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Ocean floor hydrothermal vent sites, with the associated formation of
massive sulfide deposits:

— play a fundamental role in the geochemical evolution of the Earth and Oceans,

— are a key location of heat loss from the Earth’s interior

— provide insights into the formation of ancient volcanogenic massive sulfides.

Furthermore, they are increasingly viewed as attractive sites for the
commercial extraction of base metals and gold.

In addition Mn-Co nodules and crusts are increasing recognised as
potentially attractive environments for Mn and Cobalt extraction
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Sketch of the active Trans-Atlantic Geotraverse (TAG) hydrothermal
mound showing the generalized intemal structure and mineralogic zones
as revealed by drilling (modified from Humphris et al., [1895]).

Some Key Observations:

Circa 2.5-3 Million Tonnes of Massive Sulphide

Abundance of anhydrite. Estimate, based on the
drilling results, that the TAG mound currently
contains about 165,000 metric tons of anhydrite.

Through stable and radiogenic isotope analyses of
anhydrite insights into circulation of seawater
within the deposit.

This important mechanism for the formation of
breccias provides a new explanation for the origin
of similar breccia ores observed in ancient massive
sulfide deposits. 6



Leg 158: TAG

87Sr/86Sr isotope analyses

of anhydrite provides
evidence for seawater
hydrothermal fluid mix
In the sulfide mound.
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The construction of the TAG mound is
Interpreted to be substantially a
process of hydrothermal replacement
and mineralization in the upflow zone,
coupled with mass wasting, brecciation
and cementation of material that was
precipitated on the sea-floor.

Humphris et al. Nature, 1995.
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o56 035C 10 phide One of the main accomplishments
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: 8 — — | Interbedded Hemipelagic — — — — Sulfide metal ratios, Pb and Sr data
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- - — — — - — — — — — - fluid reacted extensively with
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(From Goodfellow et al., 1999)

Sr isotope ratios indicate Sr of sea-water origin was modified by mixing with radiogenic

Sr, mostly from seawater. o

Zierenberg et al. Nature 1998
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The cruise strategy was to drill as

deeply as possible at sites of

hydrothermal activity including two

along the crest of the Paul Ridge
representing outflow zones

characterized by low-temperature

diffuse venting (Site 1188a,f) and high-
temperature focused venting, soaa
respectively (Site 1189a,b).

School of Ocean and
Earth Science

Hydrothermal sites located on rifted
arc crust. Circa 1 Million Tonnes at 7%
Cu and 5¢g/t gold — 860 Million Dollar
New Guinea Ore Body (Source Nautilus Minerals)
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Variably Altered Volcanics
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Wetar Island preserves massive sulfides
(Py+Cpy) with a later fracture fill “High
Sulfidation Assemblage” and associated
barite sand deposits.

These systems formed at or near the sea-
floor at around 2km water depth associated
with extensional fault structures and miocene
magmatism.

Mineralogical, fluid and isotopic data suggest
a sea-water dominated hydrothermal fluid
with the barite sands and gold linked to
“‘white smoker” vents marginal to the main
sulfide structures.

21



North

Basin

South

Fiji

Basin zg A
: s
83 fa /5“
AA" )
SAC/g‘

Brothers 'g; ,Q

LT

| Brothers | |
8%
(Catton| &

&

EZD
ot W] . e 1

F35°8

Furthermore, during the lifetime of ODP, the
recognition of massive sulfides associated

. With submarine arc volcanoes e.g. Brothers

Volcano, Conical Seamount, provide
examples of massive sulfide formation

o Where the “3rd dimension” remains

untested, yet such sites are presently the
focus of scientific research and potential
exploitation as a mineral resource. Indeed,
these locations may provide the key
evidence to resolve the open question of
the the role of magmatic contributions to the
metal budgets of volcanogenic massive
sulfide deposits.
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Sea-floor mining — a
realistic prospect 2010/14
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Aim listed companies Nautilus Minerals — backed
by Anglo and (BHP Minerals), (Neptune Minerals -
backed by Newmont — liquidated 2011).

Figure 2
@ SOLWARA 1 PROSPECT, EL 1196
SCHEMATIC CROSS-SECTION
NAUTILUS

20 Septerrbor 2007

B 1 3o s £ ot Ad Sl

http://www.nautilusminerals.com
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Dewatering process on the Production Support Vessel ("PSV") will be
achieved by:

1. Discharging at depths between 25 to 50 metres above the seafloor to
confine all impacts to the bottom zones from where the water/sediment
originated.

2. Filtering the water prior to release, which is expected to significantly
reduce the quantities of sediment lost in the dewater discharge.

3. Limiting the exposure time of the return water to surface
temperatures and oxygenation, thereby reducing potential for
geochemical changes. The pipes used to transport the return water to
the seafloor will allow for cooling of the return water.

The result of these strategies is that the Solwara 1 Project will cause no

harm to fisheries, coral reefs, whales, turtles or other pelagic animals.8
2
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Some Thoughts:

1) Sea bed mining closer than ever to becoming a commercial reality.

2) The exploration and extraction of these resources was largely
research led using a geological understanding developed through
scientific investigations of these marine resources.

3) These scientific studies focussed on processes responsible for initial
sulphide precipitation and habitat of vent fauna and flora.

4) Limited studies have investigated these sea floor hydrothermal

mineral deposits within the context that they may soon become sites of
mineral extraction.

29
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The increased likelihood of extraction raises some
important and fundamental questions, these include:

1) What are the controlling factors on minor metal associations within sea
floor vent systems?

2) Given that current technologies suggest “in situ comminution” will
constitute the initial phase of sulphide/oxide recovery, what will be the likely
release of minor elements, into the prevailing ecosystems?

3) What are the fundamental grade tonnage controls on sea floor vent
systems.

4) What are the spatial controls on hydrothermal activity and SMS deposition?
5) What are the timescales for the evolution of SMS deposits?

6) What are the changes in biological communities that occur during the

evolution of an SMS deposit?
30
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POLYMETALLIC NODULES EXPLORATION AREAS IN THE PACIFIC OCEAN
AREAS UNDER CONTRACT WITH THE INTERNATIONAL SEABED AUTHORITY AND AREAS RESERVED FOR THE AUTHORITY

““The Arca” is defimad as “the soabad amd ocesn floor and
subsodl thereof, heyornd the limvits of national jurésdiction™
(1982 United Nathors Conpentions ow the Law of the
Sea, article 1, paragraph 1 (1)). The chart of the Area is
imdicutior ovly of cledmed amd potemtial meritie limits,

Legend

Contractor Areas || Reserved Areas
B COMRA (China)

B DORD (Japan) L _ 2 The Area®
Government of Korea
B IFREMER/AFERNOD (France)
[ nsoroceanmietal b e
B Yuzhmorgeologia (Russian Federation)
B FIGNR (Germany)
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Sample 35D193 Layers Thick Mineralogy Elemental composition (%)

Mn Fe Ni Cu Co Pa0s

Fe-vernadite, Mn-ferroxyhyte,
quartz, buserite, goethite, 200 189 | 033 |0.10 |057 |14
haematite, feldspars

Fe-vernadite, Mn-ferroxyhyte,
goethite, clayey materials,
s0-50 | feldspars, apatite, quartz, calcite.

| hacmatite 169 |162 (038 [0.18 [038 |2.0

50-65 | Fe-vernadite, Mn-ferroxyhyte,

o apatite: 6.8 | 13.3 | 031 |0.17 030 (93

Fe-vernadite, Mn-lferroxyhyte,
gocthite, apatite, asbolane,
65-105 | caleite. quartz, feldspars

mm

146 [ 11.9 | 033 | 009 1025 |82

Asbolane, vernadite, todorokite,
ferrihydrite, apatite, calcite,

s 1 | quarlz
105-165 89 |58 047 [0a1 013 |140

mm

Hein et al. 2009 >
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Medium Term (5-15 years)
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Some thoughts:

« “Renewed interest” in extraction of ocean floor sulfides and
maganese-cobalt nodules.

« However significant technological and environmental
challenges
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