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Why strings and why scattering amplitudes

The computation of scattering amplitudes provides a window into
the interactions of a quantum theory. It tell us the probability
amplitude of certain outcomes given by experiments
Standard QFT books teach us how to compute Feynman diagrams
of several processes of interest, and to interpret its results
At tree level one may have to calculate a Feynman diagram like
this to understand how electrons interact with each other:
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Why strings and why scattering amplitudes

At one loop, a typical Feynman diagram is the so-called box
diagram

These diagrams become more and more complicated as the loop
order increases
If the quantum theory makes sense, a fundamental condition is
that the results must give rise to a probability amplitude. In
particular, they must be finite (in the UV regime, at high energies)
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Why strings and why scattering amplitudes

Standard non-supersymmetric gravity described by the
Einstein-Hilbert lagrangian gives rise to infinite results. In 4d, the
4-point amplitude at 2 loops diverges (Goroff, Sagnotti 1986) and
there is no way to renormalize it

In technical terms, in 4− ε dimensions the Feynman diagram
above implies that there is R3 counterterm in the Lagrangian that
diverges as ε→ 0,
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This is a complete disaster. Standard general relativity fails to be a
sensible quantum theory of gravity!
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Why strings and why scattering amplitudes

String theory gives rise to a UV finite theory of quantum gravity. Its
scattering amplitudes give rise to finite results at arbitrary loop
orders and therefore can be interpreted as probabilities
(Mandelstam)
There are two parameters in the amplitudes: the string coupling
constant gs and the typical size of the string (related to α′)
Unlike QFT where the rules to compute amplitudes are derived
from a Lagrangian, in string theory there are prescriptions based
on conformal field theory (CFT) techniques to calculate them
The lagrangian is not a priori known. By computing scattering
amplitudes of gravitons one learns more about the theory!
Quantum gravity doesn’t get more “quantum” than computing
graviton amplitudes!
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Why strings and why scattering amplitudes

The starting point is the computation of the tree level 3-point
amplitude, from which one can reverse engineer the
Einstein-Hilbert effective field theory lagrangian
String theory “diagram”

Similarly, by computing the tree-level 4-point amplitude and can
discover if there are R4 terms in the Lagrangian. Yes, there are
(Gross, Witten)
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Why strings and why scattering amplitudes

Interestingly, the tree-level R4 interaction is proportional to the
Euler zeta value ζ3, which is one representative of a general class
of Multiple Zeta Values (MZV)
Number theorists have spent centuries studying such numbers,
and now their appearance in string theory amplitudes has helped
to create a synergy between physicists and mathematicians
What other MZVs are produced at tree-level? In string theory
these numbers are the result of computing disk integrals arising
from worldsheet singularities as vertex operators approach each
other
Is there some other mechanism that generates them? Drinfel’d
associator (Drummond, Ragoucy 2013; Broedel, Schlotterer,
Stieberger, Terasoma 2013)
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Why strings and why scattering amplitudes

String theory does not stop there. The appearance of multiple
zeta values at tree level is generalized to elliptic multiple zeta
values (eMZVs) at one loop (Broedel, CM, Schlotterer 2014).
These eMZVs are associated to a series of functions that lives on
a elliptic curve, the Kronecker–Eisenstein series. Beautiful
mathematics. There is a lot yet to discover!
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Why strings and why scattering amplitudes

Computing other amplitudes at different loop orders and different
number of points we can find many other corrections to
supergravity as predicted by string theory (e.g. DpRq terms in the
effective action) that depend on α′.
These corrections can be used to test string dualities,
non-renormalization theorems etc (Green, Gutperle, Vanhove et.
al.)
When α′ → 0 one recovers the results that would have been
obtained by standard QFT methods with Feynman diagrams
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Why strings and why scattering amplitudes

String theory has a set of rules (e.g. based on conformal field
theory) that in theory allows us to compute scattering amplitudes
and obtain these corrections

Yogi Berra
In theory there is no difference between theory and practice.
In practice there is.

My work so far has been dedicated to computing string scattering
amplitudes in practice
The pure spinor formalism provides a convenient framework to
extend the known limits considerably compared with the standard
RNS and GS formulations

C.R. Mafra (STAG) Scattering amplitudes 10 / 25



Why Pure Spinors?

Issue with RNS
Spacetime supersymmetry is not manifest

Issue with GS
Covariant quantization is not possible

Advantages of PS
Manifest spacetime supersymmetry (10D superfields)
Covariant quantization (BRST methods, cohomology)
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Tree-level Amplitudes

Tree-level N-point

AN = 〈V1(z1)V2(z2)V3(z3)

∫
dz4U4(z4). . .

∫
dzNUN(zN)〉

Vi and Ui are vertex operators containing information about the
particles (strings) being scattered
Usual CFT methods: OPE’s integrate out conformal weight 1
variables, then integrate out zero-modes
Naively, higher-point amplitudes generate too many terms and
become huge very quickly
But they give rise to pure spinor superspace expressions . . .
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Tree level amplitudes

However the general n-point amplitude was found in 2011!
(CM, Schlotterer, Stieberger)
It is important to simplify known formulas and to find tricks and
shortcuts when going forward
I am a huge fan of recursions. Their rules are in general simple
and yet they can generate huge expressions (that would look
intractable at first sight)
A bit of analogy first . . .
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Simplicity in Recursions

Familiar story of young Gauss. Teacher wanted to punish the
class and ordered them to sum all integers from 1 to 100
The straightforward way

1 + 2 = 3, 3 + 3 = 6, 6 + 4 = 10, 10 + 5 = 11, . . . ,

is laborious and takes a lot of time.
This actually resembles summing over all Feynman diagrams one
by one
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Simplicity in Recursions

Gauss noticed a recursive pattern, summing the endpoints:

1 +

2 + 99 = 101

2 + 3 · · ·+ 98 + 99+100
1 + 100 = 101

Repeating it 50 times he got the answer: 101× 50 = 5050
Lesson: regrouping terms can lead to tremendous simplications!
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Simplicity in Recursions

In the 80s Berends and Giele discovered a recursion within the
problem of computing tree-level amplitudes
Instead of summing diagrams one by one, group them in batches
into so-called currents Jm

12...p to get an efficient recursive formula!

A(1,2, . . . ,n) = s12...n−1Jm
12...n−1Jm

n

Berends–Giele recursive method is (still) one of the most efficient
ways to compute tree-level amplitudes
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Berends Giele recursion in pure spinor superspace

The idea is to treat many superfields together in packages with
definite BRST properties, the building blocks V123...n

Defined from iterated computation of OPEs among vertex
operators

Recursive building blocks from OPEs

V 1(z1)U2(z2)→
V12

z21
, V123...(p−1)(z1)Up(zp)→

V123...p

zp1
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Recursive PS cohomology method for FT amplitudes

(C.M., Schlotterer, Stieberger,Tsimpis, ‘10)

N-point color-ordered SYM tree amplitudes

An(1,2, . . . ,n) = 〈E123...(n−1)Vn〉

Recursive cohomology problem in pure spinor superspace

E123...p ≡
p−1∑
j=1

M12...jMj+1...p

QM123...p ≡ E123...p,

where M12... are Berends–Giele supercurrents built from V12... and
propagators
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Recursive PS cohomology method for FT amplitudes

Diagramatic method with cubic graphs
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Tree-level superstring amplitudes

These FT recursions were the backbone of the method to tackle
the combinatorial growth of terms in the string tree amplitudes

String amplitude as (N − 2)! building blocks

A =

∫
KN

N−2∑
p=1

V12...pVN−1,...,p+1VN

(z12z23 · · · zp−1,p)(zN−1,N−2 · · · zp+2,p+1)
+ P(2, . . . ,N − 2)

String amplitude as (N − 3)! FT amplitudes

A =

∫
KN
[ N−2∏

k=2

k−1∑
m=1

smk

zmk
AYM(1,2, . . . ,N) + P(2, . . . ,N − 2)

]
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Graviton amplitudes

Schematically, closed string states are related to squares of open
string: closed = open⊗ open
This structure is reflected in the KLT relations between graviton
amplitudes (Mn) and gluon amplitudes (An) (Kawai, Lewellen, Tye
1986)

Mn = At
nSAn

where S is the KLT matrix
Expanding the string disk integrals in powers of α′ leads to a
plethora of stringy corrections to the Einstein-Hilbert lagrangian

Ltree ∼ R + α′
3
ζ3R4 + α′

5
ζ5(D4R4 + D2R5) + · · ·
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Amplitudes and higher-derivative corrections

Reverse engineer the higher-derivative string effective action from
scattering amplitudes
Use string prescription to compute amplitudes and then write an
action which reproduces them

S =

∫
d10x e−2φ(R + R4 + · · ·

)
+ R4 + e2φD4R4 + e4φD6R4 + · · ·

e−2φR4: 4-point tree-level amplitude (Gross, Witten ‘86)
R4: 4-point one-loop amplitude (Green, Schwarz)
e2φD4R4: 4-point 2-loop amplitude (D’Hoker, Phong; Berkovits
‘05)
e4φD6R4: 4-point 3-loop amplitude (CM, H.Gomez ‘13)
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S-duality and higher-derivative corrections

For type IIB, use S-duality to guess interactions (Green, Gutperle,
Vanhove et al.)

S =

∫
d10x

√
g
[
e−1/2φζ3E3/2R4 + e1/2φζ5E5/2D4R4 + eφED6R4+

Coefficients given by modular forms (Eisenstein series etc):
non-renormalization theorems, relative coefficients for interactions
among different loop orders

2ζ3E3/2 = 2ζ3e−3/2φ +
2π2

3
e1/2φ + . . .

2ζ5E5/2 = 2ζ5e−5/2φ +
4π4

135
e3/2φ + . . .

E = 4ζ2
3e−3φ + 8ζ2ζ3e−φ +

48
5
ζ2

2eφ +
16ζ4π

2

189
e3φ

Scattering amplitudes & S-duality arguments should agree
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The 3-loop amplitude

Using the prescription

A3 = κ4e4λ
∫
M3

6∏
j=1

d2τj

∫
Σ4

∣∣∣〈N (b, µj)U1(z1) . . .U4(z4)〉
∣∣∣2

and several tricks to simplify calculations one gets (CM, Gomez 2013)

A3 = (2π)10δ(10)(k)κ4e4λ π ζ6

33

(α′
2

)6
(s3

12 + s3
13 + s3

14)K K

which agrees with the S-duality prediction of Green and Vanhove from
2005

Sα′6
= C3

∫
d10x

√
−g D6R4(4ζ2

3e−2φ + 8ζ2ζ3 +
48
5
ζ2

2e2φ +
8
9
ζ6e4φ)

Scattering amplitudes leading to an increasing body of stringy
knowledge
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Conclusions

Computing string scattering amplitudes is important for many
reasons
Being able to compute them requires a mindset of actively trying
to simplify old formulas as well as looking at the problems from
new perspectives. There are no guidelines for what can and
cannot be done
The pure spinor formalism provides a great starting tool to do
such computations
With the computations come a lot of new identities, patterns, and
connections with the mathematical literature
I have just sketched a small subset of recent developments in this
area
Many things left to do and discover!
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