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Abstract

Predictive regressions are linear specifications linking a noisy variable such as stock returns to past

values of a more persistent regressor such as valuation ratios, interest rates etc with the aim of assessing

the presence or absence of predictability. Key complications that arise when conducting such infer-

ences are the potential presence of endogeneity, the poor adequacy of the asymptotic approximations

amongst numerous others. In this paper we develop an inference theory for uncovering the presence of

predictability in such models when the strength or direction of predictability, if present, may alternate

across different economically meaningful episodes. This allows us to uncover economically interesting

scenarios whereby the predictive power of some variable may kick in solely during particular regimes or

alternate in strength and direction (e.g. recessions versus expansions, periods of high versus low stock

market valuation, periods of high versus low term spreads etc). The limiting distributions of our test

statistics are free of nuisance parameters and some are readily tabulated in the literature. Finally our

empirical application reconsiders the literature on Dividend Yield based stock return predictability and

contrary to the existing literature documents a strong presence of predictability that is countercyclical,

occurring solely during bad economic times.

Keywords: Endogeneity, Persistence, Return Predictability, Threshold Models.

∗We are grateful to the Spanish Ministerio de Ciencia e Innovacion, grant SEJ-2007-63098 and CONSOLIDER 2010

(CSD 2006-00016) and to DGUCM (Community of Madrid) grant EXCELECON S-2007/HUM-044 for partially supporting

this research. We thank seminar participants at Queen-Mary, LSE, Southampton, Exeter, Manchester and the ESEM 2009

meetings in Barcelona for useful comments. Address for correspondence: Jean-Yves Pitarakis, University of Southampton,

School of Social Sciences, Economics Division, Southampton SO17 1BJ, UK. Email: j.pitarakis@soton.ac.uk



1 Introduction

Predictive regressions with a persistent regressor (e.g. dividend yields, interest rates, realised volatility)

aim to uncover the ability of a slowly moving variable to predict future values of another typically noisier

variable (e.g. stock returns, GDP growth) within a bivariate regression framework. Their pervasive

nature in many areas of Economics and Finance and their importance in the empirical assessment of

theoretical predictions of economic models made this particular modelling environment an important and

active area of theoretical and applied research (see for instance Jansson and Moreira (2006) and references

therein).

A common assumption underlying old and new developments in this area involves working within a

model in which the persistent regressor enters the predictive regression linearly, thus not allowing for

the possibility that the strength and direction of predictability may themselves be a function of some

economic factor or time itself. Given this restriction, existing work has focused on improving the quality

of estimators and inferences in this environment characterised by persistence and endogeneity amongst

other econometric complications. These complications manifest themselves in the form of nonstandard

asymptotics, distributions that are not free of nuisance parameters, poor finite sample approximations

etc. Important recent methodological breakthroughs have been obtained in Jansson and Moreira (2006),

Campbell and Yogo (2006), Valkanov (2003), Lewellen (2004) while recent applications in the area of

financial economics and asset pricing can be found in Cochrane (2007), Lettau and Nieuwerburgh (2008),

Bandi and Perron (2008) amongst others.

The purpose of this paper is to instead develop an econometric toolkit for uncovering the presence of

predictability within regression models with highly persistent regressors when the strength or direction

of predictability, if present, may alternate across different economically meaningful episodes (e.g. periods

of rapid versus slow growth, period of high versus low stock market valuation, periods of high versus

low consumer confidence etc). For this purpose, we propose to expand the traditional linear predictive

regression framework to a more general environment which allows for the possibility that the strength of

predictability may itself be affected by observable economic factors. We have in mind scenarios whereby

the predictability induced by some economic variable kicks in under particular instances such as when

the magnitude of the variable in question (or some other variable) crosses a threshold but is useless in

terms of predictive power otherwise. Alternatively, the predictive impact of a variable may alternate in

sign/strength across different regimes. Ignoring such phenomena by proceeding within a linear framework

as it has been done in the literature may mask the forecasting ability of a particular variable and more

generally mask the presence of interesting and economically meaningful dynamics. We subsequently apply

our methodology to the prediction of stock returns using valuation ratios such as the Dividend Yield.
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Contrary to what has been documented in the linear predictability literature our findings strongly point

towards the presence of regimes in which DY based predictability kicks in solely during bad economic

times. More importantly, our analysis also illustrates the fact that the presence of regimes may make

predictability appear as nonexistent when assessed within a linear model.

The plan of the paper is as follows. Section 2 introduces our model and hypotheses of interest.

Section 3 develops the limiting distribution theory of our test statistics. Section 4 explores the finite

sample properties of the inferences developed in Section 3, Section 5 proposes an application and Section

6 concludes. All proofs are relegated to the appendix.

2 The Model and Hypotheses

We will initially be interested in developing the limiting distributional theory for a Wald type test statistic

designed to test the null hypothesis of a linear relationship between yt+1 and xt against the following

threshold alternative

yt+1 =

 α1 + β1xt + ut+1 qt ≤ γ

α2 + β2xt + ut+1 qt > γ
(1)

where xt is parameterized as the nearly nonstationary process

xt = ρTxt−1 + vt, ρT = 1− c

T
(2)

with c > 0, qt = µq + uqt and ut, uqt and vt are stationary random disturbances. The above parameter-

isation allows xt to display local to unit root behaviour and has become the norm for modelling highly

persistent series for which a pure unit root assumption may not always be sensible. The threshold variable

qt is taken to be a stationary process and γ refers to the unknown threshold parameter. Under α1 = α2

and β1 = β2 our model in (1)-(2) coincides with that in Jansson and Moreira (2006) or Campbell and Yogo

(2006) and is commonly referred to as a predictive regression model while under α1 = α2, β1 = β2 = 0

we have a constant mean specification.

The motivation underlying our specification in (1)-(2) is its ability to capture phenomena such as

regime specific predictability within a simple and intuitive framework. We have in mind scenarios whereby

the slope corresponding to the predictor variable becomes significant solely in one regime. Alternatively,

the strength of predictability may differ depending on the regime determined by the magnitude of qt. The

predictive instability in stock returns that has been extensively documented in the recent literature and

the vanishing impact of dividend yields from the 90s onwards in particular (see Ang and Bekaert (2007)

and also Table 5 below) may well be the consequence of the presence of regimes for instance. Among

the important advantages of a threshold based parameterisation are the rich set of dynamics it allows
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to capture despite its mathematical simplicity, its estimability via a simple least squares based approach

and the observability of the variable triggering regime switches which may help attach a “cause” to the

underlying predictability. Following Petruccelli (1992) it is also useful to recall that the piecewise linear

structure can be viewed as an approximation to a much wider family of nonlinear functional forms. In

this sense, although we do not argue that our chosen threshold specification mimics reality we believe

it offers a realistic approximation to a wide range of more complicated functional forms and regime

specific behaviour in particular. It is also interesting to highlight the consequences that a behaviour such

as (1)-(2) may have if ignored and predictability is assessed within a linear specifications instead, say

yt = βxt−1 + ut. Imposing zero intercepts for simplicity and assuming (1)-(2) holds with some γ0 it is

easy to establish for instance that β̂
p→ β1 + (β2 − β1)P (qt > γ0). This raises the possibility that β̂ may

converge to a quantity that is very close to zero (e.g. when P (qt > γ0) ≈ β1/(β1 − β2)) and thus tests

conducted within a linear specification may frequently and wrongly suggest absence of any predictability.

Our choice of modelling xt as a nearly integrated process follows the same motivation as in the lin-

ear predictive regression literature where such a choice for xt has been advocated as an alternative to

proceeding with conventional Gaussian critical values which typically provide poor finite sample approx-

imations to the distributions of t statistics. In the context of a stationary AR(1) for instance, Chan

(1988) demonstrates that for values of T (1−ρ) ≥ 50 the normal distribution offers a good approximation

while for T (1− ρ) ≤ 50 the limit obtained assuming near integratedness works better when the objective

involves conducting inferences about the slope parameter of the AR(1) (see also Cavanagh, Elliott and

Stock (1995) for similar points in the context of a predictive regression model). Models that combine per-

sistent variables with nonlinear dynamics as (1)-(2) offer an interesting framework for capturing stylised

facts observed in economic data. Within a univariate setting (e.g. threshold unit root models) recent

contributions towards their theoretical properties have been obtained in Caner and Hansen (2001) and

Pitarakis (2008).

In what follows the threshold parameter γ is assumed unknown with γ ∈ Γ = [γ1, γ2] and γ1 and γ2

are selected such that P (qt ≤ γ1) = π1 > 0 and P (qt ≤ γ2) = π2 < 1 as in Caner and Hansen (2001).

We also define I1t ≡ I(qt ≤ γ) and I2t ≡ I(qt > γ) but replace the threshold variable with a uniformly

distributed random variable making use of the equality I(qt ≤ γ) = I(F (qt) ≤ F (γ)) ≡ I(Ut ≤ λ). Here

F (.) is the marginal distribution of qt and Ut denotes a uniformly distributed random variable on [0, 1].

Before proceeding further it is also useful to reformulate (1) in matrix format. Letting y denote the

vector stacking yt+1 and Xi the matrix stacking the elements of (Iit xtIit) for i = 1, 2 we can write (1)

as y = X1θ1 + X2θ2 + u or y = Zθ + u with Z = (X1 X2), θ = (θ1, θ2) and θi = (αi, βi)′ i = 1, 2. For

later use we also define X = X1 +X2 as the regressor matrix which stacks the constant and xt. It is now

easy to see that for given γ or λ the homoskedastic Wald statistic for testing a general restriction on θ,
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say Rθ = 0 is given by WT (λ) = θ̂′R′(R(Z ′Z)−1R′)−1Rθ̂/σ̂2
u with θ̂ = (Z ′Z)−1Z ′y and σ̂2

u is the residual

variance obtained from (1). In practice since the threshold parameter is unidentified under the null

hypothesis inferences are conducted using the “Sup-Wald” formulation expressed as supλ∈[π1,π2]WT (λ)

with π1 = F (γ1) and π2 = F (γ2).

In the context of our specification in (1)-(2) we will initially be interested in the null hypothesis

of linearity given by H
(A)
0 : α1 = α2, β1 = β2 and we write the corresponding restriction matrix as

RA = [I − I] with I denoting a 2 × 2 identity matrix. The corresponding SupWald statistic is given

by supλWA
T (λ) = supλ θ̂′R′A(RA(Z ′Z)−1R′A)−1RAθ̂/σ̂

2
u. At this stage it is important to note that the

null hypothesis given by HA
0 corresponds to the linear specification yt+1 = α + βxt + ut+1 and thus

does not test predictability per se since xt may appear as a predictor under both the null and the

alternative hypotheses. Thus we also consider the null given by HB
0 : α1 = α2, β1 = β2 = 0 with the

corresponding SupWald statistic written as supλWB
T (λ) where WB

T (λ) = θ̂′RB[RB(Z ′Z)−1R′B]−1RB θ̂/σ̂
2
u

and RB = [1 0 −1 0, 0 1 0 0, 0 0 0 1]. Under this null hypothesis the model is given by yt+1 = α+ut+1

and the test is expected to have power against departures from both linearity and predictability.

3 Large Sample Inference

Our objective here is to investigate the asymptotic properties of Wald type tests for detecting the presence

of threshold effects in our predictive regression setup. We initially obtain the limiting distribution of

WA
T (λ) under the null hypothesis HA

0 : α1 = α2, β1 = β2. We subsequently turn to the joint null

hypothesis of linearity and no predictability given by HB
0 : α1 = α2, β1 = β2 = 0 and explore the limiting

behaviour of WB
T (λ).

Our operating assumptions about the core probabilistic structure of (1)-(2) will closely mimic the

assumptions imposed in the linear predictive regression literature but will occasionally also allow for a

greater degree of generality (e.g. Campbell and Yogo (2006), Jansson and Moreira (2006), Cavanagh,

Elliott and Stock (1995) amongst others). Specifically, the innovations vt will be assumed to follow a

general linear process we write as vt = Ψ(L)et where Ψ(L) =
∑∞

j=0 ψjL
j ,
∑∞

j=0 j|ψj | <∞ and Ψ(1) 6= 0

while the shocks to yt, denoted ut, will take the form of a martingale difference sequence with respect to

an appropriately defined information set. More formally, letting w̃t = (ut, et)′ and F w̃qt = {w̃s, uqs|s ≤ t}

the filtration generated by (w̃t, uqt) we will operate under the following assumptions

Assumptions. A1: E[w̃t|F w̃qt−1] = 0, E[w̃tw̃′t|F
w̃q
t−1] = Σ̃ > 0, suptEw̃4

it <∞; A2: the threshold variable

qt = µq + uqt has a continuous and strictly increasing distribution F (.) and is such that uqt is a strictly

stationary, ergodic and strong mixing sequence with mixing numbers αm satisfying
∑∞

m=1 α
1
m
− 1

r <∞ for
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some r > 2.

One implication of assumption A1 and the properties of Ψ(L) is that a functional central limit theorem

holds for the joint process wt = (ut, vt)′ (see Phillips (1987)). More formally
∑[Tr]

t=1 wt/
√
T ⇒ B(r) =

(Bu(r), Bv(r))′ with the long run variance of the bivariate Brownian Motion B(r) being given by Ω =∑∞
k=−∞E[w0w

′
k] = [(ω2

u, ωuv), (ωvu, ω
2
v)] = Σ+Λ+Λ′. Our notation is such that Σ̃ = [(σ2

u, σue), (σue, σ
2
e)]

and Σ = [(σ2
u, σuv), (σuv, σ

2
v)] with σ2

v = σ2
e

∑∞
j=0 ψ

2
j and σuv = σue since E[utet−j ] = 0 ∀j ≥ 1 by

assumption. Given our parameterisation of vt and the m.d.s assumption for ut we have ωuv = σueΨ(1)

and ω2
v = σ2

eΨ(1)2. For later use we also let λvv =
∑∞

k=1E[vtvt−k] denote the one sided variance so that

ω2
v = σ2

v + 2λvv ≡ σ2
e

∑∞
j=0 ψ

2
j + 2λvv. At this stage it is useful to note that the martingale difference

assumption in A1 imposes a particular structure on Ω. For instance since serial correlation in ut is

ruled out we have ω2
u = σ2

u. It is worth emphasising however that while ruling out serial correlation

in ut our assumptions allow for a sufficiently general covariance structure linking (1)-(2) and a general

dependence structure for the disturbance terms driving xt and qt. The martingale difference assumption

on ut is a standard assumption that has been made throughout all recent research on predictive regression

models (see for instance Jansson and Moreira (2006), Campbell and Yogo (2005) and references therein)

and appears to be an intuitive operating framework given that many applications take yt+1 to be stock

returns. Writing Λ =
∑∞

k=1E[wtw′t−k] = [(λuu, λuv), (λvu, λvv)] it is also useful to explicitly highlight the

fact that within our probabilitic environment λuu = 0 and λuv = 0 due to the m.d.s property of the u′ts

while λvv and λvu may be nonzero.

Regarding the dynamics of the threshold variable qt and how it interacts with the remaining variables

driving the system, assumption A1 requires qt−j ’s to be orthogonal to ut for j ≥ 1. Since qt is stationary

this is in a way a standard regression model assumption and is crucial for the development of our

asymptotic theory. We note however that our assumptions allow for a broad level of dependence between

the threshold variable qt and the other variables included in the model (e.g. qt may be contemporaneously

correlated with both ut and vt). At this stage it is perhaps also useful to reiterate the fact that our

assumption about the correlation of qt with the remaining components of the system are less restrictive

than what is typically found in the literature on marked empirical processes or functional coefficient

models such as yt+1 = f(qt)xt + ut+1 which commonly take qt to be independent of ut and xt.

Since our assumptions also satisfy Caner and Hansen’s (2001) framework, from their Theorem 1 we can

write
∑[Tr]

t=1 utI1t−1/
√
T ⇒ Bu(r, λ) as T →∞ with Bu(r, λ) denoting a two parameter Brownian Motion

with covariance σ2
u(r1∧r2)(λ1∧λ2) for (r1, r2), (λ1, λ2) ∈ [0, 1]2. Noting that Bu(r, 1) ≡ Bu(r) we will also

make use of a particular process known as a Kiefer process and defined as Gu(r, λ) = Bu(r, λ)−λBu(r, 1).

A Kiefer process on [0, 1]2 is Gaussian with zero mean and covariance function σ2
u(r1∧r2)(λ1∧λ2−λ1λ2).

Finally, we introduce the diffusion process Kc(r) =
∫ r
0 e

(r−s)cdBv(s) with Kc(r) such that dKc(r) =
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cKc(r) + dBv(r) and Kc(0) = 0. Note that we can also write Kc(r) = Bv(r) + c
∫ r
0 e

(r−s)cBv(s)ds. Under

our assumptions it follows directly from Lemma 3.1 in Phillips (1988) that x[Tr]/
√
T ⇒ Kc(r).

3.1 Testing HA
0 : α1 = α2, β1 = β2

Having outlined our key operating assumptions we now turn to the limiting behaviour of our test statistics.

We will initially concentrate on the null hypothesis given by HA
0 : α1 = α2, β1 = β2 and the behaviour of

supλWA
T (λ) which is summarised in the following Proposition.

Proposition 1: Under the null hypothesis HA
0 : α1 = α2, β1 = β2, assumptions A1-A2 and as T → ∞

the limiting distribution of the SupWald statistic is given by

sup
λ
WA
T (λ) ⇒ sup

λ

1
λ(1− λ)σ2

u

[∫ 1

0
Kc(r)dGu(r, λ)

]′ [∫ 1

0
Kc(r)Kc(r)′

]−1

×
[∫ 1

0
Kc(r)dGu(r, λ)

]
(3)

where Kc(r) = (1,Kc(r))′, Gu(r, λ) is a a Kiefer process and Kc(r) an Ornstein-Uhlenbeck process.

Although the limiting random variable in (3) appears to depend on unknown parameters such as the cor-

relation between Bu and Bv, σ2
u and the near integration parameter c a closer analysis of the expression

suggests instead that is equivalent to a random variable given by a quadratic form in normalised Brow-

nian Bridges, identical to the one that occurs when testing for structural breaks in a purely stationary

framework. We can write it as

sup
λ

BB(λ)′BB(λ)
λ(1− λ)

(4)

with BB(λ) denoting a standard bivariate Brownian Bridge (i.e. a zero mean Gaussian process with

E[BB(λ1)BB(λ2)] = λ1 ∧ λ2 − λ1λ2). This result follows from the fact that the processes Kc(r) and

Gu(r, λ) appearing in the stochastic integrals in (3) are uncorrelated and thus independent since Gaussian.

Indeed

E[Gu(r1, λ1)Kc(r2)] = E[(Bu(r1, λ1)− λ1Bu(r1, 1))(Bv(r2) +

c

∫ r2

0
e(r2−s)cBv(s)ds)]

= E[Bu(r1, λ1)Bv(r2)]− λ1E[Bu(r1, 1)Bv(r2)] +

c

∫ r2

0
e(r2−s)cE[Bu(r1, λ1)Bv(s)]ds−

λ1c

∫ r2

0
e(r2−s)cE[Bu(r1, 1)Bv(s)]ds

= ωuv(r1 ∧ r2)λ1 − λ1ωuv(r1 ∧ r2)

+ cλ1

∫ r2

0
e(r2−s)c(r1 ∧ s)ds− cλ1

∫ r2

0
e(r2−s)c(r1 ∧ s)ds = 0.

Given that Kc(r) is Gaussian and independent of Gu(r, λ) and also
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E[Gu(r1, λ1)Gu(r2, λ2)] = σ2
u(r1 ∧ r2)((λ1 ∧ λ2)− λ1λ2)

we have
∫
Kc(r)dGu(r, λ) ≡ N(0, σ2

uλ(1 − λ)
∫
Kc(r)2) conditionally on a realisation of Kc(r). Normal-

ising by σ2
u

∫
K2
c (r) as in (3) gives the Brownian Bridge process in (4) which is also the unconditional

distribution since it is not dependent on a realisation of Kc(r) (see also Lemma 5.1 in Park and Phillips

(1988)). Obviously the discussion trivially carries through to Kc and Gu since E[Kc(r2)Gu(r1, λ1)]′ =

E[Gu(r1, λ1) Kc(r2)Gu(r1, λ1)]′ = [0 0]′.

The result in Proposition 1 is unusual and interesting for a variety of reasons. It highlights an

environment in which the null distribution of the SupWald statistic no longer depends on any nuisance

parameters as it is typically the case in a purely stationary environment and thus no bootstrapping

schemes are needed for conducting inferences. In fact, the distribution presented in Proposition 1 is

extensively tabulated in Andrews (1993) and Hansen (1997) also provides p-value approximations which

can be used for inference purposes. More recently, Estrella (2003) provides exact p-values for the same

distribution. Finally and perhaps more importantly the limiting distribution does not appear to depend

on c the near integration parameter which is another unusual specificity of our framework.

All these properties are in contrast with what has been documented in the recent literature on testing

for threshold effects in purely stationary contexts. In Hansen (1996) for instance the author investigated

the limiting behaviour of a SupLM type test statistic for detecting the presence of threshold nonlineari-

ties in purely stationary models. There it was established that the key limiting random variables depend

on numerous nuisance parameters involving unknown population moments of variables included in the

fitted model. From Theorem 1 in Hansen (1996) it is straightforward to establish for instance that under

stationarity the limiting distribution of a Wald type test statistic would be given by S∗(λ)′M∗(λ)−1S∗(λ)

with M∗(λ) = M(λ)−M(λ)M(1)−1M(λ), and S∗(λ) = S(λ)−M(λ)M(1)−1S(1). Here M(λ) = E[X ′1X1]

and S(λ) is a zero mean Gaussian process with variance M(λ). Since in this context the limiting dis-

tribution depends on the unknown model specific population moments the practical implementation of

inferences is through a bootstrapping methodology.

One interesting instance worth pointing out however is the fact that this limiting random variable

simplifies to a Brownian Bridge type of limit when the threshold variable is taken as exogenous in

the sense M(λ) = λM(1). Although the comparison with the present context is not obvious since xt

is taken as near integrated and we allow the innovations in qt to be correlated with those of xt the

force behind the analogy comes from the fact that xt and qt have variances with different orders of

magnitude. In a purely stationary setup, taking xt as stationary and the threshold variable as some

uniformly distributed random variable leads to results such as
∑
x2
t I(Ut ≤ λ)/T

p→ E[x2
t I(Ut ≤ λ)] and

if xt and Ut are independent we also have E[x2
t I(Ut ≤ λ)] = λE[x2

t ]. It is this last key simplification
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which is instrumental in leading to the Brownian Bridge type of limit in Hansen’s (1996) framework. If

now xt is taken as a nearly integrated process and regardless of whether its shocks are correlated with

Ut or not we have
∑
x2
t I(Ut ≤ λ)/T 2 ⇒ λ

∫
K2
c (r) which can informally be viewed as analogous to the

previous scenario. Heuristically this result follows by establishing that asymptotically, objects interacting

xt/
√
T and (I1t − λ) such as 1

T

∑
( xt√

T
)2(I1t − λ) or 1

T

∑
( xt√

T
)(I1t − λ) converge to zero (see also Caner

and Hansen (2001, page 1585) and Pitarakis (2008)). This would be similar to arguing that xt/
√
T and

I1t are asymptotically uncorrelated in the sense that their sample covariance (normalised by T ) is zero

in the limit.

3.2 Testing HB
0 : α1 = α2, β1 = β2 = 0

We next turn to the case where the null hypothesis of interest tests jointly the absence of linearity and

no predictive power i.e. we focus on testing HB
0 : α1 = α2, β1 = β2 = 0 using the supremum of WB

T (λ).

The following Proposition summarises its limiting behaviour.

Proposition 2: Under the null hypothesis HB
0 : α1 = α2, β1 = β2 = 0, assumptions A1-A2 and as

T →∞, the limiting distribution of the SupWald statistic is given by

sup
λ
WB
T (λ) ⇒

[∫
K∗c (r)dBu(r, 1)

]2
σ2
u

∫
K∗c (r)2

+

sup
λ

1
λ(1− λ)σ2

u

[∫
K
∗
c(r)dGu(r, λ)

]′ [∫
K
∗
cK
∗
c(r)

′
]−1

[∫
K
∗
c(r)dGu(r, λ)

]′
(5)

where K∗c(r) = (1,K∗c (r))′, K∗c (r) = Kc(r)−
∫ 1
0 Kc(r)dr and the remaining variables are as in Proposition

1.

Looking at the expression of the limiting random variable in (5) we note that it is made up of two

components with the second one being equivalent to the limiting random variable we obtained under

Proposition 1. The first component in the right hand side of (5) is more problematic in the sense that

it does not simplify further due to the fact that K∗c (r) and Bu(r, 1) are correlated since ωuv may take

nonzero values. However, if we were to rule out endogeneity by setting ωuv = 0 then it is interesting to

note that the limiting distribution of the SupWald statistic in Proposition 2 takes the following simpler

form

sup
λ
WB
T (λ) ⇒ W (1)2 + sup

λ

BB(λ)′BB(λ)
λ(1− λ)

(6)

where BB(λ) is a Brownian Bridge and W (1) a standard normally distributed random variable. The

first component in the right hand side of either (5) or (6) is the χ2(1) limiting distribution of the Wald
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statistic for testing H0 : β = 0 in the linear specification

yt+1 = α+ βxt + ut+1 (7)

and the presence of this first component makes the test powerful in detecting deviations from the null

(see Rossi (2005) for the illustration of a similar phenomenon in a different context).

Our next concern is to explore ways of making (5) operational since as it stands the first component

of the limiting random variable depends on model specific moments and cannot be universally tabulated.

For this purpose it is useful to notice that the problems arising from the practical implementation of (5)

are partly analogous to the difficulties documented in the single equation cointegration testing literature

where the goal was to obtain nuisance parameter free chisquare asymptotics for Wald type tests on β

in (7) despite the presence of endogeneity. One could be tempted for instance to try to make inferences

operational by following the intuition underlying the fully modified estimation methodology proposed in

the cointegration literature by Phillips and Hansen (1990). Intuitively, we would want to modify WB
T (λ)

in such a way that its limiting distribution no longer contains correlated processes within its stochastic

integrals and thus reduces to (6) even under endogeneity. Alternatively, one could also consider using

a Dynamic OLS estimation approach as described in Saikkonen (1991, 1992). Unfortunately however,

since we are operating with a nearly unit root regressor none of the above mentioned methods are able

to remove endogeneity and lead to a mixed normal limit for (β̂ − β) in (7) unless c = 0.

This important result has been formalised in Elliott (1998) who showed that inferences about β in

(7) can no longer be mixed normal when xt is a near unit process. In fact the corresponding asymptotic

distributions turn out to depend on c itself which in turn cannot be estimated consistently. Until very

recently the cointegration literature provided no satisfactory solutions to this problem generated by the

use of regressors of unknown degree of persistence (e.g. pure unit root versus near unit root) and this has

considerably limited the practical use of parametrisations such as (2) (our result in Proposition 1 which

leads to an asymptotic distribution that no longer depends on c is in fact the first one we are aware of in

this literature).

In a very recent paper Phillips and Magdalinos (2009) (PM09 thereafter) reconsidered the issue of

conducting inferences in an environment with possibly nearly integrated regressors and resolved the

difficulties discussed in Elliott (1998) via the introduction of a new Instrumental Variable type estimator

of β̂ in (7). Their method is referred to as IVX estimation since the relevant IV is constructed solely

via a transformation of the existing regressor xt. It is this same method that we propose to use in our

present context.

Before proceeding further however it is useful to note that WB
T (λ) can be expressed as the sum of the
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following two components

WB
T (λ) ≡

σ̂2
lin

σ̂2
u

W β=0
T +WA

T (λ) (8)

where W β=0
T is the standard Wald statistic for testing H0 : β = 0 in (7). Specifically, we have

W β=0
T =

1
σ̂2
lin

[
∑
xt−1yt − T x̄ȳ]2

[
∑
x2
t−1 − T x̄2]

(9)

with x̄ =
∑
xt−1/T and σ̂2

lin is the residual variance obtained from the same linear specification while σ̂2
u

is the residual variance obtained from the unrestricted specification. Although not of direct interest this

reformulation of WB
T (λ) can simplify the implementation of the IVX version of the Wald statistic since the

setup is now identical to that of PM09 and involves constructing a Wald statistic for testing H0 : β = 0 in

(7) i.e we replace W β=0
T in (8) with its IVX based version which is shown to be asymptotically distributed

as a χ2(1) random variable. Note that although PM09 operated within a model without an intercept,

in a recent paper Kostakis, Magdalinos and Stamatogiannis (2010) (KMS10) have also established the

validity of the theory for models with a fitted constant.

The IVX methodology starts by choosing an artifical slope coefficient, say

RT = 1− cz
T δ

(10)

for a given cz and δ < 1 and uses the latter to construct an IV generated as z̃t = RT z̃t−1 + ∆xt or under

zero initialisation z̃t =
∑t

j=1 r
t−j
T ∆xj . This IV is then used to obtain an IV estimator of β in (7) and

to construct the corresponding Wald statistic for testing H0 : β = 0. Through this judicious choice of

instrument PM09 show that it is possible to clean out the effects of endogeneity even within the near unit

root case and to subsequently obtain an estimator of β which is mixed normal under a suitable choice of

δ (i.e. δ ∈ (2/3, 1)) and setting cz = 1 (see PM09, pp. 7-12).

Following PM09 and KMS10 and letting y∗t , x
∗
t and z̃∗t denote the demeaned versions of yt, xt and

z̃t we can write the IV estimator as β̃IV X =
∑
y∗t z̃
∗
t−1/

∑
x∗t−1z̃

∗
t−1. Note that contrary to PM09 and

KMS10 we do not need a bias correction term in the numerator of β̃IV X since we operate under the

assumption that λuv = 0. The correspdonding IVX based Wald statistic for testing H0 : β = 0 in (7) is

now written as

W IV X
T (β = 0) =

(β̃IV X)2(
∑
x∗t−1z̃

∗
t−1)2

σ̃2
u

∑
(z̃∗t−1)2

(11)

with σ̃2
u =

∑
(y∗t − β̃IV Xx∗t−1)2/T . Note that this latter quantity is also asymptotically equivalent to σ̂2

lin

since the least squares estimator of β remains consistent. Under the null hypothesis HB
0 we also have

that these two residual variances are in turn asymptotically equal to σ̂2
u.

10



We can now introduce our modified Wald statistic, say WB,ivx
T (λ) for testing H0 : α1 = α2, β1 = β2 = 0

in (1):

WB,+
T (λ) = W IV X

T (β = 0) +WA
T (λ) (12)

and whose limiting behaviour is summarised in the following Proposition.

Proposition 3: Under the null hypothesis H(B)
0 : α1 = α2, β1 = β2 = 0, assumptions A1-A2, δ ∈ (2/3, 1)

in (10) and as T →∞, we have

sup
λ
WB,ivx
T (λ) ⇒ W (1)2 + sup

λ

BB(λ)′BB(λ)
λ(1− λ)

(13)

with BB(λ) denoting a standard Brownian Bridge.

Our result in (13) highlights the usefulness of the IVX based estimation methodology since the re-

sulting limiting distribution of the SupWald statistic is now equivalent to the one obtained under strict

exogeneity (i.e. under ωuv = 0) in (6). The practical implementation of the test is also straightforward,

requiring nothing more than the computation of an IV estimator.

3.3 Some Remarks on a Testing Strategy

So far we have developed the distribution theory for two sets of hypotheses that we explicitly did not

attempt to view as connected since both may be of interest and considered individually depending on the

context of the research question. The implementation of hypotheses tests in a sequence is a notoriously

difficult and often controversial endeavor which we do not wish to make a core objective of this paper

especially within the nonstandard probabilistic environment we are operating under. However, it is also

the case that if one wishes to uncover predictability or more specifically to distinguish between linear and

nonlinear predictability it may be worthwhile implementing HA
0 and HB

0 in a sequence in the following

sense.

In a first instance we could start by testing HB
0 : α1 = α2, β1 = β2 = 0 so that if this null is

not rejected we stop the investigation and conclude that the data do not support the presence of any

form of predictability with some confidence level. If on the other hand HB
0 is rejected we can then

proceed with HA
0 : α1 = α2, β1 = β2. In this second stage if we fail to reject HA

0 we would argue

that the data support the presence of linear predictability and we can then proceed estimating a linear

specification as in (7). If on the other hand HA
0 is also rejected then the data would appear to support

the presence of nonlinear predictability in a broad sense. Note however that this second rejection could

be compatible with a model in which only the intercept shifts and xt plays no role in predicting yt+1.

This motivates our use of the term nonlinear predictability in a broad sense since a specification such as

11



yt+1 = α1I(qt ≤ γ0)+α2I(qt > γ0)+ut+1 in which predictability is solely driven by the threshold variable

qt is compatible with the rejection of both HA
0 and HB

0 . Depending on the application in question it

may also be interesting to explore this latter issue further through additional tests that focus solely on

slope parameters. Unfortunately and as in Caner and Hansen (2001) the practical difficulties here may

lie in the fact that a null hypothesis on the slopes may be compatible with an identified threshold (if we

believe on a priori grounds that intercepts shift at some given γ0) or a scenario where the latter remains

unidentified. Alternatively and perhaps more intuitively, these issues may be adressed through standard

inferences implemented on the estimated version of (1)-(2).

4 Finite Sample Analysis

4.1 Testing HA
0 : α1 = α2, β1 = β2

Having established the limiting properties of the SupWald statistic for testing H
(A)
0 our next goal is

to illustrate the finite sample adequacy of our asymptotic approximation and empirically illustrate our

theoretical findings. It will also be important to highlight the equivalence of the limiting results obtained

in Proposition 1 to the Brownian Bridge type of limit documented in Andrews (1993) and for which Hansen

(1997) obtained p-value approximations and Estrella (2003) exact p-values. Naturally, this allows us to

evaluate the size properties of our tests as well.

Our data generating process (DGP) under HA
0 is given by the following set of equations

yt = α+ βxt−1 + ut

xt =
(

1− c

T

)
xt−1 + vt

vt = ρvt−1 + et, (14)

with ut and et both NID(0, 1) while the fitted model is given by (1) with qt assumed to follow the

AR(1) process qt = φqt−1 + uqt with uqt = NID(0, 1). Regarding the covariance structure of the random

disturbances, letting zt = (ut, et, uqt)′ and Σz = E[ztz′t], we use

Σz =


1 σue σuuq

σue 1 σeuq

σuuq σeuq 1


which allows for a sufficiently general covariance structure while imposing unit variances. Note also that

our chosen covariance matrix parameterisation allows the threshold variable to be contemporaneously

correlated with the shocks to yt. All our experiments use normally distributed random variables, are
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based on N = 5000 replications and set {α, β, ρ, φ} = {0.01, 0.10, 0.40, 0.50} throughout. Since our initial

motivation is to explore the theoretically documented robustness of the limiting distributions to the

presence or absence of endogeneity, we consider the two scenarios given by

{σue, σuuq , σeuq} = {−0.5, 0.3, 0.4}

{σue, σuuq , σeuq} = {0.0, 0.0, 0.0}

and referred to as DGP1 and DGP2 respectively. The implementation of the SupWald tests assumes 10%

trimming at each end of the sample.

Table 1 below presents some key quantiles of the SupWaldA distribution (see Proposition 1) simulated

using a moderately small sample size of T=200 and compares them with the corresponding exact p-values

from Estrella’s (2003) tabulations. Note that results are displayed solely for DGP1 since the corresponding

figures for DGP2 were almost identical.

Table 1. Critical Values of SupWaldA

DGP1, T = 200

c = 1 c = 5 c = 10 c = 20 Exact

2.5% 2.180 2.214 2.205 2.190 NA

5.0% 2.531 2.520 2.567 2.495 NA

10.0% 3.008 3.066 2.992 2.991 NA

90.0% 10.199 10.457 10.483 10.388 10.640

95.0% 12.073 12.028 12.133 12.188 12.370

97.5% 13.821 13.761 13.846 13.835 NA

Looking across the different values of c as well as the different quantiles we note an excellent adequacy of

the T=200 based finite sample distribution to the asymptotic counterpart tabulated in Andrews (1993)

and Estrella (2003). This also confirms our analysis of Proposition 1 and provides empirical support

for the fact that inferences are robust to the magnitude of c. Note that with T=200 the values of

(1 − c/T ) corresponding to our choices of c in Table 1 are 0.995, 0.975, 0.950 and 0.800 respectively.

Thus the quantiles of the simulated distribution appear to be highly robust to a wide range of persistence

characteristics.

Naturally, the fact that our finite sample quantiles match closely their asymptotic counterparts even

under T=200 is not sufficient to claim that the test has good size properties. For this purpose we have

computed the T=200 based empirical size of the SupWaldA test making use of the pvsup routine of

Hansen (1997). The latter is designed to provide approximate p-values for test statistics whose limiting
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distribution is as in (4). Results are presented in the left panel of Table 2 below which concentrates solely

on the covariance structure of DGP1 since results under DGP2 were quantitatively very similar.

Table 2. Finite Sample Size Properties of SupWaldA and Comparison with Hansen’s (1996)

Simulation Method

DGP1, T = 200

SupWaldA Hansen (1996)

Nominal 2.5% 5.0% 10.0% 2.5% 5.0% 10.0%

c = 1 2.60 4.98 9.40 3.01 6.20 11.14

c = 5 2.54 4.82 10.34 2.98 6.36 11.86

c = 10 2.64 5.14 10.46 3.26 6.42 12.00

c = 20 2.68 5.20 10.04 3.20 6.42 11.32

From the figures presented in Table 2 we again note the robustness of the empirical size estimates of

SupWaldA to the magnitude of the noncentrality parameter. Overall the empirical size estimates appear

to match their nominal counterparts quite accurately even under a moderately small sample size. Similar

size estimates were also obtained using Estrella (2003)’s exact critical values. At this stage it is also

interesting to compare the asymptotic approximation in (4) with that occuring when xt is assumed to

follow an AR(1) with |ρ| < 1 rather than the local to unit root specification we have adopted in this

paper. Naturally, under pure stationarity the results of Hansen (1996, 1999) apply and inferences can be

conducted by simulating critical values from the asymptotic distribution that is the counterpart to (3)

obtained under pure stationarity and following the approach outlined in the aforementioned papers. This

latter approach is similar to an external bootstrap but should not be confused with the idea of obtaining

critical values from a bootstrap distribution. The obvious question we are next interested in documenting

is which approximation works better when xt is a highly persistent process? For this purpose Table 2 above

also presents the corresponding empirical size estimates obtained using the asymptotic approximation

and its external bootstrap style implementation developed in Hansen (1996, 1999) and justified by the

multiplier central limit theorem (see Van der Vaart and Wellner (1996)). Although our comparison

involves solely the size properties of the test and should therefore be interpreted cautiously the above

figures suggest that the nuisance parameter free Brownian Bridge based asymptotic approximation does

a good job in matching empirical with nominal sizes when ρ is close to the unit root frontier. Proceeding

using Hansen (1996)’s approach on the other hand suggests a mild oversizeness of the procedure.
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4.2 Testing HB
0 : α1 = α2, β1 = β2 = 0

We next turn to the null hypothesis given by HB
0 : α1 = α2, β1 = β2 = 0 and whose goal is to test the

null of linearity jointly with predictive power. As documented in Proposition 2 we recall that the limiting

distribution of the SupWaldB statistic under this scenario is no longer free of nuisance parameters and

does not take a familiar form when we operate under the set of assumptions characterising Proposition 1

(see the formulation of the limiting distribution in (5)). However, one instance under which the limiting

distribution of the SupWaldB statistic takes a simple form is when we impose the exogeneity assumption

as for instance in DGP2. Under this scenario the relevant limiting distribution is given by (6) and can

be easily tabulated through standard simulation based methods.

Table 3 below presents some empirical quantiles obtained using T = 200, T = 400 and T = 800

from the DGP yt = 0.01 + ut. As can be inferred from (6) we note that the quantiles are unaffected

by the chosen magnitude of c and appear sufficiently stable across the different sample sizes considered.

Viewing the T = 800 based results as approximating the asymptotic distribution for instance the quantiles

obtained under T = 200 and T = 400 match closely their asymptotic counterparts.

Table 3. Finite Sample and Asymptotic Critical Values of SupWaldB under Exogeneity

2.5% 5% 10% 90% 95% 97.5%

c=1

T = 200 2.589 3.030 3.575 11.731 13.627 15.363

T = 400 2.665 3.064 3.665 11.802 13.693 15.413

T = 800 2.669 3.148 3.783 11.707 13.419 15.345

c=5

T = 200 2.561 3.024 3.641 11.634 13.694 15.458

T = 400 2.645 3.057 3.685 11.969 13.787 15.853

T = 800 2.709 3.145 3.734 11.553 13.422 15.140

We next turn to the more general scenario in which one wishes to test HB
0 within a specification that

allows for endogeneity. Taking our null DGP as yt = 0.01 + ut and the covariance structure referred to

as DGP1 it is clear from Proposition 2 that using the critical values from Table 3 will lead to misleading

results. This is indeed confirmed empirically with size estimates of about 4% to 5% under a 2.5% nominal

size. Using our IVX based test statistic in (11)-(12) however ensures that the above critical values remain

valid even under the presence of endogeneity. Indeed, results for this experiment are presented in Table

4 below which uses DGP1 with yt = 0.01 + ut and the critical values under T=800 tabulated in Table 3.
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Table 4. Empirical Size of SupWaldB,ivx

5.0% 2.5% 1.0%

c=1

T = 200 5.62 2.84 1.01

T = 400 5.58 2.88 1.16

T = 800 5.22 2.58 0.09

c=5

T = 200 5.10 2.86 0.88

T = 400 5.44 2.98 1.14

T = 800 4.80 2.26 1.00

Overall, we note an excellent match of the empirical sizes with their nominal counterparts as the sample

size is allowed to grow. Our simulation based findings corroborate our theoretical findings and suggest

that our asymptotic approximations are sufficiently accurate even under small to moderately small sample

sizes.

5 Regime Specific Predictability of Returns with Valuation Ratios

One of the most frequently explored specification in the financial economics literature has aimed to uncover

the predictive power of valuation ratios such as dividend yields (DY) and price-to-earnings ratios (PE) for

future stock returns via significance tests implemented on simple linear regressions linking rt+1 to DYt or

PEt. The econometric complications that arise due to the presence of a persistent regressor together with

endogeneity issues have generated a vast methodological literature aiming to improve inferences in such

models commonly referred to as predictive regressions (e.g. Valkanov (2003), Lewellen (2004), Campbell

and Yogo (2006), Jansson and Moreira (2006), Ang and Bekaert (2007) among numerous others).

Given the multitude of studies conducted over a variety of sample periods, methodologies, data

definitions and frequencies it is difficult to extract a clear consensus on predictability. From the recent

analysis of Campbell and Yogo (2006) there appears to be statistical support for some mild PE and very

mild DY based predictability with both having substantially declined in strength post 1995 (see also

Lettau and Van Nieuwerburgh (2008)). Using monthly data over the 1946-2000 period Lewellen (2004)

documented a rather stronger DY based predictability using a different methodology that was mainly

concerned with small sample bias correction. See also Cochrane (2008) for a more general overview of

this literature.
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Our goal here is to reconsider this potential presence of predictability through our regime based

methodology focusing on the DY predictor. More specifically, using growth in Industrial Production

(IP) as our threshold variable proxying for aggregate macro conditions our aim is to assess whether

the data support the presence of regime dependent predictability induced by good versus bad economic

times. Theoretical arguments justifying the possible existence of episodic instability in predictability

have been alluded to in the theoretical setting of Menzly, Santos and Veronesi (2004) and more recently

Henkel, Martin and Nardari (2009) explored the issue empirically using Bayesian methods within a

Markov-Switching setup. We will show that our approach leads to a novel view and interpretation of the

predictability phenomenon and that its conclusions are robust across alternative sample periods. Moreover

our findings may provide an explanation for the lack of robustness to the sample period documented in

existing linearity based work. Our analysis will be based on the same CRSP data set as the one considered

in the vast majority of predictability studies (value weighted returns for NYSE, AMEX and NASDAQ).

Throughout all our specifications the dividend yield is defined as the aggregate dividends paid over the

last 12 months divided by the market capitalisation and is logged throughout (LDY therefater). For

robustness considerations we will distinguish between returns that include dividends and returns that

exclude dividends. Finally, using the 90-day T-Bills all our inferences will also distinguish between raw

returns and their excess counterparts. Following Lewellen (2004) we will restrict our sample to the post-

war period. We will concentrate solely on monthly data since the regime specific nature of our models

would make yearly or even quarterly data based inferences less reliable due to the potentially very small

size of the sample. We will subsequently explore the robustness of our results to alternative sample

periods.

Looking first at the stochastic properties of the dividend yield predictor over the 1950M1-2007M12

period it is clear that the series is highly persistent as judged by a first order sample autocorrelation

coefficient of 0.991. A unit root test implemented on the same series unequivocally fails to reject the

unit root null. The IP growth series is stationary as expected displaying some very mild first order

serial correlation and clearly conforming to our assumptions about qt in (1)-(2). Before proceeding with

the detection of regime specific predictability we start by assessing return predictability within a linear

specification as it has been done in the existing literature. Results across both raw and excess returns are

presented in Table 5 below with VWRETD denoting the returns inclusive of dividends and VWRETX

denoting the returns ex-dividends.

Table 5. Linear Predictability rt+1 = αDY + βDY LDYt + ut+1
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VWRETD β̂DY pvalue R2 VWRETX β̂DY pvalue R2

1950-2007 0.010 0.011 0.9% 1950-2007 0.008 0.054 0.4%

1960-2007 0.010 0.056 0.6% 1960-2007 0.008 0.142 0.3%

1970-2007 0.009 0.069 0.6% 1970-2007 0.007 0.170 0.2%

1980-2007 0.011 0.059 0.9% 1980-2007 0.009 0.131 0.5%

1990-2007 0.014 0.153 0.8% 1990-2007 0.001 0.207 0.5%

Excess Excess

1950-2007 0.009 0.025 0.7% 1950-2007 0.7% 0.102 0.3%

1960-2007 0.007 0.210 0.2% 1960-2007 0.4% 0.417 0.0%

1970-2007 0.006 0.269 0.1% 1970-2007 0.4% 0.665 0.0%

1980-2007 0.007 0.253 0.2% 1980-2007 0.5% 0.439 0.0%

1990-2007 0.013 0.198 0.6% 1990-2007 1.1% 0.263 0.0%

The coefficient estimates of Table 5 refer to the OLS estimates of βDY in the regression rt+1 = α +

βDY LDYt+ut+1. All pvalues refer to HAC t-ratios for the null hypotheis H0 : βDY = 0. Focusing first on

the VWRETD series our results conform with the consensus that predictability has been vanishing from

the late 80s onwards (see for instance Campbell and Yogo (2006)). The remaining pvalues suggest some

mild predictability especially when considering the entire 1950-2007 sample range. Interestingly as we

switch from raw to excess returns the picture changes considerably with most pvalues strongly pointing

towards the absence of any predictability. Given these pvalue magnitudes it is difficult to conceive that

any methodological improvements may reverse the big picture. Also worth pointing out is the fact that

a conventional test for heteroskedasticity implemented on the above specifications failed to reject the

null of no heteroskedasticity. This is particularly reassuring since one of our assumptions leading to our

theoretical results in Propositions 1 and 2 ruled out the presence of heteroskasticity.

Next, focusing on the returns that exclude dividend payments it is again the case that with pvalues

as high as 0.665 the null of no predictability cannot be rejected. Results appear to also be robust across

different starting periods except perhaps under the full 1950-2007 range under which we note a mild

rejection of the null. It is also important to note that all results were robust across HAC versus non-HAC

standard errors. This latter point is particularly important since our assumptions surrounding (1)-(2)

rule out serial correlation and heteroskedasticity in ut.

Overall the above linearity based results corroborate the view that predictability is at best mildly

present and its strength appears to have declined. Perphaps more importantly Table 5 also suggests

that one should be particularly cautious and worry about robustness considerations when assessing DY

induced predictability of returns since findings may be extremely sensitive to data definitions, frequency
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and chosen sample period. At this stage it is also important to reiterate that our analysis in Table 5

is mainly meant to provide a comparison benchmark for our subsequent regime based inferences rather

than reverse findings from the existing literature. This is also the reason why we do not explore outcomes

based on alternative methodologies as developed in the recent econometric literature.

The fact that numerous studies documented a decline in predictability characterising the 90s could also

be due to the fact that predictability kicks in during particular economic episodes. Table 6 below presents

the results of our tests of the hypotheses HB
0 : α1 = α2, β1 = β2 = 0 followed by HA

0 : α1 = α2, β1 = β2

and applied to the VWRETD series (∗∗ indicates rejection at 2.5%). Since results for the return series

that exclude dividends as well as their excess counterparts were both qualitatively and quantitatively

similar in what follows we concentrate solely on the VWRETD series.

Table 6. Regime Specific Predictability

VWRETD SupWaldB,ivx SupWaldA pvalue

1950-2007 27.894** 20.752** 0.001

1960-2007 23.369** 18.982** 0.002

1970-2007 21.810** 17.729** 0.004

1980-2007 28.310** 24.518** 0.000

1990-2007 29.885** 28.870** 0.000

The evidence presented in Table 6 comfortably points towards the presence of regime specific predictability

since both null hypotheses are strongly rejected. It is also interesting to note that unlike in the linear case

inferences appear to be robust to the starting period. One should be cautious however when interpreting

inferences such as the ones based on the 1990-2007 period due to sample size limitations which are further

exacerbated when fitting a threshold specification.

Recalling that the R2’s characterising the various linear specifications were clustered around values

close to zero (see Table 5) it is also useful to highlight the remarkable jump in goodness of fit in our

proposed threshold model in (16). Our results strongly point towards the presence of very strong pre-

dictability during bad times when the growth in IP (variable ∆LIPt) is negative while no or very weak

predictability during expansionary periods or normal times. More specifically, over the 1950-2007 period

we have

r̂t+1 =

 0.1606(0.0357) + 0.0441(0.0107)LDYt ∆LIPt ≤ −0.0036, R2
1 = 17.47%, N1 = 131

0.0135(0.0161) + 0.0010(0.0045)LDYt ∆LIPt > −0.0036, R2
2 = 0.00%, N2 = 564

(15)

with a joint R2 of 3.88% and estimated standard erros in parentheses. Besides being interesting in

its own right this result may also help explain the conflicting results obtained in the recent literature
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where the samples considered included or excluded data on the late 90s and 00s, a period with few

recessions. Even with the reduction in the sample size it is quite remarkable that the goodness of fit

can jump from a magnitude close to zero to about 17% in one subset. Overall our results strongly

support DY based predictability in US returns but occurring solely during bad times. Note for instance

that more than half of the periods during which ∆LIPt ≤ −0.0036 coincide with the NBER recessions.

The strength of this predictability is very strong and unlikely to be sensitive to the methodology or

our assumptions. Interestingly and through a different methodology, our findings about the presence

of strong return predictability during bad times also corroborate the findings in Henkel, Martin and

Nardari (2009). Using Bayesian inference techniques on a Markov Switching VAR setup in which they

consider multiple predictors in addition to the Dividend Yield the authors document a substantial jump

in predictive strength of variables such as DY, short term rates, term structure etc during recessions.

6 Conclusions

The goal of this paper was to develop inference methods useful for detecting the presence of regime

specific predictability in predictive regressions. We obtained the limiting distributions of two Wald

statistics designed to test the null of linearity versus threshold type nonlinearity as well as the joint

null of linearity and no predictability. One important feature of the limiting distribution that arises in

the first case is the fact that it does not depend on any unknown nuisance parameters thus making it

straightforward to use. This is an unusual occurence in this literature where under a purely stationary

framework (as opposed to a nearly integrated one) it is well known that limiting distributions typically

depend on unknown population moments of the underlying models.

Our empirical application also leads to the interesting result that US return series are comfortably

predictable using valuation ratios such as DY but this predictability kicks in solely during bad times and

would therefore be masked in studies that operate within linear specifications.

Finally, it is worth mentioning some important extensions to the present work. One key assumption

under which we have operated ruled out heteroskedasticity and serial correlation in ut. As our empir-

ical application has documented however our results can continue to be extremely useful despite this

limitation. This restriction is in fact the norm rather than the exception in any work that introduced

nonlinearities parametrically or nonparametrically (e.g. functional coefficient models) in models that

contain persistent variables. In the present context allowing ut to display a more flexible stochastic struc-

ture renders the asymptotics of terms such as
∑
utI(qt−d ≤ γ)/T δ challenging to deal with and tackling

such marked empirical processes can be an important research agenda in its own right. Another useful

extension we are currently considering involves introducing long horizon variables to (1)-(2). This would
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offer an interesting parallel to the linear predictive regression literature which has often distinguished

long versus short horizon predictability. Other important extensions include extending (1)-(2) to allow

for more than two regimes following some of the methods developed in Gonzalo and Pitarakis (2002)

while the statistical properties of objects such as the estimated threshold parameter may be explored

following Gonzalo and Wolf (2005).
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APPENDIX

LEMMA 1: Under assumptions A1-A2 and as T →∞ we have (a)
∑
I1t
T

p→ λ, (b)
∑
xt

T
3
2

⇒
∫ 1

0
Kc(r)dr,

(c)
∑
x2
t

T 2
⇒
∫ 1

0
K2
c (r)dr, (d)

∑
xt−1vt
T

⇒
∫ 1

0
Kc(r)dBv(r)+λvv. (e)

∑
xt−1ut
T

⇒
∫ 1

0
Kc(r)dBu(r, 1), (f)∑

x2
t I1t

T 2
⇒ λ

∫ 1

0
K2
c (r)dr, (g)

∑
xtI1t

T
3
2

⇒ λ

∫ 1

0
Kc(r)dr, (h)

∑[Tr]
t=1 utI1t−1√

T
⇒ Bu(r, λ), (i)

∑
xt−1utI1t−1

T
⇒∫ 1

0
Kc(r)dBu(r, λ)

PROOF OF LEMMA 1: (a) By assumptions A1-A2, I1t is strong mixing with the same mixing numbers

as qt. The result then follows from a suitable law of large numbers (see White (2001, Sections 3.3-3.4)).

(b)-(e) Under our assumptions A1-A2, the results follow directly from Lemma 3.1 in Phillips (1988). (f)

Letting XT,t = xt/
√
T and XT (r) = x[Tr]/

√
T we can rewrite (f) as

1
T

∑
X2
T,tI1t = λ

1
T

∑
X2
T,t +

1
T

∑
X2
T,t(I1t − λ). (16)

Under A1-A2 and requiring E|et|p < ∞ for some p ≥ 4 we can make use of the strong approximation

result supr∈[0,1] |XT (r) −Kc(r)| = op(T−a) with a = (p − 2)/2p (see Lemma A.3 in Phillips (1998) and

Phillips and Magdalinos (2007)) to obtain

1
T

∑
X2
T,t =

∫ 1

0
K2
c (r)dr + op(T−a). (17)

Indeed, ∣∣∣∣∫ 1

0
XT (r)2dr −

∫ 1

0
Kc(r)2dr

∣∣∣∣ ≤ ∫ 1

0

∣∣XT (r)2 −Kc(r)2|dr

=
∫ 1

0
|XT (r)−Kc(r)| |XT (r) +Kc(r)| dr

≤ sup
r
|XT (r)−Kc(r)|

(
sup
r
|XT (r)|+ sup

r
|Kc(r)|

)
= op(T−a). (18)

The above then leads to

1
T

∑
X2
T,tI1t − λ

∫ 1

0
Kc(r)2dr =

1
T

∑
X2
T,t(I1t − λ) + op(T−a) (19)

holding uniformly ∀λ ∈ Λ. Finally, given that supr∈[0,1] |XT (r)| = Op(1) together with the fact that the

result in (a) also holds uniformly over λ (see Lemma 1 in Hansen (1996)) we have supλ | 1T
∑
X2
T,tI1t −

λ
∫ 1
0 Kc(r)2dr| = op(1) implying the required result. (g) Follows identical lines to the proof of (f). (h)-(i)

Since our assumptions satify their Assumption 2 the result in (h) is Theorem 1 of Caner and Hansen

(2001) while our result in (i) follows along the same lines as Theorem 2 of Caner and Hansen (2001).
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PROOF OF PROPOSITION 1: It is initially convenient to reformulate WA
T (λ) under HA

0 as

WA
T (λ) = [u′X1 − u′X(X ′X)−1X ′1X1][X ′1X1 −X ′1X1(X ′X)−1X ′1X1]−1

[X ′1u− (X ′1X1)(X ′X)−1X ′u]/σ̂2
u ≡ QA(λ)/σ̂2

u. (20)

With DT = diag(
√
T , T ) we can write

D−1
T X1

′X1D
−1
T =

 ∑
I1t

T

∑
xtI1t

T
3
2∑

xtI1t

T
3
2

∑
x2

t I1t

T 2

 (21)

and using Lemma 1 we have the following weak convergence results

D−1
T X1

′X1D
−1
T ⇒

 λ λ
∫ 1
0 Kc(r)dr

λ
∫ 1
0 Kc(r)dr λ

∫ 1
0 K

2
c (r)dr

 ≡ λ ∫ 1

0
Kc(r)Kc(r)′ (22)

and

D−1
T X ′XD−1

T ⇒
∫ 1

0
Kc(r)Kc(r)′ (23)

where Kc(r) = (1,Kc(r)). It now follows from the continuous mapping theorem that

[D−1
T X1

′X1D
−1
T −D

−1
T X1

′X1(X ′X)−1X1
′X1D

−1
T ]−1 ⇒ 1

λ(1− λ)

(∫ 1

0
Kc(r)Kc(r)′

)−1

. (24)

We next focus on the limiting behaviour of D−1
T X ′u and D−1

T X ′1u. Looking at each component separately,

setting σ2
u = 1 for simplicity and no loss of generality we have

D−1
T X1

′u =

 ∑
I1tut+1√
T∑

xtI1tut

T

⇒
 Bu(r, λ)∫ 1

0 Kc(r)dBu(r, λ)

 (25)

and

D−1
T X ′u =

 ∑
ut+1√
T∑
xtut

T

⇒
 Bu(r, 1)∫ 1

0 Kc(r)dBu(r, 1)

 . (26)

The above now allows us to formulate the limiting behaviour of D−1
T X1

′u− λD−1
T X ′u as

D−1
T X1

′u− λD−1
T X ′u ⇒

∫ 1

0
Kc(r)dGu(r, λ) (27)

where Gu(r, λ) = Bu(r, λ)− λBu(r, 1). The result in (3) follows straightforwardly through the use of the

continuous mapping theorem and standard algebra.

PROOF OF PROPOSITION 2: For simplicity and no loss of generality we impose zero intercepts through-

out and focus on the Wald statistic WB
T (λ) for testing H(B)

0 : β1 = β2 = 0 in (1) with α1 = α2 = 0. The
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only difference with our result in (5) will be the fact that here we will have K∗c (r) = Kc(r) since there is

no needed demeaning of Kc(r). For later use we also let W lin
T = u′X(X ′X)−1X ′u/σ̂2

lin = Q/σ̂2
lin denote

the Wald statistic for testing H0 : β = 0 in the linear model y = Xβ + u. We can now write the Wald

statistic WB
T (λ) under H(B)

0 : β1 = β2 = 0 as

WB
T (λ) =

(
u′X1(X ′1X1)−1X ′1u+ u′X2(X ′2X2)−1X ′2u

)
/σ̂2

u ≡ QB(λ)/σ̂2
u. (28)

Since X2 = X −X1 we have (X ′2X2)−1 = (X ′X −X ′1X1)−1 together with (X ′X −X ′1X1)−1 = [X ′1X1 −

X ′1X1(X ′X)−1X ′1X1]−1X ′1X1(X ′X)−1. Plugging the relevant terms into Q(λ) in (29), lengthy but stan-

dard algebra gives

QB(λ) = [u′X1 − u′X(X ′X)−1X ′1X1][X ′1X1 −X ′1X1(X ′X)−1X ′1X1]−1[X ′1u−X ′1X1(X ′X)−1X ′u]

+ u′X(X ′X)−1X ′u

= QA(λ) +Q (29)

with QA(λ) defined as in (21). Since under the null hypothesis and as T → ∞ we have σ̂2
u ≈ σ̂2

lin both

converging in probability to σ2
u our result above establishes the fact that the Wald statistic WB

T (λ) can

be decomposed into the sum of the Wald statistic WA
T (λ) for testing H0 : β1 = β2 and the Wald statistic

W lin
T for testing H0 : β = 0 in the linear model. Next, since Q does not depend on λ we can write

supλWB
T (λ) = Q/σ̂2

u + supλWA
T (λ). To obtain the limiting distribution in (5) it now suffices to use the

results presented in Lemma 1 together with the continuous mapping theorem.

PROOF OF PROPOSITION 3: Follows directly from (11)-(12), Theorem 3.8 in Phillips and Magdalinos

(2009), Lemma 1 and the use of the Continuous Mapping Theorem. Note that Theorem 3.8 in Phillips

and Magdalinos (2009) has been obtained within a model with no fitted intercept however Kostakis,

Magdalinos and Stamatogiannis (2010) and Magdalinos (2010) also established its validity in the more

general setting that includes a constant term.
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