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Introduction

References
Plan
Motivations for Leaky Boundary Conditions

Asymptotically Flat Spacetimes

o Leaky boundary conditions = Boundary conditions that yield some
flux through the conformal boundary
= The charges are not conserved
= The variational principle is not stationary on solutions
= This describes open gravitational systems

o Leaky boundary conditions are essential
in asymptotically flat spacetimes at null
infinity to consider radiative spacetimes.

[Bondi-van der Burg-Metzner '62] [Sachs '62]

@ Non-conservation of the charges :
“Bondi mass loss formula”.
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Introduction

References
Plan
Motivations for Leaky Boundary Conditions

Asymptotically de Sitter Spacetimes

o In asymptotically de Sitter (dS) spacetimes, essential to consider

leaky boundary conditions
= Otherwise, that would highly constrain the Cauchy problem

[Anni Ng-St inger '12] [Ashtekar-Bonga-Kesavan '15]
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Introduction

References
Plan
Motivations for Leaky Boundary Conditions

Asymptotically Anti-de Sitter Spacetimes

@ In asymptotically anti-de Sitter (AdS) spacetimes :
previous analyses considered “conservative” or “reflective”
boundary conditions
—> Conserved charges, well-defined variational principle,
closed system
(see €.4. [Hawking '83] [Ashtekar-Magnon '84] [Henneaux-Teitelboim '85]
[Papadimitriou-Skenderis '05])

Leaky b.c.

@ However, considering leaky boundary conditions in AdS is
appealing :
— Quest for the “most general” boundary conditions
(see €.8. [Grumiller-Riegler '16] [Grumiller-Sheikh-Jabbari-Zwikel '20]
[Freidel-Geiller-Pranzetti '20])
= BMS symmetries in AdS requires flux at infinity

[Compére-Fiorucci-Ruzziconi '19]
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= Black hole evaporation requires external system

[Almheiri-Mahajan-Maldacena '19]

= Brane-world interacting with higher-dimensional
spacetimes [Randall-Sundrum '99]
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Al(A)dS Spacetimes

Charge Algebra in Al(A)dS, 1 Spacetimes Renormalized Phase Space
Infinitesimal Charges
Charge Algebra

Asymptotically Locally (A)dSy41 Spacetimes

@ Study of leaky boundary conditions in (A)dSy.1 spacetimes
@ Start from the most general Al(A)dS4.1 spacetime (d > 1)

e Starobinsky/Fefferman-Graham gauge in d + 1 dimensions

[Starobinsky '83] [Fefferman-Graham '85]

ds? = niidpz + Yab(p, x€)dx?dx® (2 %)
with 7.5 = O(p~?) (conformal compactification)

o Coordinates : x* = (p,x?), a=1,...,d

e Boundary at p =0 and p > 0 into the bulk

e Valid for both A > 0 (dS), A < 0 (AdS)
(A= -2, n = —sgn(A)) ’

N
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Al(A)dS Spacetimes

Charge Algebra in Al(A)dS, 1 Spacetimes Renormalized Phase Space
Infinitesimal Charges
Charge Algebra

Solution Space

e Solutions of G, +Agu, =0

— 0 2 d d —
Yoo = p 8L + 8% -+ p 28l + 02 In P + 07T

where the logarithmic term appears only for even d

@ This expansion is completely determined by specifying g‘gg) and g‘gg)
@ Holographic stress energy tensor

[Balasubramanian-Kraus '99][de Haro-Skenderis-Solodukhin "00] :

@ _ 9 1), yld
7—ab - 167G ¢ <gab Xab [g ])
o Einstein equations also imply

DT =0, gBTE =0

but g(‘"b) T[Qk] # 0 = Weyl anomalies in the dual theory

[Henningson-Skenderis '98]
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Al(A)dS Spacetimes

Charge Algebra in Al(A)dS, 1 Spacetimes Renormalized Phase Space
Infinitesimal Charges
Charge Algebra

Residual Gauge Diffeomorphisms

@ Diffeomorphisms preserving the Starobinsky/Fefferman-Graham gauge are
generated by vector fields £ = £P0, + £%0, satisfying
£§gpp = 0, ﬁﬁgpa =0

@ Solution :
a a Fa 4 dp, ai c
& =0l € = E00) a0 " Iyl )

where o(x?) and £2(xP) are arbitrary functions
@ Using modified Lie bracket that takes into account the field-dependence of the

vector fields [Barnich-Troessaert '10]

[€1, &) = [€1,82] — e, 62 + 0,6
we obtain _ _ .

[6(01,€7), &(02,&3)]« = &(6,€7),

o= f_faaaz — 5{10'2 — (1 A 2)7
with

€ =808 - 058 - (12)
— Field-dependent structure constants for generic cases
= For 6o = 0 = 62, we have Diff(.#)xWeyl
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Al(A)dS Spacetimes

Charge Algebra in Al(A)dS, 1 Spacetimes Renormalized Phase Space
Infinitesimal Charges
Charge Algebra

Variation of the Solution Space

@ The solution space is parametrized by (g‘gg) T[d])

@ Variation of the solution space under infinitesimal gauge
diffeomorphisms :

Segly) = Eggf,g) —20g")

d d d d
0T = LeTh! + (d = 2)o T+ Allo]
where AL‘L] [o] is the inhomogeneous part of the transformation

related to Weyl anomalies, A[Zkﬂ] [c] =0 but Agzbk] [0] #0
@ These variations satisfy

0 d d
[56176€z](g§b)7 T:Eb]) - _6[51752] (gesb)7 T:Eb])

where [651’652] = 651 652 - 652 651

o Lie algebroid structure (Base space = solution space (gig), Ta[‘;]),

algebra at each point = {£(0,€2)} with [.,.],)
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Al(A)dS Spacetimes

Charge Algebra in Al(A)dS, 1 Spacetimes Renormalized Phase Space
Infinitesimal Charges
Charge Algebra

Phase Space

@ Holographic renormalization in (A)dS [de Haro-Solodukhin-Skenderis '01] :

Sren:/ LEH+/ LGHY-I-/ Lct+/ L,

— This action is finite on-shell, S, = O(p )
— The term L, is the freedom to add a finite term to the action

@ This process removes the divergences from the sympectic structure

[Papadimitriou-Skenderis '05] [Compére-Marolf '08] :

Orenlsg; 5g]‘ = Oy — dLgny — 6Lt — 6Lo + dOt + dO, P

\/ |g(° [d] 5gab (ddx)

where O; is the presymplectic potential defined through

SL — oL;
6,

;6g]

@ Variati | inciple : 6Sren = — Orenlg; 0
ariational principle fﬂ lg:0g] 7
= Well-defined for Dirichlet boundary conditions ((Sgsg) =0)
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Al(A)dS Spacetimes

Charge Algebra in Al(A)dS, 1 Spacetimes Renormalized Phase Space
Infinitesimal Charges
Charge Algebra

Conservative vs Leaky Boundary Conditions

@ The presymplectic current is obtained through
wrenlg; 6g,0g] = 0O en[g; 6g]. Explicitly, Iis //;‘4

Wren[g; 68, 5g]‘ 776 (\/ M) A6 (d9x) 3 Rl
3 oo |F
@ Encodes the “flux of charges” going through the g7 3
spacetime boundary /7
@ Conservative boundary conditions would require Zas

wrenL] =0
— Conserved charges
— Action principle with S, can be made well-defined

@ Here, we consider leaky boundary conditions :
we allow wyep| # # 0

“ads

— Non-conserved charges
= S/en is not stationary on solutions

— Open system with external sources encoded in 5g(0)

= Natural in dS, non-standard in AdS (non-globally
hyperbolic spacetime) [shibashi-wald '04]

'ads 'ads
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Al(A)dS Spacetimes

Charge Algebra in Al(A)dS, 1 Spacetimes Renormalized Phase Space
Infinitesimal Charges
Charge Algebra

Infinitesimal Charges in Al(A)dSg4.1 Spacetimes

@ The infinitesimal charges are obtained from the renormalized
symplectic structure [iyer-wald ‘4] [Barnich-Brandt '02]

fHelg; 0g] = /z Wren|8: 0¢g, 08) = /5 ke renlg; O8]

where Soo = 0% and dkg¢ ren[g; 98] = Wrenlg; dcg, 0g]
@ The explicit expression is given by

scleioel = [ (@0 5 (V1e®lag 7)) & - 5 \/1a®1E Thioel® + Wi e oa]

oo

Weyl charge

Boundary diffeomorphism charge

@ Observations :
© The charges are not conserved,
dke ren[g; 08]].s = wienlg:idc8,0g]|.7 # 0
@ The charges are non-integrable, §He[g] # d(...)
— Typical features of an open dissipative system
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Al(A)dS Spacetimes

Charge Algebra in Al(A)dS, 1 Spacetimes Renormalized Phase Space
Infinit al Charges
Charge Algebra

Weyl Charges

[2k+1]t [2K]t

@ Weyl charges : W,
@ Explicit expressions :

[g;0g] =0, but W5 [g;0g] # 0

= L
Wi g; ag) = — - GDW[ 169135+ 20/ lg (s | - to0Luls®: 55
ld=4]t 0) (0) yt
Wo""le: og ]7167rc [ V1@ R Dboégo)Jr L RO D5, /|50
1
—ERES)DCUzS |g(©®] + |g©@ |R o) pt cr5g(0) — *\/ R Dbazsg(o ]

o 1
nd {@fgcc e8] - gefgcc<2;[g(°>; 5g(°)]]
where ©L,, ezyccu) and @QCG( 5y are the presymplectic potentials of EH and
quadratic curvature gravity
@ Non-zero Weyl charges due to the presence of Weyl anomalies in the dual theory
(not free to choose the conformal compactification factor)
P ()
@ Weyl charges only visible if 6g;," 7# 0
@ For more physics related to Weyl charges in d = 2,
See [Alessio-Barnich-Ciambelli-Ruzziconi '20]

= Non-conservation interpreted as an anomalous Ward—Takahashi identity of
the boundary theory
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Al(A)dS Spacetimes

Charge Algebra in Al(A)dS, 1 Spacetimes Renormalized Phase Space
Infinitesimal Charges
Charge Algebra

Charge Algebra in Al(A)dS,41 Spacetimes

@ When charges are integrable, i.e. §H¢[g] = dHe[g], then we have the
representation theOrem [Barnich-Compére '07]

{Hey, He,} =06, Hey[g] = {He, Hed = Higy 1. [8] + Kev

where Kg, ¢, = —Kq, ¢, is a central extension satisfying the
2-cocycle condition

K[§1»52]*7§3 + cyclic(1,2,3) =0

@ What does this representation theorem become for non-integrable
charges?
= Use the modified Barnich-Troessart bracket [sarnich-Troessaert "11]
— Works in many different contexts, including asymptotically flat
spacetimes (see €.8. [Barnich-Troessaert '11][Compére-Fiorucci-Ruzziconi '181), or at the
BH horizon (see e.g. [ponnay-Giribet-Gonzilez, Pino '16])
= We used it in the present context of AI(A)dS,1 spacetimes
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Al(A)dS Spacetimes
Charge Algebra in Al(A)dS, 1 Spacetimes Renormalized Phase Space

Infinitesimal Charges
Charge Algebra

@ Total charge in Al(A)dSy,1 @ fHe[g; 0g] = 0He[g] + =¢[g; 6g] where

Helel = [ (@' [W 5 70

Eg[g:5g]=/s (Gl )[ S\ lg@E ThoglY + Wi (g: sg]| — Haele]

(the split between integrable and non-integrable parts is ambiguous)
@ With the Barnich-Troessart bracket,

{Hey, Hey bx = 0y Hey (8] 42080 0c,8] = {Hey, Hey b = Higy 6], 81K 51 & l&]

where K£[1] £ [g] = 7K§[2] & [g] is a field-dependent 2-cocycle satisfying the
generalized condition :

d - d .
KIE o1, s [81+0e KL 8] + eyelic(1,2.3) = 0

(the form of the charge algebra is unambiguous)

@ Physically, the algebra contains the information on the flux-balance laws at .&/

(f2=0t, &1 =8):

d —
~ Heldl = —Z0,16¢0: 0] + KT le]
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Al(A)dS Spacetimes
Charge Algebra in Al(A)dS, 1 Spacetimes Renormalized Phase Space

Infinitesimal Charges
Charge Algebra

[2k+1]
K§1 &2

.r;[‘i §22][ ] 167 G/ dd 1X)\/ [ 0'1Dt0'2 70'2Dt0'1)+R (0162 70'251)]

— n 3 _ 1
Kéi,&i][g] = Torc ) (dd 1X)\/ |g(0)| |:(R(tg) . ER(O)g(té?)) (01Dpo2 — 02Dpo1),
1 1 _ _
+2 (R&C)Rz(,g) - gR(zo)) (01& — szi)} :

@ We checked explicitly the generalized 2-cocycle condition

[g] =0 (k € Np). For even d, we have explicitly

e For d =2, if we impose Dirichlet boundary conditions (6g§2) =0),
the field-dependent 2-cocycle reduces to the Brown-Henneaux
central extension [grown- Hen..e.-.ux "86]

LE1Ey=(m-nLt, -5 L m(m?® — 1)62,,, {LZ, LT} = 0 where ¢* = 3¢
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BMS Group
Questions
Leaky Boundary Conditions and A-BMS

A-BMS Group in (A)dS

BMS Group in 4d Asymptotically Flat Spacetimes

@ Consider radiative 4d asymptotically flat
spacetimes at null infinity

@ What you may naively expect as asymptotic ~
symmetry group :

Poincaré = SO(3,1) x Translations

@ What a careful analysis gives as asymptotic
symmetry group

[Bondi-van der Burg-Metzner '62] [Sachs '62]

BMS = SO(3,1) x Supertranslations

— The supetranslations are necessary to
include radiation

— Boundary conditions yield some flux
through the spacetime boundary
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BMS Group
Questions

A-BMS Group in (A)dS Leaky Boundary Conditions and A-BMS ;. ;

BMS and the Infrared Triangle

o Infrared sector of gauge theories described by a web of connections :

[Strominger '17]

Asymptotic
symmetries

Soft —— Memory

theorems effects

o Gravity :
Supertranslations < Displacement memory effect
< Soft graviton theorem
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BMS Group
Questions

A-BMS Group in (A)dS Leaky Boundary Conditions and A-BMS ;. ;

Extensions of BMS

@ Recently, two extensions of the global BMS, have been proposed :
© Extended BMS, = (Diff(S*) x Diff(S')) x Supertranslations®

[Barnich-Troessaert '10]
= Not globally well-defined on the celestial sphere (poles)
© Generalized BMS, = Diff(5%) x Supertranslations [campiglia-Laddha ‘14]

@ These extensions have important consequences :
© Physical processes (breaking of a cosmic string via black hole pair
creation [stwrominger-Zhiboedov '16] )
@ Superrotations < Spin/refraction/velocity kick memory effects <
Subleading soft graviton theorem [strominger '17] [Compére-Fiorucci-Ruzziconi ‘18]
© Celestial holography [ponnay-Pubm-Strominger 18]
© Edge mode symmetries [ponnelly-Freidel '16]

Q ...
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BMS Group
. Questions
A-BMS Group in (A)dS Leaky Boundary Conditions and A-BMS ;. ;

Questions

Natural questions arise :
@ Is it possible to define the analogue of the BMS group in (A)dS
(N£0)?
= We call it the A-BMS group(oid)

@ Is there a concept of flat limit? (A — 0 limit)
—> We want A-BMS — BMS in flat space when A — 0

Romain Ruzziconi Charge Algebra in Al(A)dS Spacetimes
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BMS Group

. Questions
A-BMS Group in (A)dS Leaky Boundary Conditions and A\-BMS

Leaky Boundary Conditions and A-BMSy.4

@ We consider partial Dirichlet boundary conditions in (A)dS :

n / 1 ~

where x? = (t/{,x*), A=2,...,d
o Fluctuations of gf\(g allowed (5g£‘03) #0)
o Always reachable using the residual gauge diffeomorphisms
(d + 1 parameters &2 and o for d 4 1 conditions)
= Does not constrain the Cauchy problem in dS
(valid for both signs of A)
o Writing £20, = £t0, + £70,, the residual gauge diffeomorphisms
preserving the boundary conditions have to satisfy

- 1
)DA§A7 0:EM = 7 g(oB Dgét, o= D"

L Py @
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BMS Group
Questions
Leaky Boundary Conditions and A\-BMS

A-BMS Group in (A)dS

@ The generators satisfy the commutation relations

where

A

_ _ 1 _ _ _
& =E'Dall + msimsé — 05,8 — (14 2),

& = Ded + 88l Dol — 08 — (1 2)
— Field-dependent structure constants

= A-BMS,.1 Lie algebroid
@ In the flat limit £ — oo, we obtain
& .- 1 - -
& = GDaG + D& —(162)
1 =&0pE —(142)
== This corresponds to the Generalized BMS,; algebra
(Diff(52) x Supertranslations) of asymptotically flat spacetimes!
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BMS Group
Questions

A-BMS Group in (A)dS Leaky Boundary Conditions and A\-BMS

The Phase Space of A-BMS and its Flat Limit

@ Symplectic structure :

Va
wrenlgi0g, 08]| | = == 0TTF A 58\ (d¥x) £ 0
— Necessary to have some flux in dS
— A-BMS charges are not conserved, non-integrable
@ The Fefferman-Graham gauge does not have a well-defined flat limit

(gpp — 00 when ¢ — 00)

@ Instead, one has to work in the Bondi gauge which admits a
well-defined flat limit and exists for both A % 0 and A =0
— Construct a diffeomorphisms from Fefferman-Graham to Bondi
and translate all the results poole-Skenderis-Taylor "19] [Compére-Fiorucci-Ruzziconi '19]
— From now on, the discussion is valid only for d =3

@ When taking the flat limit of the solution space with our
asymptotically (A)dS boundary conditions, one recovers the solution
space of asymptotically flat spacetimes
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BMS Group
Questions
Leaky Boundary Conditions and A\-BMS

A-BMS Group in (A)dS

@ Flat limit works at the level of the symmetries and the solution space. What
about the phase space?

@ When translated in Bondi gauge, one can show that
wrenlg; 0g, 3¢l ~ O(A)
— One cannot readily take A — 0!

@ The problem is solved by adding some corner terms in the holographically
renormalized variational principle :

Sren:/ LEH+/ LGHY+/ Lct+/ Lo
M 5 5 7
7 (0.9)4 (8.7)_

@ After this renormalization in A, one can safely take A — 0
@ We find the important result
Wren(p,A) lg;dg,dgll.y — wralg:dg,dgll.s when A —0
where wg[g; 0g,g]|.# contains the Bondi mass loss in asymptotically flat
Spacetimes [Bondi-van der Burg-Metzner '62] [Sachs '62]
dke ratlgi 0g]l.r = wiiatlgi 0¢g, 0g]l.7

— Striking argument in favour of the existence of gravitational waves at the
non-linear level of the theory

with
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Conclusion

Summary

o Leaky boundary conditions in Al(A)dS4,1 spacetimes

@ Boundary diffeomorphism charges + Weyl charges
= Weyl charges # 0 in even d
= Sign of Weyl anomaly in the dual theory

o Charge algebra in Al(A)dSy1 spacetimes
— Using the modified Barnich-Troessaert bracket
— Exhibits a non-trivial field-dependent 2-coycle in even d
— For d = 2, the latter reduces to the Brown-Henneaux central
charge when imposing Dirichlet boundary conditions

@ BMS-like symmetries in (A)dS
= The A-BMS group(oid)
— Flat limit to recover Generalized BMS
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Conclusion

Perspectives

@ Meaning of leaky boundary conditions in holography ?
— Holography with “open” systems?
— Access to flat space holography through a flat limit process?
= Works for the Fluid/Gravity correspondence

[Ciambelli-Marteau-Petropoulos-Ruzziconi '20]

@ Implication of fluctuating boundary structure in (A)dS on the edge
mOde program 7 [Donnelly-Freidel "16]
= Interesting to have the maximum amount of symmetries

o Infrared triangle in (A)dS?
= Can we relate A-BMS with soft theorems and memory effects in
(A)dS 7 [rolish-wald "16] [Hinterbichler-Hui-Khoury "14]
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Conclusion

Thank you'!

(S

INSTITUTE FOR
THEORETICAL PHYSICS
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Conclusion

Appendix : Non-Conservation and Variational Principle

o On-shell variational principle : 05 = [, ©[g; dg]|.»

@ Presymplectic current : w[g; dg,dg] = §O][g; dg]

o Flux-balance law controlling the non-conservation at infinity :
dkelg; 0g]ls = wlg: beg, 0g]l.s

o Conserved charges : w(g;dg,dgll.s =0
= Olg; dg]|l.» = IBlg]
—> Add a boundary term to the action S - S’ =S — [, B[g]
— Well-defined variational principle : 65’ =0

@ Non-conserved charges : w(g;dg,dg]|.s # 0

— Olg; dgl|.» # 0Blg]
— Impossible to add a boundary term such that 65 = 0.
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Conclusion

Reduction to Dirichlet Boundary Conditions

@ Dirichlet/Brown-Henneaux boundary conditions for AIAdS
[Hawking '83] [Ashtekar-Magnon '84] [Brown-Henneaux '86]
1
£ b = — de? + Gap’dx®
where §ap is the unit (d — 1)-sphere metric and x? = (t/£,x%), A=2,...,d.
For d = 2, the metric Gag has only one component that we take §4¢ = 1.
@ These boundary conditions are preserved under residual gauge diffeomorphisms
£(€2,0) whose parameters satisfy

1 —
Legl) =208, o= - Det"

a
— Conformal algebra in d dimensions
(Witt®Witt for d = 2 and SO(d, 2) for d > 2)
@ Typical example of conservative boundary condition :
wrenlgi dg,0gl| =
@ Charge algebra :

© d > 2 = No central extension [Henneaux 's5]
o d=2 [Brown-Henneaux '86]
LE LEFy =(m -1, - % m(m —1)8%, , {LE, LT} = 0 where ¢+ = 3¢
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Conclusion

Summary of Flat Limit

freezing sources w|y =0

SO(d+1,1)ifA>0

Y

S0(d,2) if A <0

flat limit A — 0

flat limit A — 0

Y

(Generalized) BMS

Y

S0(d,1) ¢ R*.

A

freezing sources w| ,+ =0
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