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Abstract

A committee is choosing from two alternatives. If required super-
majority is not reached, voting is repeated indefinitely, although there
is a cost of delay. Under suitable assumptions the equilibrium analysis
provides a sharp prediction. The result can be interpreted as a gener-
alization of the seminal median voter theorem known from the simple
majority case. If supermajority is required instead, then the power to
select the outcome moves from the median voter to the more extreme
voters. Normative analysis indicates that the simple majority is not
constrained effi cient because it does not reflect the strengths of voters’
opinion. Even if unanimity is a bad voting rule, voting rules close to
unanimity may be effi cient. The more likely it is to have a very many
almost indifferent voters and some very opinionated ones, the more
stringent supermajority is required for effi ciency.
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1 Introduction

Consider a committee locked in a room choosing from two alternatives, either
of which may replace the status quo, through a supermajority of, say, 2/3.
If voters do not reach a decision in the first round of voting, then they go to
the next round, and so on, until the suffi cient majority is reached. However,
delay or deadlock is costly to every player. How does the outcome of this
process change if the required supermajority is adjusted to, say, 3/4? Which
rule offers a better chance of a correct choice?

Apart from providing an equilibrium prediction in such mechanisms, the
main contribution of this paper is to identify reasons why both simple ma-
jority and unanimity may be subeffi cient. In the simple majority case, the
median voter is pivotal and —as it represents some "typicality" of prefer-
ences —it is often understood that her choice would implement an effi cient
alternative. A formal version of this argument was made by Rae (1969)
under the assumption that voters’preferences have the same intensity. In
contrast to that, this study allows preferences to have varying intensities.
In the equilibrium of this model, the greater supermajority is required, the
more extreme voters become pivotal. In other words, the outcome depends
on a combination of these more extreme preferences, which is a measure of
preference typicality different than the median. The following mathemati-
cal fact is key: the combination of these more extreme preferences correlates
better with the average preference, than the median preference does. Since
the average preference represents effi ciency, one is interested in maximizing
this correlation.

It has also been argued that one of the main reasons why unanimous
consent is not a good voting method is because it may lead to delay or
deadlock, for instance, through obstinacy.1 This study shows that unanimity
may be a bad voting rule even if a decision is reached without any delay.
The reason is a different incarnation of the same mathematical fact as above:
the combination of the most extreme preferences correlates very poorly with
the average preference.

These results, along with the main assumptions of the model, will be
discussed further after a few examples of this voting institution.

Examples. This decision-making format is very common. In fact, some
of the most important collective decisions in real life emerge through such a
process, either de jure or de facto.

Choosing a leader. It can be argued that choosing the President of the
European Council, selection of the CEO of a corporation, agreeing on job
candidates in hiring committees all require repeated attempts to form a suf-
ficient consensus. Vacancy or interregnum is often the worst outcome, and
the only remaining question is which candidate should be selected. Papal

1Black (1963), p. 147, Buchanan and Tullock (1962), ch. 8., Barry (1965) p. 242-9.
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conclave requires 2/3 majority in the College of Cardinals to elect the Pope
—the leader of the Roman Catholic Church. Voting is repeated indefinitely
until such support is reached. Despite the secrecy involved in the process,
the voting rules are well-known and their evolution quite well-documented
(Baumgartner (2003)). This method is, in fact, a very good motivating ex-
ample: the fact that papal conclave is apparently the oldest ongoing method
for choosing the leader of an institution, with more than 750 years of history
in its current form, should be enough to stimulate interest in the question
about the qualities of this particular voting method.2

Consensus standardization is an explicit agreement on compatibility
standards in an industry. Different firms have vested interests in which
standard is eventually selected, but maintaining the status quo by not se-
lecting any standard implies lost profit to every participant. To be adopted,
a standard has to be supported by most of the firms in the industry, and
reaching such a wide support may take time. This is as if all firms voted
continuously with a requirement of significant supermajority (Farrell and
Simcoe (2009)).

International negotiations. In many international organizations various
supermajority rules are in place. The Treaty of Lisbon in the European
Union has replaced unanimity by less stringent qualified majority rules.
There are proposals to change the voting system in the UN Security Coun-
cil, which currently has five veto-wielding permanent members. Even if the
rules on what constitutes suffi cient supermajority are not as rigid, many
multilateral deals in an international context are reached through implicit
consensus seeking.

Examples include negotiations on preventing climate change, talks within
the World Trade Organization, or on reforming the institutions of the Eu-
ropean Union. When these negotiations reach a stage in which the binary
agenda is already established (as opposed to flexible bargaining, possibly
with transfers) and everyone agrees that status quo is the least preferable
outcome, the model studied below may provide useful insights.

Jury trials. The jury has to arrive to a decision by unanimity. This
is obtained through repeated voting, intertwined with often lengthy delib-
erations among the jury members. On the other hand, jury members are
not supposed to have preferences over alternatives; they are to establish
objective facts.

Summary of the results. There are positive and normative questions
asked in this paper.

Positive analysis, contained in Section 4, shows that preference intensities

2The requirement of 2/3 majority was written down as a rule by the Third Lateran
Council of 1179. Since then, the only serious challenge to the 2/3 rule came in 1996, when
John Paul’s new election constitution allowed the electors to switch to simple majority af-
ter 30-33 unsuccessful ballots (Baumgartner (2003)). The John Paul’s successor, Benedict
XVI, changed the rules back to 2/3 majority in 2007.

3



of the voters are the key determinants of the voting outcome. To be more
precise, suppose that two alternatives are A and B, suppose that n is the
size of the committee and suppose that supermajority n+ 1−m is required,
where the key parameter m is the minimal blocking minority. That is, m
voters voting in unison are able to prevent an alternative from being selected;
fewer than m is not enough. Voters have different preference intensities, so
they can be sorted from the one who prefers A the most, to the one who
prefers B the most. Take two pivotal voters, the mth voter from the A
side and the mth voter from the B side and check which one prefers her
alternative more —that alternative will be selected in equilibrium without
any delay.

This result can be expressed in terms of one variable. If the mth voter
from the A side prefers A more than themth voter from the B side prefers B
(thus leading to the selection of A), then the average of the values of these
two pivotal voters will "prefer" A. This average is called the mth quasi-
midrange because it is the midrange point of a sample whose m − 1 most
extreme elements from each side were truncated. The equilibrium charac-
terization could be called the quasi-midrange voter theorem, the special case
of which is the median voter theorem.

Section 5 turns to a normative analysis of what the best minimal block-
ing minority m is, if the voting system has to be decided before the voters
learn their preferences. This is investigated for the case of frequent voting
and asymptotically large committees and for symmetric parent distributions
of voters’preferences. Unanimity is as bad as flipping a coin, simple major-
ity is better, but there is an intermediate supermajority that is even better.
The key statistical result behind this last claim is that a sample mean does
not correlate with a sample median as well as with some other intermedi-
ate quasi-midranges. Since the mean represents constrained effi ciency, and
the quasi-midrange represents equilibrium of an intermediate supermajority
system, relying on the median is subeffi cient, as compared to the optimal
intermediate quasi-midrange. As far as the unanimity system is concerned,
the midrange (without "quasi") correlates with the mean particularly poorly,
and hence relying on it is particularly hopeless.

What supermajority is constrained effi cient depends on a parent distri-
bution of voters preferences, and, specifically, on the relationship between
tail/extreme preferences versus central/indifferent preferences. Simple ma-
jority is the best system if preference intensities are similar enough. Even if
unanimity is the worst voting method, systems close to unanimity may be
optimal if (i) there is a high overall probability that voters are indifferent, but
(ii) very extreme preferences can occur. This may sound somewhat paradox-
ical, but the intuition is straightforward. If such is the parent distribution,
then most of the voters are indifferent. Preferences of a few very strong-
minded voters determine what the effi cient decision is, and so these voters
should determine the outcome. Large supermajority requirement gives them
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that power.
Summary of the main assumptions. These sharp results depend on

equilibrium characterization, which, in turn, relies on a number of assump-
tions.

Firstly, players’preferences are commonly known. Thus, this paper does
not study information aggregation. Largely thanks to this assumption, there
is no delay in equilibrium. This assumption is less restrictive that it may
seem at first. Often, an essential element of repeated voting procedures is a
possibility to exchange opinions and to present evidence. The organization
of jury voting is intentionally conducive to deliberations. In the context
of international decision making, the parties build their cases and present
their evidence. In papal conclave, voting rounds alternate with sermons by
senior Cardinals and periods of reflection and dialogue. Even if voters enter
the process with some private information, they will reveal it in equilibrium,
provided that there exists a technology to present credible evidence and that
there is ample time to do that. In fact, this assumption is not necessarily
a shortcoming, as a rich set of results emerges even if there is no private
information. Before one endeavors to assess the information aggregation
properties of various supermajority rules, one should try to understand their
implications regarding the distribution of power among the voters (see also
comments on Ponsati and Sakovics (1996) below).

Secondly, it is assumed that as the game progresses, the cost of waiting
becomes large enough to dominate static preferences for one of the alterna-
tives. Specifically, after a long enough wait, a voter will prefer to sacrifice
the prospect of getting her favorite alternative next round by accepting the
less preferred alternative this round. This assumption seems to be justi-
fied, given the format of the voting process. One should expect that, as
time passes, voters locked in a room would become increasingly desperate
to reach a decision. For example, members of a recruitment committee may
argue vigorously for a few hours, but will become more cooperative when
lunch is delayed. Even if Cardinals in papal conclave, or jury members in
jury trials, etc., receive food and time to sleep, after a few days or weeks
they too lose their patience to continue the process. In case when the voters
are not locked in a room for the duration of the game, still the benefits gen-
erated by the favourite alternative may dissipate in finite time to such an
extent that eventually it does not pay to insist on one’s favourite alternative,
given that the next chance to reach an agreement will arrive some time from
now. For example, in formal standardization negotiations, technologies may
become obsolete within a few years, so that the prospect of not cashing in
on any alternative is very much foreseeable for any firm.

Thirdly, it is assumed that voters’decisions are taken sequentially within
each voting round. This is assumed to introduce some inertia into voting
process —so that voters have time to react to changing patterns of voting
before the game stops. Since the formal analysis below concentrates on fre-
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quent voting, this assumption does not have any payoff relevance, as the
voters can react to changes of voting pattern almost instantaneously. As
far as the game theoretic model is concerned, this assumption circumvents
a coordination problem inherent in this type of voting. If voting was com-
pletely simultaneous in each round, then both alternatives could be obtained
as equilibrium outcomes.

2 Existing literature

The merits of unanimity versus simple majority rule in collective decision
making is a classical topic. Following Buchanan’s and Tullock’s (1962)
two-stage approach to constitution design, Rae (1969) provides a norma-
tive analysis of voting systems. He argues that simple majority is the best
voting rule because it selects an alternative that a representative voter is
most likely to prefer after she learns her preferences. This result heavily
relies on the assumption that voters have preferences of equal intensity (see
also May (1952)). The present study can be seen as an attempt to provide
a parallel result when voters have preferences of varying intensity.

Studies of supermajority often envision the following static scenario:
there is some status-quo, which can be changed by some large enough super-
majority (Black (1948), Caplin and Nalebuff (1991), Aghion at al. (2004),
Holden (2009), to name a few). This project studies supermajority rules in
a very different context: every voter agrees that status quo is inferior and
voting is repeated until this status quo is replaced by one of the alternatives.

In the literature on dynamic multiplayer decision-making, the closest
paper to this study is Ponsati and Sakovics (1996). They study a similar
economic environment with many players, two alternatives and costly wait-
ing, but they focus exclusively on equilibrium characterization. They as-
sume a "simple timing game" in which a player can continue supporting her
favourite alternative or yield once and for all. The second key assumption
in their model is that a player cannot observe how many players supporting
the other alternative have yielded. In contrast to this, in the model below
voters can switch their votes as they please and they observe the full history
of voting. Since Ponsati and Sakovics (1996) assume that voters have pri-
vate information about the intensity of own preferences, their equilibrium
has some strategic delay,3 but the alternative selected in symmetric equilib-
rium of their model is characterized by a similar quasi-midrange condition as
here. Whichever set of assumptions is more realistic in a particular context
—the ones of this study, or the ones in Ponsati and Sakovics (1996) —this
feature of the equilibrium outcome appears to be robust to different model
specifications, and consequently the effi ciency analysis contained in Section
5 looks compelling.

3More on delay in Section 6.
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Other models that study collective bargaining should also be mentioned.
Baron and Ferejohn (1989) presents a dynamic model of collective bargain-
ing in which the size of supermajority is an important object of analysis.
A randomly selected agent makes a proposal, which is then voted by the
committee; if rejected, the game moves to the next round. This model and
related literature treats the agenda as endogenous. The assumption in the
model below is different —once voting starts, the alternatives considered by
the voters are fixed. This assumption seems more realistic in some contexts,
such as choosing a leader form a given set of candidates, or an industry
selecting a standard from the set of existing technologies, if side transfers
and favours among the participants are prohibited.

Compte and Jehiel (2010) study a model somewhat related to Baron
and Ferejohn (1989) in which, however, the voters do not have a control
over the current agenda (and thus in this respect their work is similar to the
model presented below). Voters can reject the current proposal expecting
that a new proposal —which arrives from outside, like in the classical search
literature —will be superior.

Piketty (2000) investigates repeated voting on one issue with the same
set of voters. However, he is concerned with a two-round election with three
candidates, in which the second round is reached by two best candidates
of the first round, only if no candidate obtains 50% of the vote in the first
round.4

3 Model of repeated voting

Physical environment. There is a committee consisting of n ≥ 2 agents
or voters. There is a set of two alternatives, A and B. One of them may be
selected at a certain time. The outcome is a pair consisting of the selected
alternative and the time when this decision was reached.

Voting. Decision is made via supermajority voting. In a given voting
round each voter casts her vote for A or for B. The supermajority required
to select an alternative is n + 1 − m. The key number m = 1, 2, ..., m̄ is
interpreted as a minimal blocking minority, where m̄ = n/2, if n is even, and
m̄ = (n+ 1) /2, if n is odd. In particular, one extreme system is unanimity,
in which one voter is able to block a decision, m = 1; the other polar case
is simple majority, in which at least a half of all voters is required to block
a decision, m = m̄.

If no alternative gathers enough support, the voting goes to the next
round. There is an infinite number of voting rounds. The time interval
between two consecutive voting rounds is ∆, so that voting rounds occur in

4There is also a literature on sequential voting, in which one set of voters votes in one
period and then another set of voters votes later on the same or related issue (Battaglini
et al. (2007) and references therein).
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calendar times t ∈ {0,∆, 2∆, ...}.
In each round, voters announce their votes sequentially one-by-one, ac-

cording to an order determined randomly and announced at the beginning
of the round.

Preferences. The payoff of each voter depends on the outcome. Voters
are heterogeneous; commonly known parameter xi summarizes preferences
of voter i. It is interpreted in the following way: if B is selected immediately,
then voter i gets xi more utility than if A was selected immediately. As a
result, positive xi indicates that i prefers alternative B; negative xi indi-
cates that i prefers alternative A. If xi is zero, voter i is indifferent between
alternatives. Let x = (x1, ..., xn) .

To describe how delay affects the payoff, assume that W (|xi| , t) is the
payoff of a voter characterized by xi, if her favorite alternative (B if xi > 0
and A if xi < 0) is implemented at time t, and L (|xi| , t) is the payoff of
this voter if the other alternative is selected at time t. Both W and L are
continuous functions of two non-negative real numbers. Clearly, for t = 0
we have

|xi| = W (|xi| , 0)− L (|xi| , 0)

The following assumptions should be uncontroversial. Firstly, assume
that for every type xi, functions W (|xi| , ·) and L (|xi| , ·) are strictly de-
creasing. This captures the fact that status quo is the least preferred alter-
native for all agents. Secondly, for every type xi and time t, letW (|xi| , t) ≥
L (|xi| , t).

Next assumption is about player’s cost of waiting: it is assumed to be
increasing over time to such an extent that there exists a time in the future,
such that when the game reaches that time, the player prefers to obtain the
less preferred alternative than to wait one more round and get the more
preferred alternative. Let this time be denoted by τ (|xi| ,∆). It is formally
defined as:

W (|xi| , t+ ∆) = L (|xi| , t) if t = τ (|xi| ,∆)

and W (|xi| , t+ ∆) > L (|xi| , t) (respectively, <) if t < τ (|xi| ,∆) , (respec-
tively, if >). Call τ (|xi| ,∆) the indifference time of voter i.

As an example, consider W (|xi| , t) = |xi| − t2 and L (|xi| , t) = −t2.
Then

τ (|xi| ,∆) =
|xi|
2∆
− ∆

2

if the right-hand side is non-negative, zero otherwise.
The last assumption of this section puts a very mild restriction on what

happens when voting becomes more frequent.5 It is immediate that the
more frequent voting, the greater τ (|xi| ,∆) gets. The assumption is that,
for any two types x and x′, the difference τ (|x| ,∆) − τ (|x′| ,∆) 6= 0 does

5Section 5, with normative results, has an additional assumption that τ is increasing
in its first argument.
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not change its sign and is bounded away from zero, as voting becomes more
frequent. Clearly, this assumption holds in the example too.

4 Equilibrium

This section shows that the model described above has a unique equilibrium.
It is completely characterized by the indifference times of two pivotal voters.
To explain who pivotal voters are, it is useful first to define τ i as

τ i =

{
τ (|xi| ,∆) if xi > 0
−τ (|xi| ,∆) if xi ≤ 0

That is, |τ i| is an indifference time of voter i, where negative sign of τ i
indicates that i prefers A, and positive sign indicates the i prefers B. Let
τ = (τ1, ..., τn). Sort the voters from the lowest to the highest according to
this parameter, (τ1:n, ..., τn:n), where τk:n is the kth lowest element in τ . For
a given supermajority m, the pivotal voters are those who are characterized
by indifference times τm:n and τn+1−m:n. That is, these are the mth closest
voter to alternative A and the mth closest voter to alternative B, according
to their indifference times.

Let h ∈ {A,B} be the alternative preferred by the pivotal voter with
the higher indifference time and let l ∈ {A,B} be the other alternative. For
example, (h, l) = (A,B) if |τm:n| > |τn+1−m:n| .

The main result of this section is this:

Proposition 1 Let m < (n+ 1) /2. Fix a preference profile (x1, ..., xn) ,
such that |τm:n| 6= |τn+1−m:n|. Then there exists ∆̄ > 0 such that for all
∆ < ∆̄, in any equilibrium the alternative preferred by the pivotal voter with
the greater indifference time, h, is selected in the first round.

The proofs are in the Appendix.
To explain this proposition, let us define a few objects. Let N k be the set

of voters who prefer alternative k. Let TA = |τm:n| and TB = |τn+1−m:n| be
the indifference times of the pivotal voters. Obviously, T h = max

{
TA, TB

}
and T h > T l. Having T h, we can define sets

N k
+ =

{
i ∈ N k : τ (|xi| ,∆) ≥ T h

}
N− =

{
i ∈ N : τ (|xi| ,∆) < T h

}
There are two important observations about set N k

+. Firstly, every voter in
set N k

+ still strictly prefers alternative k if voting is in round t ∈
(
T l, T h

)
.

Secondly, set N h
+ has at least m elements, and N l

+ has at most only m− 1
elements. Note also that as voting becomes more frequent, the order of
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voters according to their indifference times does not change, nor does the
identity of pivotal voters, nor do the sets NA

+ , NB
+ and N−.

The proof is essentially by backward induction. Suppose that the game
is still unresolved in a voting round t ∈

(
T l, T h

)
. Voters in set N h

+ are able
to block alternative l if they voted in unison, because their number is at
least equal to the minimal blocking minority. Moreover, they want to block
alternative l, if h can be selected in round t or soon after, because they still
strictly prefer it. This logic does not apply to voters in set N l

+. There are
fewer of them than the minimal blocking minority, so they are not able to
block alternative h in that round. Remaining voters, who are in set N−,
do not care which alternative is selected; they want the voting to finish
as quickly as possible. So, if voters in sets N h

+ and N− can coordinate,
they would coordinate on voting for h, as together they form a suffi cient
supermajority to stop the game in round t and select h. The fact that
voting is sequential within each round, rounds are frequent, and the order of
moves is established randomly enables such a coordination. Then, backward
induction, round-by-round, does the rest.

5 Effi cient voting system with symmetric voters

This is the main part of this paper, in which we ask what kind of voting
system should be chosen? In particular, what m is the best? It is clear that
normative analysis can be illuminating only from the ex ante perspective,
when the preference profile of the committee members is not yet known.6

Assume thus that there are two stages in which citizen-voters are active. The
first stage can be called a constitution design stage, and the second stage
is the actual voting process culminating with the collective decision. In the
first stage, voters, still uninformed about their future preference type, decide
about m. Once the voting system is determined, nature selects a preference
parameter for each voter and announces it publicly. In the second stage,
voters, now heterogeneous, play a repeated voting game as described in the
previous section.

Imagine a representative voter who forms expectation about future pref-
erences. These preference parameters will be independently drawn from a
known, continuous distribution function F (·) , with density f (·), mean µ
and variance σ2 <∞.

The assumption about independence of preferences rules out some inter-
esting scenarios. For example, suppose that the vote is about what voter
1 should have for dinner, an Apple or a Banana. Since every other voter
is indifferent about the dinner of voter 1, preferences are not independent.
This situation is not covered by the investigation of this section, even if

6See Buchanan and Tullock (1962), page 78.
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Proposition 1 suggest the answer: the only system that gives voter 1 his
preferred dinner with certainty is unanimity.

If F is not continuous then two voters may have the same preference
parameters or the same indifference times, so that one could not use Propo-
sition 1.

Distributions satisfying a number of assumptions will be of interest:

1. Symmetry of the distribution, that is, f (µ− x) = f (µ+ x) for all x.

2. Zero mean, that is, µ = 0,

3. Existence of almost average voters, that is, density f is positive and
continuous at µ,

4. Bounded support, that is, x̃ = sup {x : F (x) < 1} <∞

Let X1, ..., Xn be the i.i.d. random variables from this F. Their real-
ization is interpreted as the preference vector x defined above. Let also
X1:n, ..., Xn:n be this sample sorted from the lowest to the highest; in other
words, Xm:n is themth order statistic associated with the sample X1, ..., Xn.

The realization of the sample mean X̄n = (1/n)
∑n

i=1Xi is the average
welfare, if B is implemented without any delay. The average welfare is −X̄n

if A is implemented without any delay. Clearly, the effi cient outcome will
not involve any delay, so the first-best mechanism implements alternative B
immediately if the realization of X̄n is positive and implements A immedi-
ately otherwise. Thus, the ex post first-best average welfare is

∣∣X̄n

∣∣ , and its
ex ante expected value is

Pr
{
X̄n > 0

}
E
(
X̄n|X̄n > 0

)
+ Pr

{
X̄n < 0

}
E
(
−X̄n|X̄n < 0

)
Note that this average welfare level is not achievable if only mechanisms

studied in this paper are available, because the equilibrium outcome of these
mechanisms depends only on preferences of two pivotal voters, instead of the
preferences of the entire committee.

To see what is possible, consider equilibria characterized by Proposition
1 and focus on the limit case of infinitely frequent voting ∆→ 0.

Assume that τ (·,∆) is strictly increasing; that is, the stronger opinion
a voter has, the longer she is willing to wait. It is a form of symmetric
time preference. In equilibrium, alternative B is selected as long as |τm:n| <
|τn+1−m:n| . This condition holds if and only if |xm:n| < |xn+1−m:n| , which
itself is equivalent to xm:n + xn+1−m:n > 0. From the ex ante stage, one
is interested in the realization of the associated random variable Zmn =
(1/2) (Xm:n +Xn+1−m:n). It is called the sample mth quasi-midrange of the
sample X1, ..., Xn, because it is a sample midrange after one has truncated
m − 1 most extreme sample points from each side. It could be viewed as
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a sample measure of centrality, with sample midrange and sample median
being two polar cases.

The expected average welfare of a representative agent in equilibrium is

V m
n = Pr {Zmn > 0}E

(
X̄n|Zmn > 0

)
+ Pr {Zmn < 0}E

(
−X̄n|Zmn < 0

)
(1)

The interest is in the second-best mechanisms, obtained by finding m that
maximizes V m

n . Such m will be referred to as constrained effi cient superma-
jority.7

In order to study effi ciency properties of various supermajority rules, one
has to start by examining the joint probability distribution of

(
X̄n, Z

m
n

)
.

It is easy to calculate if n = 2, although that exercise is useless if one
wants to study supermajority rules. Calculating this probability distribution
explicitly becomes diffi cult for n = 3; for all practical reasons it is impossible
if n is greater. A systematic study of V m

n as a function of m looks like a
hopeless task.

The rest of this section focuses on the case n→∞. Fortunately, it turns
out that the resulting asymptotic joint distribution has a very tractable form
and allows a far-reaching explicit analysis of constrained effi cient mecha-
nisms. Hence, all normative statements in this section will be double limit
results. Firstly, the time interval between voting rounds goes to zero, and
then the size of the committee goes to infinity.8

5.1 Asymptotic joint probability distribution

Switch from an absolute measure of supermajority, m, to a relative measure,
p ∈ (0, 1/2] , a fraction of all the voters that may block an alternative.
They are related through m = dnpe . In other words, as n goes to infinity,
the supermajority requirement m also goes to infinity, but p = m/n stays
constant (subject to an integer constraint).

Before the key asymptotic result linking the sample mean and the sample
quasi-midrange is presented, one has to define a few objects. Let 0 < p < 1
and let xp denote pth population9 quantile of F , that is, F (xp) = p. Apart
from the sample mean X̄n, define also Y

p
n = Xdnpe:n to be the sample pth

quantile. Moreover, for 0 < p < q < 1 define Ẑpqn = (1/2) (Y p
n + Y q

n ) to
be the sample (p, q)−quasi-midrange. Let µpq = (1/2) (xp + xq) be the
corresponding population quasi-midrange.

7The second effi ciency criterion that one may use is the probability of the correct choice,
Pm
n = Pr

{
X̄n × Zmn > 0

}
. Rae (1969) used this measure.

8However, this limit does not constitute a requirement that the committee size is nearly
infinity. Assymptotics is just an approximation of a finite committee and this approxima-
tion may be good even if the committee has just a few members.

9The term "population" refers to the corresponding parameter of the actual distribution
function. The term "sample" refers to the realization of a certain random variable and
represents the population of voters.
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Given distribution F, define the following variance-covariance terms,

σpx = p (1− p) (E (X|X > xp)− E (X|X < xp))
1

f (xp)

(σp)
2 = p (1− p) 1

f (xp)
2

For 0 < p < q < 1 define also

σpq = p (1− q) 1

f (xp) f (xq)

σxz = (1/2) (σpx + σqx)

(σz)
2 = (1/4)

(
σ2
p + 2σpq + σ2

q

)
The following result reveals the asymptotic normality of the sample mean

and a sample quasi-midrange, as the sample size goes to infinity.

Lemma 1 Let 0 < p < q < 1. If density f is continuous and positive at xp
and xq, then

√
n

([
X̄n

Ẑpqn

]
−
[

µ
µpq

])
d→ N

([
0
0

]
,

[
σ2 σxz
σxz (σz)

2

])
This is a general result, but in the context of this model, one is interested

in the case when p = 1 − q ≤ 1/2. This is because both alternatives are
treated symmetrically by the voting system, that is, each must gather the
same support to win. Note that under this assumption, Ẑ1−q,q

n = Ẑp,1−pn =
Zmn as long as m = dnpe.10 Abusing notation slightly, write Zqn for Zmn ,
write V q

n for V m
n .

The asymptotic correlation between the sample mean and the sample
quasi-midrange will be a key object of analysis. It is defined by

ρ (xq) =
σxz
σσz

, (2)

where its dependence on the quantile determined by the voting system q
is emphasized by the notation. Let R (x) = E (X − x|X > x) be the mean
residual life associated with distribution F (this function is often used in
reliability studies).

Lemma 2 Suppose that F satisfies assumption 1 (symmetry), and the den-
sity f is continuous and positive at xq. Then the asymptotic correlation
coeffi cient of the mean and the qth quasi-midrange is

ρ (xq) =

√
2

σ

√
1− F (xq) (R (xq) + xq − µ) (3)

10Strictly speaking, this is correct if np is not an integer.
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for xq ≥ µ. Its derivative is

ρ′ (xq) =
1

σ
√

2

f (xq)√
1− F (xq)

(R (xq)− xq + µ) . (4)

5.2 Welfare criterion

Having Lemma 1, the asymptotic constrained effi ciency criterion is easy to
derive.

Lemma 3 Suppose that F satisfies assumptions 1 (symmetry) and 2 (zero
mean), and the density f is continuous and positive at xq. Then the asymp-
totic welfare is limn→∞

√
nV q

n = ρ (xq)σ
√

2/π

Thus, the task of maximizing welfare is equivalent to the task of maxi-
mizing ρ (xq).11

5.3 Effi cient supermajority rule

This subsection uses the above results to characterize the constrained effi -
cient supermajority rule.

First, investigate a system close to simple majority. To do that, check the
sign of ρ′ (·) , when xq approaches the median µ = 0 from the right. Lemma
2 shows that the derivative of the correlation becomes f (µ)R (µ) /σ. This
term remains strictly positive, because voters with non-average preferences
may exist, R (µ) > 0, and because voters with average preferences may
exist, f (µ) > 0. Asymptotic correlation is strictly increasing at µ, so is the
asymptotic average welfare, by Lemma 3. This proves

Proposition 2 Suppose that F satisfies assumptions 1 (symmetry), 2 (zero
mean) and 3 (average voters). Then the asymptotic correlation is a strictly
increasing function at µ, and simple majority is not asymptotically con-
strained effi cient.

Next, focus on the other polar case —supermajority rules close to unanim-
ity. Straightforward examination of equation (3) shows that limq→1 ρ (xq) is
zero, if the distribution of preferences has a bounded support. Then Lemma
3 implies the following result,

Proposition 3 Suppose that F satisfies assumptions 1 (symmetry), 2 (zero
mean) and 4 (bounded support). Then limq→1 limn→∞

√
nV q

n = 0.

11The asymptotic probability of the correct choice is

lim
n→∞

P q
n = 1/2 + (1/π) arcsin (ρ (xq))

which has the same maximizer as limn→∞
√
nV q

n .
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Asymptotic correlation is a continuous function of supermajority q, start-
ing at a certain strictly positive value for q = 1/2, then increasing as super-
majority requirement is increased (by Proposition 2), but eventually turning
down so dramatically that it reaches zero (by Proposition 3). This proves
that an constrained effi cient supermajority rule must be strictly in the inte-
rior. The first order necessary condition is ρ′ (xq) = 0, which translates to
R (xq) = xq. We obtain

Proposition 4 Suppose that F satisfies assumptions 1 (symmetry), 2 (zero
mean) and 4 (bounded support). Suppose that density f is positive and con-
tinuous on support (−x̃, x̃) . Then constrained effi cient q is in the interior,
1/2 < q < 1, and satisfies R (xq) = xq.

Writing it concisely: under all assumptions of the model above, the
ranking of the supermajority systems according to their welfare performance
is:

Unanimity ≺ Simple majority ≺ Optimal interior supermajority

As the last remark in this subsection, we investigate unanimity using
a different type of asymptotic analysis. Suppose that m is constant when
n→∞. In this case, p = m/n converges to zero, representing the case of an
extreme supermajority requirement and, in particular, the case of unanim-
ity. There is a known result, which states that three random variables Xm:n,
Xn+1−m:n and

√
n
(
X̄n − µ

)
/σ are asymptotically independent, as n → ∞

for a given m (see for example David (1981), p. 269-270). Therefore, any
quasi-midrange Zmn and standardized mean

√
n
(
X̄n − µ

)
/σ are asymptoti-

cally independent for a givenm. Equation (1) together with this observation
implies the following statement:

Proposition 5 Suppose that F satisfies assumption 2 (zero mean). Suppose
that m is constant. Then limn→∞

√
nV m

n = 0.

This statement has a similar conclusion to Proposition 3, although under
different assumptions.

5.4 Examples

Further intuition will be built by the following examples.

5.4.1 Bounded support: Piecewise linear distribution

Consider a piecewise linear distribution function with the support [−1, 1],
symmetric around the mean zero. It is characterized by parameters α and
β, where β ∈ [0, 1] is the cutoff level on the support, and α ∈ (0, 1) is the
probability that |x| ∈ (β, 1). That is, the functions F (x) and R (x) for
positive arguments are:
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Interval F (x) R (x)

0 ≤ x ≤ β 1
2 + (1−α)

2β x α(1+β)β+(1−α)(β−x)(β+x)
2(λβ+(1−α)(β−x)) − x

β < x ≤ 1 1− α
2(1−β) (1− x) 1+x

2 − x

First, consider a uniform distribution on [−1, 1] , which requires β =
1 − α. Then R (x) = 1+x

2 − x. The optimality condition, R (x) = x, leads
to the unique solution at x = 1/3. The supermajority system that supports
this quantile is q = 2/3.

Now, let us ask the question the other way round: what is the distribu-
tion, if an arbitrary q ∈ (1/2, 1) is to be constrained effi cient? The following
statement provides the answer.

Proposition 6 Select any q ∈ (1/2, 1) . Let a piecewise linear distribution
have parameters

α = 3
1− q
2− q and β =

1− q
2− q

Then, q is the constrained effi cient supermajority rule.

Note that a very extreme supermajority requirement may be optimal. As
q → 1, both parameters converge to zero. The intuition is clear: if almost
everyone in a huge committee is almost indifferent between the alternatives,
then very few opinionated voters should be allowed to decide about the
outcome. That requires a very high supermajority requirement.

On the other hand, simple majority may also be optimal. We have
limq→1/2 β = 1/3 and limq→1/2 α = 1. That is, a simple majority is optimal
only if all voters prefer their favorite alternatives with similar strengths, and,
in particular, only if no one is close to being indifferent.

5.4.2 Unbounded support: Pareto distribution

Consider a family of two-sided generalized Pareto distributions, symmetric
around zero. If x is positive, the c.d.f. function is

F (x) = 1− 1

2

(
b

ax+ b

)1+1/a

where the parameters satisfy b > 0 and a > 0. The variance exists if and
only if a < 1. The case of a = 0 is described by the exponential distribution
with parameter b:

F (x) = 1− 1

2
exp

(
−x
b

)
Pareto distribution is easy to work with because it generates a linear

mean residual life function, R (x) = ax + b. This paper focuses only on
parent distributions for which the first two moments exist, so that our earlier
asymptotic results can be derived. As a consequence, we reach conclusion

16



that for all parameters in the interesting range, b > 0 and a ∈ (0, 1) , there
is an interior solution to the condition R (xq) = xq. The optimal quantile is
xq = b/ (1− a) and the constrained effi cient supermajority is

q = 1− 1

2
(1− a)1+1/a

As a goes to zero, the distribution becomes exponential, and the optimal
supermajority becomes 1− (1/2) exp (−1) , which is roughly equal to 0.816.
Alternatively, as a goes to one, the tails become thicker and we obtain that
large supermajority are optimal, lima→1 q = 1.

Unresolved question remains whether this can be generalized to all un-
bounded distributions. That is, is it true that for any distribution having a
finite second moment, condition R (x) < x holds for all x suffi ciently high? If
yes, then there is an interior solution. The following results gives an answer
to a related question.

Proposition 7 Suppose x̃ = ∞. Then there exists x ∈ (0,∞) such that
R (x) = x.

The second unresolved question is what happens if σ2 = ∞? Neither
conclusion of Lemma 1, nor of the result leading to Proposition 5 is valid
in this case. One can conjecture that if tails of the distribution are thick
enough, preferences of the two most extreme voters would become so im-
portant that in the effi ciency calculation they would dominate everyone in
between. If that is true, then unanimity would be the best system.

6 Final remarks

This paper makes two points. Firstly, it observes that the sample mean
may correlate with some intermediate sample quasi-midranges better than
with the sample median and with the sample midrange. Secondly, it shows
that the equilibrium in repeated voting with supermajority depends on the
"quasi-midrange" voter. Combining these two observations, one can design
an asymptotically constrained effi cient supermajority rule, which maximizes
the correlation between the equilibrium outcome, characterized by the quasi-
midrange, and the first-best effi cient outcome, characterized by the mean.
Under assumptions of Section 5, simple majority is better than unanimity,
but both are worse than some intermediate supermajority.

It is important to realize the limits of the result in this paper, particularly
of Proposition 1. All dynamic voting procedures have to be evaluated against
two problems: coordination and delay. The model presented in this paper
is created in such a way that neither coordination nor delay is costly in
equilibrium.
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Voting situations have a strong coordination element, so the lack of coor-
dination can turn out to be costly in repeated voting too. It is often assumed
in one-shot voting games that agents select strategies that are not weakly
dominated. In the model studied in this paper, this trick cannot be applied
because of the dynamic element. Instead, agents are assumed to announce
their votes sequentially. This allows full coordination.

The fact that there is no delay in reaching the decision is a consequence
of a number of assumptions. Common knowledge of payoffs is an important
one. If it was assumed instead that xi was known only to voter i (Ponsati
and Sakovics (1996)), then delay would typically occur and would serve as
a mechanism sorting indifferent voters from the zealous ones. This delay
implies an effi ciency loss, which, if high enough, could eat up all the benefits
that better voting decisions bring. However, it is worth pointing out that
even in such a model, where delay does occur, in many cases it is reasonable
to ignore it in effi ciency calculation. Often, the committee members rep-
resent a wider population and so the quality of their decision may have an
external effect on this population (such as in a recruitment committee which
represents an organization, or jury members that work in interests of the
society, or in negotiation marathons when negotiators quite explicitly rep-
resent someone else). By increasing the cost of waiting, one can shorten the
equilibrium waiting time of the wider population, although the cost of delay
paid by the committee members in symmetric equilibrium is not changed
(essentially by the Revenue Equivalence Theorem). In the extreme, if the
population is infinitely larger than the committee representing it, the only
factor in effi ciency calculation ought to be the quality of the decision, and
not the delay.

Quite another reason for a delay is associated with an exchange of infor-
mation, often time-consuming, like in a conversation or in a debate. This
must play a role in many examples mentioned in the introduction, such as
in jury deliberations, choosing a leader or in international negotiations. If
providing evidence is time-consuming, the decision will not be reached im-
mediately and it may seem that there is some delay in voting, but its nature
is completely different than the one caused by strategic sorting.

A Appendix

A.1 Proof of Proposition 1.

Fix n, m and (x1, ..., xn) . Let h be the alternative supported by the pivotal
voter with a greater indifference time, and let l be the other alternative,
T h > T l. Let t̂∆ (t) be the first voting round after calendar time t, and let
ť∆ (t) be the last voting round before calendar time t, given the time grid
{0,∆, 2∆, ...} .
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Lemma 4 There exists ∆̄ > 0 such that for all ∆ < ∆̄, the following is
true: if the game reaches a voting round t̂∆

(
T l
)
∈
(
T l, T h

)
, then in any

equilibrium the game stops at t̂∆
(
T l
)
and alternative h is selected.

Proof. Choose ∆̄ small enough, so that there are at least two distinct
rounds in interval

(
T l, T h

)
.

1. There is η > 0, such that in any round t ∈
(
T l, T h

)
alternative h is

selected with probability at least η.

Suppose the game reaches a round t ∈
(
T l, T h

)
. Voters are ordered

randomly before any round. Let η be a probability that they are
ordered such that all voters in set N− take decision after all voters in
set N h

+, in which case alternative h is selected at round t. The proof
of this last statement is by backward induction within round t. In
particular, note that if all voters in N h

+ vote for h, then any voter in
N− realizes that l cannot be implemented in round t. If voters in N−
vote for h as well, they guarantee the best outcome for themselves,
that the game finishes in round t. Alternative h is implemented in
round t regardless of what voters in set N l

+ do.

2. For any ε > 0, there is ∆̄ > 0 such that for all ∆ < ∆̄ we have: in
round t = t̂∆

(
T l
)
, any player i ∈ N h

+ has the minimum equilibrium
payoff (1− ε)W (|xi| , t) + εL (|xi| , t).
Firstly, observe that the interval

(
T l, T h

)
shifts as ∆ gets smaller.

However, by assumption, its size is bounded away from zero, and hence
the number of rounds in it grows to infinity.

In every round, players in set N h
+ have an independent chance of get-

ting a good payoff. To be more specific, consider two dates t and t−∆
in
(
T l, T h

)
and let L̃ (|xi| , t) be a lower bound on payoff of a voter

i ∈ N h
+ at the beginning of a voting round t (or at the end of round

t − ∆). At the beginning of round t − ∆, nature decides about the
order of voters in that round. With probability η the order is as in
point 1, implying payoffW (|xi| , t−∆) . With remaining probability,
the order is different, but the payoff to i is no less than L̃ (|xi| , t) .
This is because otherwise all voters in N h

+ have a common interest to
vote for h in order to either obtain h in this round, or send the game
to the next round t where payoff at least L̃ (|xi| , t) is obtained. So, a
lower bound on payoff at the beginning of period t−∆ is

L̃ (|xi| , t−∆) = ηW (|xi| , t−∆) + (1− η) L̃ (|xi| , t) (A.1)

Now, select ε > 0, as desired. Select a calendar time t′ ∈
(
T l, T h

)
close enough to t = T l, so that

W
(
|xi| , t′

)
> (1− ε)W (|xi| , t) + εL (|xi| , t) (A.2)
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Since W (|xi| , ·) is decreasing and continuous, such t′ exists. Let
ζ =

(
ť∆ (t′)− t̂∆ (t)

)
/∆ be the number of successive voting rounds be-

tween rounds t̂∆ (t) and ť∆ (t′). The bound on lowest payoff in round
ť∆ (t′) is L (|xi| , t′) . Taking equation (A.1) and applying it recursively
ζ times back to round t̂∆ (t) we obtain

L̃
(
|xi| , t̂∆ (t)

)
≥
(

1− (1− η)ζ
)
W
(
|xi| , t′

)
+ (1− η)ζ L

(
|xi| , t′

)
(A.3)

Select ζ̄ large enough so that

(1− η)ζ̄ <
W (|xi| , t′)− ((1− ε)W (|xi| , t) + εL (|xi| , t))

W (|xi| , t′)− L (|xi| , t′)

Such a ζ̄ exists because the right-hand side is positive, by A.2. Hence
for all ζ > ζ̄,(

1− (1− η)ζ
)
W
(
|xi| , t′

)
+(1− η)ζ L

(
|xi| , t′

)
> (1− ε)W (|xi| , t)+εL (|xi| , t)

(A.4)
Equations (A.3) and (A.4) imply the result.

3. There is ∆̄ > 0 such that for all ∆ < ∆̄ alternative h is chosen at
round t = t̂∆

(
T l
)
.

Observe that alternative l is not selected in this round, because vot-
ers in N h

+ would vote against, by point 2, since for any i ∈ N h
+ we

have L (|xi| , t) < (1− ε)W (|xi| , t+ ∆) + εL (|xi| , t+ ∆) for ε small
enough. Players in N− prefer alternative h to be voted in round t
rather than later. Given the common interest of voters in set N h

+∪N−
and the sequential nature of voting game, alternative h is selected in
round t.

Lemma 5 There exists ∆̄ > 0 such that for all ∆ < ∆̄, the following is
true: if alternative h is selected in round t′ > 0, then it is selected in round
t = t′ −∆.

Proof. There are three outcomes that can occur in round t = t′ − ∆:
alternative h is selected in time t, alternative h is selected at time t′ and
alternative l is selected at time t. These outcomes generate payoff levels for
player i ∈ N h

+ equal to W (|xi| , t) , W (|xi| , t′) and L (|xi| , t) , respectively.
Note that if∆ is small enough, these outcomes can be ranked asW (|xi| , t) >
W (|xi| , t′) > L (|xi| , t) .

All voters are put in a sequence at the beginning of round t. Let ι index
all voters who are in set N h

+, so that ι = 1 is the last such voter, and ι = Nh
+

is the first such voter.
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Assume that an inductive hypothesis holds for ι: "if all voters i ∈ N h
+

who are before and up to ι in the sequence, i = Nh
+, ..., ι, voted for h,

then alternative l is not selected in round t". Note that if ι = 1, then the
inductive hypothesis is trivially satisfied, since if all voters in N h

+ voted for
h, alternative l does not have enough support to be selected in round t.
The rest of this proof will show that then the following is true "if all voters
i ∈ N h

+ who are before and up to ι + 1 in the sequence, i = Nh
+, ..., ι + 1,

voted for h, then alternative l is not selected in round t".
Consider voter ι and suppose that all voters i ∈ N h

+ who are before and
up to ι+ 1 in the sequence, i = Nh

+, ..., ι+ 1, voted for h.

1. Suppose that all votes registered so far in this round are such that
h can still be selected in this round t. Then in equilibrium h will be
selected in this round t.

To see this, note that voter ι can vote for h and prevent l being selected
in round t, by inductive hypothesis. All successive voters have strictly
higher payoff from finishing the game with alternative h at t, rather
than at t′. They vote so that h is selected at t. Consequently, this
action of ι leads to the highest possible payoffW (|xι| , t) .

2. Suppose that all votes registered so far in this round are such that h
cannot be selected at t. Then h will be selected at time t′.

To see this, note that voter ι can vote h and prevent l from being
selected at time t, by inductive hypothesis. Payoff from this action is
the highest possible W (|xι| , t′) (since W (|xι| , t) cannot be achieved).

In any case, before ι takes her action, alternative l will not occur in
equilibrium at round t, proving the inductive step.

Consider now all voters who take actions before voter ι = Nh
+; Since

alternative l will not be selected, they vote so that alternative h is selected
at t.

The proof of Proposition 1 is by backwards induction, voting round by
voting round: the first lemma provides a starting point, and the second
lemma provides a recursive step backwards.

A.2 Proof of Lemma 1

Recall the following two known results:

• The joint asymptotic distribution of the sample mean and sample
quantile (Ferguson (1999)):

√
n

([
X̄n

Y p
n

]
−
[
µ
xp

])
d→ N

([
0
0

]
,

[
σ2 σpx
σpx (σp)

2

])
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• The joint asymptotic distribution of two sample quantiles (for example:
David (1981) Theorem 9.2):

√
n

([
Y p
n

Y q
n

]
−
[
xp
xq

])
d→ N

([
0
0

]
,

[
(σp)

2 σpq
σpq (σq)

2

])

Unsurprisingly, a joint asymptotic distribution of
[
X̄n, Y

p
n , Y

q
n

]T is nor-
mal too. To see this, follow the steps of Ferguson (1999) in deriving the
asymptotic distribution of the sample mean and two sample quantiles and
then apply the Cramér-Wold Theorem to show the asymptotic joint normal-
ity.

An immediate implication of the above observation is that

√
n

 X̄n

Y p
n

Y q
n

−
 µ
xp
xq

 d→ N (03×1,Σ)

where the covariance matrix is

Σ =

 σ2 σpx σqx
σpx (σp)

2 σpq
σqx σpq (σq)

2


Next, apply the affi ne transformation to the random variables in the

above convergence, with the transformation matrix

D =

[
1 0 0
0 1/2 1/2

]
We then obtain

√
n

([
X̄n

Ẑpqn

]
−
[

µ
µpq

])
d→ N

(
02×1, DΣDT

)
where the covariance matrix is

DΣDT =

[
σ2 1

2 (σpx + σqx)
1
2 (σpx + σqx) 1

4

(
σ2
p + 2σpq + σ2

q

) ]
A.3 Proof of Lemma 2

Let
ω̄ (x) = E (X|X < x)

ω (x) = E (X|X > x) (A.5)

The asymptotic covariance between the sample mean and the sample (p, q)—
quasi-midrange is

σxz =
1

2

(
p (1− p)
f (xp)

(ω (xp)− ω̄ (xp)) +
q (1− q)
f (xq)

(ω (xq)− ω̄ (xq))

)
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Facts about conditional expectation are

qω (x1−q) + (1− q) ω̄ (x1−q) = µ = (1− p)ω (xp) + pω̄ (xp)

Using these equations to eliminate ω (xp) and ω̄ (xq) results in

σxz =
1

2

(
p

f (xp)
(µ− ω̄ (xp)) +

(1− q)
f (xq)

(ω (xq)− µ)

)
Now, recall that p = 1− q ≤ 1/2. This simplifies the covariance to

σxz =
1

2
(1− q)

(
1

f (x1−q)
(µ− ω̄ (x1−q)) +

1

f (xq)
(ω (xq)− µ)

)
Evoke assumption 1, about the symmetry of the distribution around the
mean. For every q we have f (x1−q) = f (xq) ; moreover, we have µ =
(ω (xq) + ω̄ (x1−q)) /2. Eliminate ω̄ (x1−q) to obtain

σxz =
1− q
f (xq)

(ω (xq)− µ) (A.6)

Likewise, the asymptotic variance of the quasi-midrange simplifies to

(σz)
2 =

1

4

(
σ2
p + 2σpq + σ2

q

)
=

1

2

1− q
f (xq)

2 (A.7)

The first part of the proposition comes from the definition of the correlation
coeffi cient in equation (2) and equations (A.6) and (A.7).

To obtain the second part take the derivative of ρ (x)

ρ′ (x) =

√
2

σ

−f (x)

2
√

1− F (x)
(ω (x)− µ) +

√
1− F (x)ω′ (x)

Note that

ω′ (x) =
d

dx

(∫ ∞
x

tf (t) dt
1

1− F (x)

)
= −xf (x)

1

1− F (x)
+

∫ ∞
x

tf (t) dt
f (x)

(1− F (x))2

=
f (x)

1− F (x)
(ω (x)− x)

That is

ρ′ (x) =
1

σ
√

2

f (x)√
1− F (x)

(µ+R (x)− x)
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A.4 Proof of Lemma 3

Firstly, find E
(
X̄n|Ẑpqn > 0

)
. By Greene (2002), Theorem 22.5 we have

√
nE
(
X̄n|Ẑpqn > 0

)
= E

(√
nX̄n|

√
nẐpqn > 0

)
→ ρσ

φ (0)

1− Φ (0)

where φ and Φ are the p.d.f. and c.d.f. of a standard normal distribution.
Likewise

√
nE
(
X̄n|Zpqn < 0

)
→ −ρσ φ (0)

Φ (0)

Then, the average expected effi ciency of a supermajority with q is

√
nV m

n → 2ρσφ (0) = ρσ
√

2
1√
π

As far as the result in footnote 7 is concerned, note that X̄n > 0 holds
if and only if its standardized version satisfies

W 1
n =
√
nX̄n/σ > 0

Likewise, Zqn > 0 if and only if

W 2
n =
√
nZqn/σz > 0

Therefore,

Pr
{
X̄n > 0 ∧ Zqn > 0

}
= Pr

{
W 1
n > 0 ∧W 2

n > 0
}

→ Pr
{
W 1
∞ > 0 ∧W 2

∞ > 0
}

=
1

4
+

1

2π
arcsin (ρ)

where the last line follows from the Sheppard’s Theorem. The probability
that these random variables are both negative is the same.

A.5 Proof of Proposition 6

Consider the two intervals separately. Firstly, suppose that x ∈ [β, 1] . We
have R (x) = x if and only if x = 1/3. Notice that β < 1/3, so this x is
in the interval and indeed it is a locally optimal cutoff level. Knowing the
values of parameters α and β we can verify that q = F (1/3) is indeed a
locally effi cient supermajority.

To be globally optimal, one has to make sure that no x ∈ [0, β] is better
than x = 1/3. Note that

ω (x) ≥ ω (0) =
1

2
(α+ β) = 2

1− q
2− q = 2β ≥ 2x
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where the first inequality follows from the fact that ω (defined in equation
A.5) is an increasing function in this interval. The conclusion, ω (x) ≥ 2x,
implies that ρ (x) is non-decreasing on [0, β] and hence no point there is
better than x = β, which itself is strictly worse than x = 1/3.

A.6 Proof of Proposition 7

Step 1. Consider another nonnegative random variable Q, that has a c.d.f.
FQ (·) and the mean residual life function RQ (·) . If Q is smaller than X in
mean residual life order, RQ (x) ≤ R (x) for all x ≥ 0, then the variance of
Q is finite. To see this note that:

Inequality RQ (x) ≤ R (x) holds if and only if for every x ≥ 0∫∞
x (1− F (u)) du∫∞
x (1− FQ (u)) du

is a non-decreasing function of x over the set
{
x :
∫∞
x (1− FQ (u)) du > 0

}
.

Since ∫∞
x (1− F (u)) du∫∞
x (1− FQ (u)) du

≥
∫∞

0 (1− F (u)) du∫∞
0 (1− FQ (u)) du

=
E (X)

E (Q)
= ζ > 0

it follows that for every x ≥ 0∫ ∞
x

(1− F (u)) du ≥ ζ
∫ ∞
x

(1− FQ (u)) du

Take an integral of both sides over all x over the interval (0,∞) to obtain∫ ∞
0

∫ ∞
x

(1− F (u)) dudx ≥ ζ
∫ ∞

0

∫ ∞
x

(1− FQ (u)) dudx

The change of the order of integration implies∫ ∞
0

(∫ u

0
dx

)
(1− F (u)) du ≥ ζ

∫ ∞
0

(∫ u

0
dx

)
(1− FQ (u)) du

or equivalently∫ ∞
0

u (1− F (u)) du ≥ ζ
∫ ∞

0
u (1− FQ (u)) du

Note the integration by parts∫ ∞
0

u2f (u) du = − lim
u→∞

u2 (1− F (u)) + 2

∫ ∞
0

u (1− F (u)) du

so that our inequality becomes

E
(
X2
)

+ lim
u→∞

u2 (1− F (u)) ≥ ζ lim
u→∞

u2 (1− FQ (u)) + ζ

∫ ∞
0

u2fQ (u) du
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The left-hand side is finite because the second moment is finite E
(
X2
)
<∞

and Kolmogorov inequality u2 (1− F (u)) ≤ E
(
X2
)
.We get that the right-

hand side must be finite, so must E
(
Q2
)
.

Step 2. Now, for any λ > 0 take a random variable Q with a mean
residual life function

RQ (x) =

{
λ if x ≤ λ
x if x > λ

The corresponding c.d.f. and p.d.f. are

FQ (x) =

{
1− exp (−x/λ) if x ≤ λ

1− λ2 exp (−1) /x2 if x > λ

fQ (x) =

{
(1/λ) exp (−x/λ) if x ≤ λ
2λ2 exp (−1) /x3 if x > λ

Note that

∫ ∞
0

u2fQ (u) du =

∫ λ

0
u2fQ (u) du+

∫ ∞
λ

u2fQ (u) du

= (1/λ)

∫ λ

0
u2 exp (−u/λ) du+ 2λ2 exp (−1)

∫ ∞
λ

(1/u) du

= (1/λ)

∫ λ

0
u2 exp (−u/λ) du+ 2λ2 exp (−1)

(
lim
u→∞

ln (u)− ln (λ)
)

= ∞

Step 3. Now suppose that R (x) > x for all x. Select λ = minxR (x) and
note that λ is strictly positive. Note also that R (x) ≥ RQ (x), where RQ (x)
is associated with the random variable Q defined in step 2. By step 2 it has
an infinite variance. By step 1 variance of Q must be finite. We obtain a
contradiction. Therefore R (x) ≤ x for some x ≥ 0. Since R is a continuous
function, R (x) = x for some x ≥ 0.
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