
- Methods of thin film poly-Si growth
- Device results
- Developments in Si Nanowire Cells
- Conclusions

The PV Market

- PV is the most rapidly growing power generation technology.
- An estimated 17 GW of PV capacity was added worldwide in 2010
- Driven by falling costs and strong policy support

PV Existing world capacity 1995-2010

Source: REN21 report 2011

Decreasing Prices

Data from Germany shows that the installation cost per kW has halved in the last five years

Source: BSW-Solar PV Price Index 5/2011

This progress has largely been driven by crystalline Si wafer technology which dominates PV with ~ 85% market share

Crystalline Si Wafer Technology

- Based on a single p-n junction solar cell technology
- Lab efficiency record 25%
- Industrial efficiency 14-18% (>20% for Sunpower technology with rear contacts)

CONDON SOUTH BANK Thin Film Si Technology – Amorphous Si

- Cost of Si wafers is relatively high contributes ~50% to the module cost
- This has been a driver for developing thin film approaches and reducing wafer thicknesses
- Thin film Si PV technology has been in commercial production for many years.
- It is based on amorphous Si (a-Si:H) band gap ~1.7-1.8 eV
- Suffers from issues of low efficiency (6-7 % in production) and light induced

Cell Structure (Zeman)

In–line Production

Product

Deposition of Amorphous Si

- + Plasma enhanced chemical vapour deposition (PECVD)
- + Low deposition temperature
- + Cheap substrates (glass, steel, etc)
- + Large area of deposition
- Low deposition rate (1-2 A/s)

Microcrystalline Si - Micromorph Technology

- Microcrystalline (µc-Si:H) was developed to improve stability
- A mixture of nano crystalline Si grains and a-Si:H band gap ~1.1. eV
- Micromorph is a tandem a-Si:H/µc-Si:H technology
- Approaching 10% in production (e.g. Oerlikon Solar, production cost € 0.5 / Wp)

Cell Structure (Zeman)

Stability and performance are issues

Oerlikon Solar Kai reactor for 1.43m² modules

LONDON SOUTH BANK

Thin Film Silicon – Fully Crystalline

- A fully crystalline thin film Si technology would offer all the advantages of wafer c-Si at potentially lower cost (stable operation, non toxicity, no resource constraints, etc.)
- This could be <u>monocrystalline</u> e.g. thin foils produced from Si wafers or it could be polycrystalline – grown on low cost foreign substrates e.g. glass
- Challenge is to develop such a technology with efficient light trapping to overcome c-silicon's poor absorption characteristics – Si is an indirect band-gap semiconductor!

• With light trapping potential exits for high efficiencies even in single junction thin film cells

Approaches to Thin Film Poly Silicon Growth

- Thin film poly-Si: grain sizes $\geq 1 \ \mu m$, no amorphous content
- Successful approaches fall into 2 main areas:

Crystallisation of a-Si Layers

- Solid phase crystallisation (SPC)
- Laser crystallisation
- Zone melting crystallisation → high temperature substrates

Seed Layer Approach

- Form a thin (up to few 100 nm) c-Si layer on the substrate to act as seed
- Epitaxially thicken to form absorber layer
- Growth on low cost substrates (e.g. Glass) is very challenging due to temperature constraints (< 600 °C)

Poly Silicon Growth and Devices: Crystallisation of Amorphous Silicon

- a-Si layers with n+pp+ structure deposited by PECVD to thickness of ~2 µm on textured glass substrates
- Thermally anneal at ~600 °C for several tens of hours to crystallise
- Grain sizes of the order of ~1 μm
- Defect annealing using RTA at ~900 °C plus hydrogen plasma passivation
- Novel contact design but complex manufacturing using inkjet patterning
- Developed to pilot production stage by CSG Solar

M J Keevers et al, 22nd European PV Conf, Milan, 2007, p1783

CSG Solar Technology - Performance

Typical mini-module viewed from glass side, includes rows of test cells at top and bottom

- No of cells=20 cells
- Aperture area=94 cm²
- Voc=492 mV/cell
- Jsc=29.5 mA/cm²
- FF=72.1%
- EFF=10.4%
- Leading Poly-Si on glass thin film technology
- High density of grain boundaries and intra-grain defects limits Voc

Alternative Crystallisation Techniques

- Zone-melting crystallisation (ZMC) using light sources and electron beams – requires high temperature substrates. Long history with most work on thick >20-30 µm films
- Laser crystallisation will be discussed under seed layer approaches

Zone-Melting Crystallisation

- E-beam crystallised ~10 μm thick Si films on high temperature glass
- Grain sizes up to ~ 2000 µm in melt direction. Grain orientation [001] [111]

Electron Backscatter Diffraction (EBSD) Map

Solar Cell Structure and Performance

Voc (mV)	FF	Jsc (mA/cm ²)	Eff (%)
545	74.1	11.8	4.7

D Amkreutz et al, Prog. In PV (2011)

Poly Silicon Growth and Devices: Seed Layer Approaches on Glass

Main approaches for seed layer production:

- Aluminium induced crystallisation (AIC)
- Laser Crystallisation

Seed Layers by Aluminium Induced Crystallisation (AIC)

Normal Geometry

Poly-Si thickness is ~100-300 nm; doped p⁺ with AI to ~10- 18 -10¹⁹ cm⁻³

Model

- (1) Dissociation of a-Si and transport across the interface barrier
- (2) Diffusion of Si within the Al film
- (3) Nucleation of Si crystallites
- (4) Si grain growth lateral growth when thickness of Al film reached
- (5) Al transport into the Si layer

FIB Images of Layer Exchange: Reverse-AIC

Annealed for 60mins at 500°C

From Ekanayake et al, J Crystal Growth 293 (2006) 351

Electron Backscatter Diffraction (EBSD) R-AIC

Annealed at 500°C for 3hrs, 2 weeks after AI deposition

EBSD orientation map in sample normal direction for ~200 nm thick poly-Si layer. Large grains are apparent. *

Mixed orientation and surface roughness can be an issue for epitaxial thickening

From Ekanayake et al, J Crystal Growth 293 (2006) 351

Inverse pole figure

AFM image. Ra=6.8 nm

Si Island Formation - Normal AIC

FIB micrograph of poly-Si film after AIC and removal of the AI matrix by a wet chemical etch

Cross-sectional TEM of a 400nm thick poly-Si film with a Si island.

- Removal of Si islands necessary prior to epitaxy. Methods include:
 - Chemical mechanical polishing (CMP)
 - \circ Reactive ion etching

P Widenborg, A Aberle, Journal of Crystal Growth 242 (2002) 270

Direct Epitaxial Thickening of AIC Seed Layers on Glass

Electron Cyclotron Resonance CVD

20µm

1.7 μ m thick epitaxial layer grown at ~550 °C (a) EBSD orientation map (b) inverse pole figure (c) SEM image (d) overlay of EBSD map on SEM image.

Cross-sectional TEM micrographs showing epitaxy plus defects

Solar Cells on Seed Layers on Glass

Typical Design and Process Sequence

- Absorber thickness ~1.5 2 µm
- Growth temperature up to ~600 °C
- Hetero-junction emitters

- Defect annealing by RTA at ~900 °C
- Defect passivation by hydrogen discharges
- Small areas (up to ~ 1 cm²)
- No advanced light trapping

Rau et al, 21st European PV Conf. September 2006, Dresden, p1418

Typical Solar Cells Results on Glass

Method of epitaxial thickening	Cells on seed layers			Ref cells on Si wafers				
	Voc (mV)	FF (%)	Jsc (mA/ cm ²)	Eff (%)	Voc (mV)	FF (%)	Jsc (mA/ cm ²)	Eff (%)
Solid Phase Epitaxy ¹	437	55.9	9.7	2.3				
lon-assisted depostion ²	420	45.9	11.4	2.2				
ECR CVD ³	397	57.0	4.6	1.0	458	13.1	71.0	4.2
E-beam evaporation ⁴	407	67.0	11.9	3.2	570	13.3	76.0	5.8

- Performance limited by material quality and cell design
- Defect densities up to ~10¹⁰ cm⁻²
- E-beam deposited layers give better performance due to less defects
- 1. Widenborg et. al., J Crystal Growth 276 (2005) 19, He et al,, Thin Solid Films 518 (2010) 4351
- 2. Aberle et al, J Crystal Growth 287 (2006) 386
- 3. Rau et al, 21st European PV Conf. September 2006, Dresden, p1418
- 4. S. Gall et al. Solar Energy Materials & Solar Cells 93 (2009) 1004

Seed Layers by Laser Crystallisation

- Laser crystallisation of thin a-Si layers has been an active field for many years driven by TFT/display market
- Excimer laser crystallisation (ELC) gives randomly oriented grains of up to ~1 μm in size
- Large grained material has been produced by scanning line focussed laser beams. Recent results include Andra et.al:
 - CW diode laser at 806 nm → grains exceeding 100 µm in 400 nm thick a-Si
 starting layers
 - Green pulsed laser at 515 nm → grains exceeding ~10 µm in 60 nm thick a-Si starting layers
- These approaches give mixed orientation grains
- Device results SPE of e-beam deposited a-Si on seed layer, CSG Solar contacting technology
 →efficiency of 4.9% in a 12 cell minimodule.

EBSD Images

Mixed Phase Solidification (MPS)

Results for 130 nm a-Si film on SiO₂ processed by scanning a linear, 532 nm CW laser beam. Scan speed 1.5 cm/s

(a) SEM of heavily defect-etched sample (b) EBSD map showing (100) texture (c) TEM of lightly defect etched sample. High film quality can be seen

• Early cell results - 5.4% efficiency achieved using thermal CVD on a glass ceramic substrates. Highest Voc was 530 mV. Potential for improvement

J S Im et.al. J Crystal Growth 312 (2010) 2775

High Temperature Seed Layer Approaches

- Exemplified by work of IMEC group
- Poly-Si seed layers (250 nm thick) by AIC on high temperature substrates e.g. alumina coated with flowable oxide
- Epitaxial thickening by thermal CVD at ~1100 °C (dep rate 1.4 µm/min)
- Inter-digitated structure with heterojunction emitter on a 2-3 μm thick ptype absorber layer
- Remote plasma hydrogen defect passivation
- Plasma texturing plus ITO ARC for improved light capture

Average grain size ~5 µm Maximum grain size ~15 µm

Solar cell structure - surface texturing not shown

Qui et al, 25th European PV Solar Energy Conference, Valencia, 2010, p3633)

Best Cell Results Using AIC Seed Layer Approach

- Voc of cells ~ independent of grain size varying from $\sim 0.2 50 \ \mu m$
- Performance limited by a high density (~10⁹ cm⁻²) of intra-grain defects in seed layer or interface with epitaxial layer

Qui et al, 25th European PV Solar Energy Conference, Valencia, 2010, p3633)

Monocrystalline Seed Layers + Thermal CVD

- Demonstrate potential of seed layer approach
- Exemplified by work of IMEC group.
- Seed layer creation by transfer of 300 nm thick, (100) monocrystalline layers onto transparent glass ceramic substrates using implant-induced separation and anodic bonding (Corning process)

Schematic of Corning's Si on glass process (glass ceramic substrate)

From Gordon et. al. Solar Energy Mat Solar Cells 94 (2010) 381

Device Processing and Results

- Epitaxial thickening by thermal CVD followed by cell processing at IMEC
- 2 μ m of p⁺ (~5x10¹⁹ cm⁻³) BSF layer followed by 2-8 μ m of p Si (10¹⁶ cm⁻³)
- Typical defect density in epitaxial layers is ~10⁵ cm⁻² compared to ~10⁹ cm⁻² for AIC layers

Schematic of Solar Cell structure with inter-digitated contacts

Initial thickness	8 µm	4µm
Voc (mV)	598	613
Jsc	24.3	19.9
FF (%)	74	73
EFF (%)	10.8	8.9

Results for 1cm² cells for different starting absorber thicknesses. No advanced light trapping or back reflector used

Silicon Nanowire Cells

- Effective light trapping is essential to realise the full potential of thin film poly-Si solar cells
- Conventional methods based on µm scale texturing used in bulk Si solar cell technology cannot be used
- Advanced designs being researched for planar thin film solar cells include the use of nanotextured substrates, photonic crystals and plasmonic structures
- New designs based on radial junctions in micro and nano wires also being investigated for enhanced light trapping

Radial Junction Si Wire Array Cells

- Radial junction geometry decouples length scale of light absorption from that of charge collection.
- Reduced reflection, excellent light trapping
- Short minority carrier collection path
 → reduced requirements for material purity
- Increased defect tolerance
- Facile strain reduction
- Band-gap tuning in quantum wires
- Fabrication directly on low-cost substrates
- Maximum efficiency not expected to increase above standard limits but above 17% predicted with efficient surface passivation

Solar Cell Concept

Proposed nanowire array solar cell

Methods of Wire Formation – Top Down

- Various approaches based on patterned or non-patterned etching
- One example:

Dip coat *n-type* silicon in silica bead solution Deep reactive-ion etch (DRIE) to form nanowires

Remove beads in HF and diffusion dope to form radial *p-n junction*

LONDON SOUTH BANK

Bottom-up Growth: Vapour Liquid Solid (VLS) Process

- VLS requires a metal catalyst particle as a site from which to nucleate growth.
- Particles can be formed by self assembly and other techniques
- A feedstock gas such as SiH₄ is used.
- The feedstock gas saturates the particle resulting in precipitation of Si at the liquid solid interface giving wire growth.
- Catalyst metals used include Au, Sn for growth at low temperatures (<600 °C) and Cu which requires high temperatures (~1000 °C)
- Vertically aligned single crystal wires can be grown with diameters up to few 100 nms.

Si Nanowire Array Growth At LSBU Using Bottom-Up Approach

- We are studying bottom-up growth using the VLS process
- Au and Sn have been studied as the catalyst particles.
- Particles formed by self assembly annealing and surface tension induced agglomeration
- Wire growth is carried out using a variant of plasma CVD called ECRCVD
- Silane is used as the precursor for Si growth with phoshine as n-type dopant

Electron Cyclotron Resonance Chemical Vapour Deposition(ECRCVD)

- ECR is a variant on plasma CVD with the addition of a magnetic field of 875 gauss subjecting the remote 2.45 Ghz plasma to a self limiting electron resonance.
- The plasma stream cracks the feed stock gas allowing deposition at lower substrate temperatures than CVD.
- A DC self bias can be created across the substrate with the aid of an applied RF signal.

LONDON SOUTH BANK

Growth Using Au Catalyst

Intensity

3 nm Au catalyst layer thickness showing vertical growth on Si (111) wafer substrate. Growth temperature ~520°C. Top with RF bias

- Wire diameter typically ~300 nm, length ~1200 nm
- Some tapering due to side wall deposition

Raman spectra of wires showing single crystalline growth. Confirmed by EBSD

SiNW Reflectance

- Higher wire densities exhibit a lower reflectance.
- Growth of SiNWs on Si (100) occurs at an angle of 32.5 to the substrate.
- Angled growth gives the lowest reflectance.

Growth Using Sn Catalyst - Sn particle formation

• SEM image of an initial 12nm thick Sn film annealed on Si (111) wafer.

- SiNW diameter has a dependency on catalyst particle diameter.
- Initial catalyst particle size varies with layer thickness and substrate orientation.

Sn Catalysed Growth on Si Wafers

- SiNW on Si (111) 200 SiNW on Si (100) 180 SiNW density/unit area 160 140 120 100 80 60 40-20 12nm 6nm 24nm Initial Sn layer thickness(nm)
- Sample grown from 6nm initial Sn layer on Si (111). Growth temperature ~380°C
- No catalyst particle remains on the tip
- Orientation variable, rough surfaces
- Wires show conical growth rather than parallel growth.

- Samples grown at ~380°C, 6sccm SiH₄, MW power 800W.
- Density of samples drop with increase in initial layer thickness.

SiNW Growth Versus Sn Layer Thickness

 Increasing Sn layer thickness from 6 to 12nm increases length and diameter

•Increasing initial layer thickness to 24nm decreases SiNW length

•No correlation between initial particle diameter and wire diameter.

Sn Catalysed SiNWs on glass

A Glass SiNW stack

SiNW on glass substrate Sn 6nm~380°C, 6 sccm SiH₄

В

- Absorption taken as 1-T-R.
- Different initial catalyst thicknesses give differing absorption spectra.
- Significant increase in absorption compared to planar layer on its own

Absorption Versus Wire Shape

Conical wires better absorption characteristics

Zhu et. a. Nano Lett,9 (2009), 279

Low Temperature Bottom-Up Wire Growth Solar Cell Status

- Substrates include Si, glass, metal foils
- Wire lengths up to ~ a few μm, diameters typically < 1 μm
- Work on fully crystalline wire cells is at an early stage with typical efficiencies:
 - ~1-2% using VLS growth on glass and other substrates
- Up to ~5% achieved using a hybrid a-Si/c-Si structure

Hybrid c-Si/a-Si Nanowire Cells on Glass

Over 10⁶ NWs/cell

JCho, B O'Donnell, L Yu, K Kim, I Ngo, P Roca i Cabarrocas, Prog. In PV in press

WINDON SOUTH BANK High Temperature Bottom-up Growth of Long Wires

(a) VLS-growth of p-type Si microwire arrays using SiCl₄/BCl₃ at ~1000 °C; (b) catalyst removal and growth of thermal-oxide diffusion-barrier; (c) selective removal of the oxide barrier using a polymer-infill etch mask; (d) thermal diffusion of radial p-n junctions. (e) SEM images of a microwire array following step (d)

Si wire-array solar cell performance using long wires grown at high temperatures

- Growth temperature ~1000 °C using a Cu catalyst
- Wire length ~50 μm , diameter 2-3 μm on a 7 μm pitch
- Champion cell: Voc=498 mV; Jsc=24.3 mA/cm²; FF=65.4%, Eff=7.9%

Putnam et. al. Energy Environ. Sci, 3 (2010), 1037)

Top Down Wire Formation on Si Wafers

- Jia et. al. (Solmat, 96 (2012) 226)
- SiNW prepared by etching n-type Si wafer using $AgNO_3$ and HF solution
- Diameter tens of nm to 300 nm, length ~900 nm
- Deposition of intrinsic and p-type a-Si by PECVD followed by TCO for top contact

• Best efficiency ~7.9%

a: top view, b: cross section view before TCO deposition; c: top view, d: cross section view after TCO (scale bar 500 nm).

Conclusions

- Solid phase crystallisation of amorphous Si films is still the most successful thin film poly-Si on glass technology (up to ~10% efficiency in minimodules).
- Seed layer approaches on glass give large grain sizes but efficiencies are < 5% due to material quality issues and simple cell designs without light trapping.
- Efficiencies of up to 8.5% using AIC seed layers and 11% using monocrystalline seed layers have been achieved on foreign substrates.
- With the use of advanced light trapping schemes such as plasmonics and further developments in device engineering (e.g. tandem structures) it should be possible to progress towards efficiencies of 15% and beyond
- Translating this to glass substrates will continue to provide significant research challenges and opportunities
- Work on nano/micro wire solar cells is at an early stage but shows promise. Again, there are significant research challenges and opportunities