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Abstract

How should institutions convey relevant information to the public? Should they sched-
ule their communications or release information as it becomes available? What are the
welfare effects of an unanticipated information release? We model a decentralized econ-
omy and show that a credible schedule delays trade towards the information release
date and unanticipated information arrivals entail a loss of insurance opportunities.
We apply these findings to the scheduling of monetary policy decisions following the
Federal Open Market Committee meetings from 1995 till 2010 and its effects on the dy-
namics of trade on the Federal Funds Futures market. We use the model to empirically
identify periods of credible (prior to 2001) and non-credible scheduling (after 2001).
Finally we measure the loss in risk-trading activity due to off schedule announcements.

Keywords: Deadline effect, Hirshleifer effect, search in financial markets,
monetary announcements, interest rate futures.
JEL classification number: D83, G12, G14, E58.

1. Introduction

The value of public information is among the fundamental questions in economics and fi-

nance. A strictly related issue is how public and private agencies should convey information
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to the public. Should these agencies schedule their communications or release the informa-

tion as it becomes available? Once a schedule is in place, how important is the credibility of

the procedure? Today, many public institutions release information according to a schedule

of announcements: this is the case of central banks announcing target interest rates at the

end of the respective monetary policy committee meetings and of governmental agencies,

like the Bureau of Labor Statistics, responsible for the official release of economic statistics

on unemployment and inflation.

Little consideration has been given to the effects of such scheduling on the trade dynamics and

on welfare. The theoretical contribution of this paper is to show that observables like trade

volume dynamics can identify welfare effects of credible scheduling. In particular we will

address the following questions: 1) Does scheduling communications change the dynamics

of trade and if so how? 2) What are the welfare costs of “spontaneous” deviations from the

schedule i.e., off schedule announcements? 3) Can the reliability of the schedule be inferred

from the dynamics of trade?

These issues are first analyzed in a theoretical model. We then apply the model to identify

the effects of the Federal Open Market Committee (FOMC) scheduled and off schedule

monetary policy announcements on the trading volume of Chicago Board of Trade (CBOT)

30-Day Federal Funds Futures.

The theoretical model studies financial markets under uncertainty where traders have access

to two financial instruments: a risk-free bond and a risky asset. The risk-free bond is

exchanged in a centralized market. The risky asset is exchanged over-the-counter according

to a dynamic matching procedure where at each point in time buyers and sellers meet

and declare their reservation price: if an agreement is reached they split the gains from

trade equally and leave the market; otherwise they continue their search for a counterparty.

Uncertainty is resolved by a public announcement reaching the market at some future date

that might or might not be known to the traders. The announcement reveals the state of

the world determining the risky asset return and the agents’ endowment at the end of the

economy. Agents are symmetrically informed about both the realization and the timing of
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the announcement as in the case of many public announcements like interest rates decisions.

In the first instance, the model analyzes the dynamics of trade when agents know the exact

date the uncertainty will resolve (credible schedule); subsequently the model studies the case

when the exact date is unknown to the agents (stochastic announcements).

We can summarize the results of the theoretical model as follows: 1) if (and only if) agents

are risk averse, scheduling the communications changes trade dynamics by delaying a large

volume of transactions towards the announcement date. This is the deadline effect of credible

scheduling; 2) when risk averse agents exchange the asset in order to hedge uncertainty,

spontaneous deviations from the schedule might be welfare impairing as once uncertainty

is resolved risk sharing opportunities are lost. This is as in Hirshleifer (1971)1. 3) with

stochastic announcements (it suffices a small but positive probability of an off schedule

intervention), both deadline and welfare effects vanish.

The crucial insight of the analysis is that perfectly anticipated future arrivals of payoff-

relevant public information act as a trading deadline for risk averse investors: when the

schedule is reliable, traders act as if they had a limited time to exchange the risky asset as,

once uncertainty is resolved, this becomes redundant and ceases to be a hedging instrument.

We apply these theoretical findings to the FOMC monetary policy scheduling from January

1995 to July 2010 and look at the impact on the dynamics of trade of the CBOT 30-Day

Federal Funds Futures market. We first study the deadline effect by checking if the volume

of transactions is higher the days before a scheduled meeting. Our empirical analysis shows

a statistically significant deadline effect for meetings prior to September 2001. We identify

this split in the data set by employing rolling windows of 400 trading days with 60 days of

overlapping gap. The two periods have a different monetary policy scheduling credibility:

high till 2001 and less so afterwards. Unfortunately our model does not shed light on the

reasons causing this shift in credibility.

We then turn to the evidence on the welfare effect. Interest rate futures are traded over-the-

1Notice that our model, for tractability reasons, will focus on the Hirshleifer effect only and will not
account for the other benefits of receiving the information earlier rather than later (the “Blackwell effect”
after Blackwell (1951)). On the comparison of the two effects see Gottardi and Rahi (2008).
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counter in order to hedge against changes in the target rate. If monetary policy scheduling

is credible, an unanticipated resolution of uncertainty, due to an off schedule announcement,

could be welfare impairing in the sense pointed out by Hirshleifer (1971). Although a sub-

stantial theoretical literature has extended and qualified Hirshleifer’s result and identified

sufficiently general conditions for the argument to hold2, the empirical evidence is at best

sparse3, probably due to the difficulty in identifying instances where risk averse traders are

“taken by surprise” by the earlier resolution of uncertainty. It seems natural to ask whether

the welfare effect pointed out by Hirshleifer is a purely theoretical conjecture with little

empirical relevance or, to the contrary, there are important instances where we observe its

occurrence. If so what is the magnitude of the loss, either in terms of welfare or of trading

volumes?

The off schedule FOMC meetings, all occurring in the period identified as of credible schedul-

ing, provide the opportunity for running a natural experiment on the effects of monetary

policy surprises. We first argue that these events were indeed unanticipated by showing that

there was no significant excess trading activity before their occurrence. We then quantify

the missed expected volume of trade following these surprises.

Modeling financial markets with decentralized mechanisms is not new and these are empiri-

cally relevant in the interest rate futures market. The search theoretic literature on financial

markets includes Duffie, Gârleanu and Pedersen (2005) and (2007), Miao (2006) and Rust

and Hall (2003), Lagos and Rocheteau (2007) and (2009). A distinctive feature of our case

is that trade occurs under deadlines and hence we cannot analyze steady states.

Section 2 presents the theoretical model and the results. Section 3 presents the empirical

model and the analysis. Section 4 concludes. With the exception of Theorem 1, all proofs

2With different degrees of generality, Marshall (1974), Green (1981) and Hakansson et al. (1982) identify
cases where a partial increase of information cannot be Pareto improving. Wilson (1975) shows that better
information is Pareto impairing when agents have preferences represented by a log utility function. More
recently, Schlee (2001) has given general conditions guaranteeing that public information is Pareto impairing
and Eckwert and Zilcha (2003) have showed that information referring to tradable assets might be undesirable
if agents are enough risk averse. Finally Gottardi and Rahi (2008) have provided sufficient conditions on
the degree of market incompleteness for the information to have social value. For further discussion of the
literature see Schlee (2001) and Gottardi and Rahi (2008).

3The only pieces of evidence we are aware of come from medical studies, in particular Lerman et al.
(1996) and Quaid and Morris (1993).
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can be found in the appendix.

2. Description of the economy

We consider an infinite horizon, one-good economy under uncertainty, extending over time

t ∈ [0, 1].

The economy is populated by the traders and the information provider. Traders have access

to two financial instruments: a risk-free bond and a risky asset. The bond is traded in

competitive markets, is perfectly divisible, its net supply is zero and pays one unit of the

good after the state has realized. The asset is traded over-the-counter (OTC), is indivisible

and offers a stochastic return ρ(·) : Σ → R+ payable to the asset holder at t = 1. Traders

are partitioned into two types, denoted by a = b, s: the buyers, a = b, holding no assets; the

sellers, a = s, holding one unit of the asset. There is a continuum of agents on each side of

the market. Buyers and sellers meet according to the mechanism we will describe later and,

for simplicity, they exchange one, indivisible unit of the asset: this is for tractability but not

unrealistic in the case of trade of contracts of large size as interest rates futures.

At t = 0, 1 each agent receives a stochastic and agent-specific endowment ωt(·) : Σ → R+

with R+ the support of the distribution.

The only role of the information provider is to announce the state of the world. We will

start by analyzing the game when the announcement date is common knowledge among the

players, fixed for convenience at t = 1, and fully credible. In section 2.7 we will analyze the

case where the announcement is stochastic, i.e., where the information provider releases of

information at any other t ∈ (0, 1) with positive probability.

The good is non-storable. Consumption takes place right after trading, denoted by x0 and

after the state has realized, denoted by x1. Agents’ preferences are time and state separable,

and represented by the same utility function:

u(x0) + Eu(x1),

Notice that there are no transaction costs nor costs of holding the asset between the date
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the trade occurs and the realization of the state.

Assumption 1. The utility function u(·) is strictly increasing and concave.

For tractability we assume that the bond market opens at t = 1, once the trade in the OTC

market has been exhausted and before uncertainty is realized. Agents decide how much to

buy/sell of the asset and then how many units of the bond to hold. Since the structure of

the economy is common knowledge, agents can compute the price the bond will trade at and

will take this into account when deciding the asking and bidding price of the asset.

2.1 The OTC matching process

We discretize the time interval [0,1] by partitioning it into L+1 subperiods, l = 1, ..., L, each

of length ε = (L + 1)−1. Each t = lε denotes a trading session in the OTC market. Trade

does not take place at t = 1 and between trading sessions. Let Tε = {ε, .., lε, . . . , Lε} denote

the set of trading sessions.

At session t ∈ Tε each agent is characterized by his type, the endowment ω0 and the history

ht ∈ Ht = {in, out}. The history parameter ht takes value in when a trader is active in the

market. Each active buyer is matched randomly to one active seller. Once the match occurs

they contemporarily declare their reservation price. If the bid is greater or equal to the ask

price, exchange takes place, agents consume and their history takes value out. Buyers and

sellers that fail to exchange proceed to the next trading session where (almost surely) they

will meet a different counterparty. At each trading session the agents also decide how much

of the bond to purchase on the competitive market. The agents not able to trade by the last

session t = εL trade the bond and consume before the state of the world is revealed.

Consider now any pair of traders and let b and s represent bid and ask prices for the buyer

and seller, respectively. The price at which each pair exchanges is determined by a pricing

rule M(b, s) with the following properties:

Assumption 2. For each trading session:

a) M(b, s) is continuous in b and s;
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b) if b = s then M(b, s) = b = s.

Without loss of generality to our subsequent analysis we shall consider M(b, s) = 1
2
(b+ s)4.

For a given ε > 0, the timeline can be described as follows:

t = 0
σ0 realizes
•
↓

endowments distributed

ε ≤ t < 1− ε
•
↓

trade
consumption

t = Lε
•
↓

last trade
last consumption

t = 1
σ1 realizes
•
↓

asset and bond pay-off
endowments distributed

2.2 The Gε game

Fix an ε > 0. At any trading session t ∈ Tε a buyer with endowment ω0 and bid bt meeting a

seller with ask price x ∈ (0, bt] and holding portfolio yt obtains utility u(ω0 − bt+x
2
− qεyt) +

Eu(ω1 + ρ+ yt), where qε denotes the price of the bond when the frequency of trade in the

OTC market is ε and yt the agent’s bond’s holding at session t. Similarly, a seller with total

wealth ω0 and ask price st meeting a buyer with bid x ∈ [st,∞) and holding portfolio yt

obtains utility u(ω0 + st+x
2
− qεyt) + Eu(ω1 + yt). We assume preferences and endowments’

distribution to be common knowledge so that agents can compute the distribution of bid

and ask prices in order to maximize their expected utility.

Therefore, the ε-step optimization problem at t ∈ Tε for agent of type a = b, s active in the

market is given by:

V b
ε (t, in;ω0) = max

bt

∫ bt

0

[u(ω0 −
bt + x

2
− qεYε,t) + Eu(ω1 + ρ+ Yε,t)]dF

s
ε,t(x)

+ (1− F s
ε,t(bt))V

b
ε (t+ ε, in;ω0), (1)

Yε,t ∈ arg max
yt

u(ω0 −
bt + x

2
− qεyt) + Eu(ω1 + ρ+ yt) for all x < bt;

4Different trading rules may satisfy Assumption 2. For example if the buyer (seller) makes a take-it-or-
leave-it offer, then M(b, s) = b (M(b, s) = s). If the proposer (buyer or seller) is chosen randomly with equal
probability then one obtains M(b, s) = 1

2 (b+ s) as in Gale (1986). The bargaining can have a Nash solution
at each t such that M(b, s) = zbt + (1− z)s where the weight z is exogenously given as in Duffie, Gârleanu
and Pedersen (2005) and (2007).

7



V s
ε (t, in;ω0) = max

st

∫ ∞
st

[u(ω0 +
st + x

2
− qεYε,t) + Eu(ω1 + Yε,t)]dF

b
ε,t(x)

+ F b
ε,t(st−)V s

ε (t+ ε, in;ω0), (2)

Yε,t ∈ arg max
yt

u(ω0 +
st + x

2
− qεyt) + Eu(ω1 + yt) for all x > st,

where V a
ε (t, in;ω0) is the value function at t for the agent with endowment ω0, F

s
ε,t(bt) is the

proportion at t of sellers willing to sell for a price less than bt, F
b
ε,t(sε,t−) is the proportion

of buyers at t willing to buy for a price strictly less than sε,t and finally qε is the price of

the asset when the trading frequency in the OTC market is ε. Between any two consecutive

trading sessions t and t + ε ∈ Tε (i.e., the interval (t, t + ε)) the agents’ value functions are

fixed at V a
ε (t + ε, in;ω0). The same holds for agents’ history, bid and ask prices and their

distribution, all being held constant in the interval (t, t+ ε) at their t+ ε value.

Once the last trading opportunity has elapsed and before the returns are distributed the

value function for an agent that could not find a match is given by:

V b
ε (1, in;ω0) = maxy1(ω0 − qεy1) + Eu(ω1 + y1), (3)

V s
ε (1, in;ω0) = maxy1u(ω0 − qεy1) + Eu(ω1 + ρ+ y1). (4)

Notice that the problems defined in equations (1) and (2) are non-stationary. Equations (3)

and (4) give the terminal values which prevents the value function to be unbounded.

The optimal trading strategies for the buyer and seller with endowment ω0 are represented

by the vectors (Y b
ε,t(ω0), Bε,t(ω0)) : Ht → <2

+ ∪ ∅, and (Y s
ε,t(ω0), Sε,t(ω0)) : Ht → <2

+ ∪

∅, respectively. History taking value out is mapped into the empty set. For notational

convenience we will avoid the reference to the endowment when writing bond holdings and

trading strategies, and will denote them as Yε,t, Bε,t and Sε,t, respectively. Given a set of

trading sessions Tε, the Gε game is specified by the array:

Gε =
〈
Ω, V a

ε (t, ht;ω
a
0), at,Hε,t, F

a
ε,t, Y

a
ε,t a = b, s, t ∈ Tε

〉
.

where Ω0 = {ω0} is the set of all agents and Ht : Ω0 →
∏

tHt is the set of all feasible
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histories for all agents in Gε at time t.

In the appendix we provide a definition of the (subgame perfect) equilibrium for Gε and

sketch a proof of the existence. However, our results on the volume of trade will follow from

the characterization of individuals’ trading strategies and not from the characterization of

the equilibrium behavior. Unless necessary for clarity of exposition and in order to simplify

notation we will drop the reference to the history in the value function.

The following lemma shows that the optimal bond holding decision does not depend on the

time at which trade in the asset occurs and on the frequency of the sessions. This property

substantially simplifies the analysis of the dynamics of portfolio holding.

Lemma 1. The optimal bond holding is t and ε-independent, i.e., Yε,t = Y for all t ∈ Tε.

The bond’s price and the last trading session value function are ε-independent i.e., qε = q

and V b
ε (1, in;ω0) ≡ V

a
(ω0), a = s, b.

Proof of Lemma 1: See Appendix.

We shall show the dynamics of both bids and ask prices is monotonic. Substituting the

solution Sε,t in the seller’s problem (2) obtain:

V s
ε (t;ω0) =

∫ ∞
Sε,t

[u(ω0 +
Sε,t + x

2
− qY ) + Eu(ω1 + Y )]dF b

ε,t(x) (5)

+ F b
ε,t(Sε,t−)V s

ε (t+ ε;ω0).

This can be written as:

V s
ε (t;ω0)− V s

ε (t+ ε;ω0) (6)

=

∫ ∞
Sε,t

[u(ω0 +
Sε,t + x

2
− qY ) + Eu(ω1 + Y )− V s

ε (t+ ε;ω0)]dF
b
ε,t(x).

Since the individuals are willing to trade then:

u(ω0 +
Sε,t + x

2
− qY ) + Eu(ω1 + Y ) ≥ V s

ε (t+ ε;ω0), (7)
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for all x ∈ [Sε,t,∞) and ε > 0.

This implies that V s
ε (t;ω0) is a monotone decreasing function in t and therefore continuous

except for countable many points. A similar argument holds for the buyer.

Letting limε→0 V
a
ε (t+ ε;ω0) ≡ V a(t;ω0), for a = b, s it follows that the function V a(t;ω0) for

a = b, s is Lp integrable with respect to t and is finite5.

2.3 The deadline effect

We are now in the position to prove the main result on the dynamics of trade in the presence

of a known deadline at t = 1. We shall analyze the game for frequent enough trading sessions,

i.e., ε→ 0 (or, equivalently, L→∞). From (6) it follows that:

V s
ε (t;ω0)− V s

ε (t+ ε;ω0)

=

∫ ∞
Sε,t

[u(ω0 +
Sε,t + x− qY

2
) + Eu(ω1 + Y )− V s

ε (t+ ε;ω0)]dF
b
ε,t(x)

≥
∫ ∞
Sε,t

[u(ω0 + Sε,t − qY ) + Eu(ω1 + Y )− V s
ε (t+ ε;ω0)]dF

b
ε,t(x) (8)

= [u(ω0 + Sε,t − qY ) + Eu(ω1 + Y )− V s
ε (t+ ε;ω0)]

(
1− F b

ε,t(Sε,t)
)
.

From (8) it follows that for a given trading session t ∈ Ti,ε:

lim
ε→0

[V s
ε (t;ω0)− V s

ε (t+ ε;ω0)]

≥ lim
ε→0

[u(ω0 + Sε,t − qY ) + Eu(ω1 + Y )− V s
ε (t+ ε;ω0)]

(
1− F b

ε,t(Sε,t)
)
.

5Remark: By Lusin’s Theorem (p. 230, Billingsley (1986)), V s(t;ω0), can be approximated arbitrarily
close by a continuous function. This implies that the set of ε-step sellers’ problems defined by (2) for which
the value functions V s(t;ωi) are continuous in t are dense in the set of all ε-step sellers’ problems. Hence the
set of problems for which the continuation values are discontinuous is negligible. Similarly, the set of ε-step
buyer’s problems defined in (1) is also dense.
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Assuming that F b
ε,t(Sε,t) < 16 it follows that:

0 ≥ lim
ε→0

[u(ω0 + Sε,t − qY ) + Eu(ω1 + Y )]− lim
ε→0

V s
ε (t+ ε;ωi),

lim
ε→0

V s
ε (t+ ε;ω0) ≥ lim

ε→0
[u(ω0 + Sε,t − qY ) + Eu(ω1 + Y )]. (9)

Since the seller is willing to trade at Sε,t then:

lim
ε→0

[u(ω0 + Sε,t − qY ) + Eu(ω1 + Y )] ≥ lim
ε→0

V s
ε (t+ ε;ω0). (10)

Therefore, from (9) and (10) obtain:

lim
ε→0

V s
ε (t+ ε;ω0) = lim

ε→0
[u(ω0 + Sε,t − qY ) + Eu(ω1 + Y )]. (11)

Define limε→0 Sε,t ≡ St, limε→0Bε,t ≡ Bt
7 and limε→0 V

b

ε(ωi+1) ≡ V
b
(ωi+1). Also, define

F a
t , a = b, s as the distributions of the limiting bids and ask prices, respectively.

Equation (11) becomes:

V s(t;ω0) = u(ω0 + St − qY ) + Eu(ω1 + Y ). (12)

Since V s
ε (t;ω0) ≤ V s

ε (t′;ω0) for any two continuity points t, t′ ∈ (0, 1) such that t > t′

computing the limits for ε→ 0 obtain:

u(ω0 + St − qY ) + Eu(ω1 + Y ) ≤ u(ω0 + St′ − qY ) + Eu(ω1 + Y ).

Since u(·) is monotonically increasing obtain:

St ≤ St′ , (13)

6This is equivalent to assuming that there is a positive mass of buyers who are willing to trade with
some agent ω0. A value of F bε,t = 1 for all ω’s implies there is no trade. In section 2.4 we show that F aε,t is
degenerate only when the agents are risk neutral.

7The limits St and Bt exist and is unique since u (.) is continuous and monotone.
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for all continuity points t, t′ ∈ (ti, ti+1) such that t > t′. A similar proof shows that:

Bt ≥ Bt′ . (14)

The following theorem summarizes the result.

Theorem 1. Suppose the trading sessions are frequent enough, i.e., ε sufficiently small.

Then for all continuity points t > t′ a buyer with an endowment ω0 has an optimizing bid

such that:

Bt(ω0) ≥ Bt′(ω0),

and a seller with endowment ω0 has an optimizing ask price such that:

St(ω0) ≤ St′(ω0).

Letting limε→0 S1−ε ≡ S1 the last session’s limiting ask price S1 can be solved by using

equation (4) and (12) as:

u(ω0 − qY ) + Eu(ω1 + ρ+ Y ) = u(ω0 + S1) + Eu(ω1). (15)

Similarly letting limε→0B1−ε ≡ B1, the limiting bid for the last session is given by:

u(ω0 − qY ) + Eu(ω1 + Y ) = u(ω0 −B1 − qY ) + Eu(ω1 + ρ+ Y ). (16)

Let vε,t denote the expected volume of trade been defined as the proportion of exchanges

taking place at a given session t ∈ Tε, i.e.,

vε,t =

∫ ∫
1{(ωb0, ωs0) : Bε,t(ω

b
0) ≥ Sε,t(ω

s
0)}dF b

ε,t(Sε,t(ω
s
0))dF s

ε,t(Bε,t(ω
b
0)),

where 1{·} is an indicator event and ωa denotes the endowment of agent of type a = b, s.
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Therefore the expected volume of trade is simply the probability of trade:

vε,t = Pr{(ωb0, ωs0) : Bε,t(ω
b
0) ≥ Sε,t(ω

s
0)}.

Let now vt ≡ limε→0 vε,t and limε→0 vε,1−ε ≡ v. The following theorem shows that the

probability of trade is higher the closer to the date of the announcement. This implies that

the volume of trade is non-decreasing. We shall further show in Section 2.4 and 2.5 that the

probability of trade is either zero (when constant) or strictly increasing. Hence, vt = vt′ for

t > t′ implies vt = 0.

Theorem 2. For any two continuity points t, t′ ∈ (0, 1) such that t > t′, v ≥ vt ≥ vt′.

Proof of Theorem 2: See Appendix.

Theorem 1 and 2 are intuitive: buyers start from a low bid and increase their offer as the

deadline approaches. Sellers behave symmetrically. Though intuitive this might not nec-

essarily be the case as the two opposite effects drive the dynamics of individual strategies.

The first is due to the approaching deadline: given the distribution of the ask prices, buyers

need to improve their offers so to increase the probability of trade as the number of future

opportunities of trading deteriorates overtime; similarly for the sellers. The second effect

comes from the dynamics of the price distributions of the counterparty: since the distribu-

tion of ask prices is improving overtime, each buyer should decrease (not increase) his bid.

Similarly, each seller should increase (not decrease) her ask price. However, Equation (11)

shows that the present distribution of the counterparty is irrelevant for determining the op-

timal ask price: as trading sessions become more frequent the value of waiting increases up

to the point where the optimal asking price is the one at which the seller is just indifferent

between consuming now the amount he is willing to trade for, or realizing the continuation

value (i.e., waiting for the next trading session); being the continuation value monotonic, so

is the optimal sellers’ strategy. The same holds for the buyers 8.

8This reminds us of the optimal bidders’ strategy in sealed-bid second price auctions where agents bid
their “true value” of the object.
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2.4 Risk neutral agents

In this section we study the patterns of trade in an economy entirely populated by risk

neutral agents and show that in this case all transactions occur in the first trading session.

This implies that if increasing trade is observed then agents must be risk averse and the loss

of trade due to early arrival of information entails a loss of insurance opportunities.

Let agents’ preferences be represented by any linear function u(x) = k1 + k2x where k1 and

k2 are two constant (and k2 is positive). Let the distribution of endowments as described

above.

Lemma 2. For all t ∈ (0, 1) and for all ε > 0 the continuation values are constant and they

are given by:

V a
ε (t;ω0) = V a(t;ω0) = V

a
(ω0), a = b, s.

Proof of Lemma 2: See Appendix.

Theorem 3. If agents are risk neutral then the bids and ask prices are endowment and

ε-independent, constant and given by:

Bε,t = B1 = Sε,t = S1 = E(ρ).

Proof of Theorem 3: See Appendix.

Theorem 3 states that risk neutral buyers and sellers have the same endowment-independent

reservation price given by the expected value of the future returns. Since we assumed agents

to trade when bt ≥ st, it follows that when agents are risk neutral they trade at the very

first opportunity and the volume (i.e., the probability) of trade is zero thereafter.

2.5 Strict risk aversion is necessary for the deadline effect

In the previous section we proved that when agents are risk neutral then bids and ask prices

are stationary and degenerate for all trading sessions following the first one, i.e., t > ε.

We now strengthen the result by ruling out such behavior for risk averse agents by showing

that it can occurs if and only if agents are risk neutral. We start by showing that a constant
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volume of trade for all sessions after the first is possible if and only if the bid and ask prices

are stationary. We then show that the latter occurs only under risk neutrality, which in turn

implies by Theorem 3 that the volume of trade is nil for all t > ε.

The following lemma shows that if trade is flat or there is no trade after the first trading

session, then the distribution of bid and ask prices must be stationary.

Lemma 3. The probability of trade is constant after the first trading session (i.e., t > ε for

t ∈ Tε) if and only if the bid and ask prices are stationary for almost all sellers and buyers,

i.e., vt = v if and only if for some bid and ask prices S0(ω) and B0(ω):

Pr{ω0 : St(ω0) = S(ω0) for all t > ε} = 1, (17)

and

Pr{ω0 : Bt(ω0) = B(ω0) for all t > ε} = 1. (18)

Proof of Lemma 3: See Appendix.

Note that (17) and (18) imply that F b
t (x) = F b(x) and F s

t (x) = F s(x) are stationary

distributions. We are now in a position to prove the following result.

Theorem 4. Buyers and sellers are risk neutral if and only if the probability of trade is 1.

Proof of Theorem 4: See Appendix.

Theorem 4 implies that if trade is positive for t > ε and the schedule is credible, then its

dynamics must be strictly increasing. In fact, it rules out the possibility that increasing

dynamics might occur in an economy populated by risk neutral agents only.

2.6 The welfare effect of an early information release

Consider now an off schedule and unanticipated information release. Once information is

conveyed to the markets, the asset looses its role of insurance instrument and becomes

redundant. Its rate of return is now pinned down by the bond’s rate of return as no buyer

would offer more and no seller would ask less than the risk free rate. Being the price fixed,

the OTC market becomes inactive after the session following the announcement.

15



It follows that an unanticipated early release of information entails a welfare loss equivalent

to assigning to each active trader the utility obtained by holding the bond only.

This is obviously not the case if agents are risk neutral as agents are just indifferent between

trading over-the-counter and in the bond market; moreover since in this case all trade occurs

in the first trading session an early release of information has no effect on their welfare.

We can summarize the results in the following theorem.

Theorem 5. An early release of information at any time t entails a welfare loss for any

active risk averse trader a = b, s with endowment ω equal to:

V a(t;ω)− V a
(ω).

2.7. Stochastic deadlines

This section analyzes traders’ behavior in the case of stochastic deadlines, i.e., when traders

assign a positive probability to the event the information provider acts at a t < 1.

In this section we show that such a probability is strictly positive at any time and the volume

of trade is positive and uniform.

Suppose that the timing when the announcement is due is stochastic. Let there be an

announcement at t < 1, then for every point t ∈ (0, 1) define τt as:

1− τt = Pr (Announcement at t) . (19)

Assumption 3. The probability of an off schedule announcement is strictly positive for all

t, i.e.,

sup
t∈(0,1)

τt < 1. (20)

As before we consider each agents ε-step problem, where the agents failing to successfully

exchange with the counterparty proceed to the next period. In this case, however, at each

trading section following any t an announcement reaches the market with probability 1−τt+ε.

In that event the agents that have not traded as yet, are left with the autarkic utility

16



V
a

ε (ω0), a = b, s.

The optimization problem for any ε > 0 can now be written as:

V b
ε (t, in;ω0, τt) = max

bt

∫ bt

0

[u(ω0 −
bt + x

2
− qYt) + Eu(ω1 + ρ+ Yt)]dF

s
ε,t(x; τt) (21)

+ (1− F s
ε,t(bt; τt))[τt+εV

b
ε (t+ ε, in;ω0, τt) + (1− τt+ε)u(ω1 + Yt)],

Yt ∈ arg max
yt

u(ω − bt + x

2
− qyt) + Eu(ω1 + ρ+ yt) for all x < bt

V s
ε (t, in;ω0, τt) = max

st

∫ ∞
st

[u(ω0 +
st + x

2
− qYt) + Eu(ω1 + Yt)]dF

b
ε,t(x; τt) (22)

+ F b
ε,t(st; τt) [τt+εV

s
ε (t+ ε, in;ω0, τt) + (1− τt+ε) (ω0 + Yt)] ,

Yt ∈ arg max
yt

u(ω +
st + x

2
− qyt) + Eu(ω1 + yt) for allx < bt.

Denote by Bε,t(ω0, τt) and Sε,t(ω1, τt) the solutions to problem (21) and (22), respectively.

The next result shows that bid and ask prices as well as bond holdings, are independent of

time and frequency (but not of the endowment). This follows from the stationarity of the

problem under stochastic deadlines.

Theorem 6. Under Assumption (3), for a given ω0 and for any trading frequency ε > 0:

a) the value function V a
ε (t, in;ω0, τt) = V a(t, ω0) = V

a
(ω0), a = b, s;

b) the bids and ask prices, i.e. Bε,t(ω0, τt) and Sε,t(ω0, τt), are stationary and τt-independent.

Proof of Theorem 6: See Appendix.

The following theorem shows that risk averse agents facing an uncertain deadline behave

at each instant as they would behave at the last trading opportunity in a credible schedule

regime, i.e., they use their last period’s bids and ask prices. Recall that these are the prices

that give the the same level of utility of the autarkic equilibrium. It follows that the trading

volumes remains constant.

Theorem 7. Under stochastic deadlines the bids, ask prices and the volume of trade are

given by:
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a) Sε,t(ω0, τt) = S1(ω), Bε,t(ω0, τt) = B1(ω),

b) vτ = Pr{ω0 : Bε,t(ω0, τt) ≥ Sε,t(ω0, τt)} = v1,

where B1, S1 are the last session prices (see (15) and (16)) and v1 is the last session volume

under a known deadline.

Proof of Theorem 7: See Appendix.

From Theorem 7 it is possible to conclude the theoretical part with the following result

comparing the volume of trade under alternative credibility of the monetary policy schedule:

Corollary 1. The volume of trade is higher under stochastic deadlines than under credible

schedule announcements.

Welfare effect: Notice that since the reservation value for any given agent is constant and

set equal to the value of autarky, there are no adverse effects of an early release of information

and hence there is no welfare effect. However, in the scheduled case the expected utility of

a trader at t < 1 is higher than in the case of unscheduled announcements.

3. The Empirical Model

Most independent central banks, including the U.S. Fed, the Bank of England and the ECB,

deliver their monetary policy decisions to the public by announcing interest rate levels at

scheduled and publicly available dates. Scheduling monetary policy, it is usually argued,

increases “transparency, accountability and the dialogue with the public,” (Bank of Canada,

(2000)). Monetary policy authorities retain the ability to act off schedule, though this

might undermine their policy’s credibility. When the schedule is credible, off schedule an-

nouncements are often said to “surprise” the markets. Other monetary authorities, e.g., the

Reserve Bank of India, prefer to exercise discretion by informing the markets about rate

changes whenever considered appropriate.

Under the hypotheses of rational expectations, no transaction costs and complete competitive

markets, the procedures and timing of the announcements would hardly matter as prices

would perfectly reflect information and traders would continuously adjust their portfolios.
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Our theoretical model argues that this might not be the case in over-the-counter markets,

by showing that fixing the dates of information delivery changes agents’ optimal trading

strategies and in turn the dynamics of trade. This occurs only when the schedule is credible.

Moreover, surprising the market by moving forward the information release might prevent

risk-sharing improving trade to take place.

In this section we apply these theoretical findings to the FOMC monetary policy scheduling

from 3rd January 1995 to 31th July 2010 and look at the impact on the dynamics of trade of

the CBOT 30-Day Federal Funds Futures market. These are contracts of $5mil size on the

daily federal funds overnight rate reported by the New York Fed9. The 1995 date started a

period lasting till 1998 during which the monetary committee was very consistent in following

the schedule. Throughout this 15 years’ period the FOMC had 128 scheduled meetings and

17 off schedule meetings10. Only 4 of these latter led to a change of rate: the quarter point

reduction on 18/19 of October 1998 and the half point cuts on 3rd January 2001, 18th April

and 17th September 2001.

Our first aim is to identify the periods of credible monetary policy schedule: the model

shows that these are characterized by a significant deadline effect prior to the scheduled

announcements. Recall that a deadline effects occur only under credible scheduling (Theorem

1 and 7) and if and only if agents are risk averse (Theorem 2 and 3). In order to identify the

periods of credible monetary policy scheduling we use rolling windows of 400 days with a 60

days overlapping gap. Our second aim is to quantify the loss of trade due to unanticipated

information releases. For the latter we start by looking at meetings occurring during periods

of credible scheduling but off the regular schedule. The absence of a deadline effect prior

to these events would indicate that these were unanticipated. The implication is that off

schedule announcements must have conveyed information to the active risk averse agents

prior to risk sharing trading, amounting to a welfare loss. We proxy the latter by looking at

the average of lost trade due to an early information release.

9See also http://www.cbot.com/cbot/pub/cont detail/0,3206,1525+14446,00.html.
10When the off schedule meetings occur at non-trading days, we take the first trading day after the meeting

as the effective announcement day.
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3.1 Modeling trading volume

We look at the trading volume of short term interest rate futures as a function of changes of

the federal funds rate following the announcements of scheduled and off schedule meetings

by analyzing the following model:

vt = f(rti − Et(rti+1
)) +

∑J
j=−J(α0

jSD
0
t−j + βjUD

+
t−j + αjSD

+
t−j) + εt,

where vt is the daily volume traded of CBOTr 30-Day Federal Funds Futures at time t in

the Chicago Board of Trade. rt is the federal funds rate at t determined by the FOMC

after the meetings, either scheduled or unscheduled. The volume of trading vt depends on

the gap rti − Et(rti+1
), where rti is the actual interest rate at t before the meeting at i + 1

and Et(rti+1
) is the market expectation of change of rate at the i+ 1th meeting given public

information at time t.

In order to capture the effects on the volume of trade when the interest rate changes, we

differentiate between the announcements that lead to a change the federal fund rate from

the ones that do not by introducing the following dummy variables:

SD0
t = I [|∆rt| = 0 and there is a scheduled meeting at t] ,

and

SD+
t = I [|∆rt| 6= 0 and there is a scheduled meeting at t] ,

where I is an indicator function. SD0
t−j and SD+

t−j, j = 1, .., J capture the effects of possible

excess trading the day before scheduled announcements whereas to capture the increase in

trade the day after the announcements we include the dummies SD0
t+j and SD+

t+j, j = 1, .., J.

We also introduce a separate but similar set of variables in order to capture the effects of

the surprise, or off schedule rate changes, by introducing the following dummy variable:

UD+
t = I [|∆rt| 6= 0 and there is a off schedule meeting at t] .
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In order to capture the effects of possible excess trading the day before the off schedule

announcement we use UD+
t−j, j = 1, .., J. For the day after announcement effects we include

the lead dummies UD+
t+j, j = 1, .., J.

We model the difference in interest rate expectations from the realized value rt − Et(ri) as

a function of the difference in output growth i.e., ∆yt = yt+1 − Et+1(yt), and in inflation

expectation11 ∆πt = πt+1−Et+1(πt). We model volume as a function of absolute magnitude

changes of the difference between the median and the forecast values of output growth and

inflation. We obtain:

vt = c+ γ1 |∆πt|+ γ2 |∆yt|

+
∑J

j=−J(α0
jSD

0
t−j + βjUD

+
t−j + αjSD

+
t−j) + εt.

(23)

3.2 Results

Our test identifies two sub-periods in our data set: the first, till September 2001, where

there is statistically significant excess trade (i.e., a deadline effect) two and one day before a

announcement of a rate change. The second period following September 2001 where there is

no significant change in excess trade prior to scheduled announcements. Figure 1 plots the

t-values of α0
1 and α0

2 for the excess trade one day before and two days before a scheduled

announcement for the period January 1995-September 2001 and October 2010-July 2010,

respectively. Each bar on the graphs represents a 400-day window. If in any of the rolling

periods one of the three events SD+
t−j, SD

0 or UD+ does no occur we drop the respective

dummy variables for that period and the corresponding a window in the figure will appear

blank. The three horizontal lines indicate the significance at 1%, 5% and 10% levels. Figure 2

represent the plots for the two periods for the average volume of trade the day of a scheduled

meetings followed by an interest rate change, one and two days prior to that meeting along

11The data on expectations are obtained from Datastream.
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with the average of all the other days.

[INSERT FIGURE 1]

[INSERT FIGURE 2]

An obvious question to ask is why the credibility of monetary policy has been affected after

September 2001. Although several reasons can be attributed to changes in traders’ beliefs,

our model is silent about the reasons affecting the schedule’s credibility.

We can then turn to the to evaluation of the loss of trading volume due to unanticipated

information arrivals. Recall that the emphasis is on the timing of information arrival and

not on its content. The relevant events in this case are the four off schedule announcements

that led to a change in interest rate. Notice that all of them occurred before October 2001,

the period with significant deadline effects of schedule announcements and hence of credible

scheduling. We first show that these were indeed surprises to the market by verifying the

absence of a deadline effect the days prior to these announcements. Table 1 summarizes the

results of the tests12.

[INSERT TABLE 1 AND TABLE 2 HERE]

Finally, in order to quantify the loss of trade we look at the average excess trade one and

two days before each off schedule announcement compared to the value of the intercept in

the table, i.e.,
(
α̂j − β̂j

)
/ĉ, j = −1,−2. We find that an average excess trade of 49% the

day before and 37% two days before the announcement.

4. Conclusion

In this paper we argue that scheduling the communication of payoff relevant public infor-

mation changes financial markets’ behavior non-trivially by entailing a deadline effect. The

12Since in the second period there are no off schedule announcements followed by changes in interest rates
we drop the variables UD+

t−j during that period.
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theoretical contribution has shown that observables like trading volume dynamics can iden-

tify welfare effects of credible scheduling. We apply the theoretical model to the FOMC

monetary policy announcements. We first identify the periods of credible monetary policy

and then we show that in those periods unscheduled announcements entail a loss of trade.

Some final observations are in order: 1) our welfare analysis focuses on the general equilib-

rium effect leading to a loss of insurance opportunities and abstracts from other potentially

beneficial effects that might arise from an early release of information. As pointed out by

Gottardi and Rahi (2008), if there is room for trade after the new information has reached

the market, agents can achieve a larger set of state contingent payoffs by conditioning their

portfolios on this information: if markets are sufficiently incomplete, the latter positive effect

might overcome the welfare loss due to the Hirshleifer effect. This important point is beyond

the aim of our analysis; 2) our paper is also silent about trade increases observed after a

FOMC announcement. We do not account for this effect though this increase clearly shows

up in our data. It is well known that trade for many asset classes increases right after news

are released. Following the argument provided in our model, one may conjecture that in

the presence of agents with different degrees of risk aversion, risk neutral agents trade first

(right after the news reaches the market) and risk averse agents only later; 3) the dynamics

of trade in interest rates futures is substantially different than the one observed prior to

scheduled corporate announcements where trade is depressed rather than increased. The

financial economics literature has identified informational asymmetries as the main reason

for the volume of trade to decrease as uninformed agents avoid the exchange with informed

counterparties13. If trading volume before scheduled announcements is indeed correlated

with the extent of information asymmetries then our empirical findings would imply that

there are little informational asymmetries on monetary policy decisions.

13For the theoretical literature see Admati and Pfeinderer (1988) and Forster and Viswanathan (1990).
For the empirical studies see Chae (2005). For alternative explanations see George, Kaul, and Nimalendran
(1994)).
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Table 1: Estimation Results. Dependent Variable: Volume

From : 03-Jan-1995 to 30-Sept-2001

R
2

0.16
DW 0.66

T 1673 K 18
Variable Coefficient t-statistic t-probability

const 4201.94 33.30 0.00
∆yt 95.45 0.10 0.92
∆πt 4246.67 0.86 0.39

SD+
−2 4985.58 4.48 0.00

SD+
−1 5911.39 5.32 0.00

SD+
0 13514.13 12.14 0.00

SD+
1 8618.00 7.75 0.00

SD+
2 4369.75 3.93 0.00

SD0
−2 -810.41 -1.01 0.31

SD0
−1 -610.00 -0.76 0.45

SD0
0 1758.77 2.19 0.03

SD0
1 -33.51 -0.04 0.97

SD0
2 -1140.34 -1.42 0.16

UD+
−2 3444.39 1.27 0.20

UD+
−1 3865.61 1.42 0.15

UD+
0 17781.72 6.56 0.00

UD+
1 13043.72 4.81 0.00

UD+
2 5596.06 2.07 0.04
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Table 2: Estimation Results. Dependent Variable: Volume

From : 01-Oct-2001 to 02-Jul-2010

R
2

0.02
DW 0.37

T 2176 K 13
Variable Coefficient t-statistic t-probability

const 25837.46 35.76 0.00
∆yt 4259.44 0.86 0.39
∆πt -4185.36 -0.35 0.73

SD+
−2 -2913.41 -0.50 0.61

SD+
−1 -4773.36 -0.83 0.41

SD+
0 14986.61 2.59 0.01

SD+
1 3983.38 0.69 0.49

SD+
2 -5517.07 -0.96 0.34

SD0
−2 8067.29 1.66 0.10

SD0
−1 12530.17 2.57 0.01

SD0
0 24585.18 5.04 0.00

SD0
1 11644.65 2.39 0.02

SD0
2 7321.35 1.49 0.14
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Appendix

Definition 1. By equilibrium of Gε we mean the subgame perfect equilibrium, i.e.: for each

buyer at t ∈ ((l − 1)ε, lε] with history ht = in and endowment ωb0 the equilibrium strategy

(Y ∗ε,t(ω
b
0), B

∗
ε,t(ω

b
0)) is the solution to problem (1) when {(Y ∗ε,t(ωb0), B∗ε,t(ωb0)) : t ∈ (lε, Lε]} are

his future strategies and {F s∗
ε,t : t ∈ ((l−1)ε, Lε]} are the present and future distributions of the

active sellers equilibrium asking prices {S∗ε,t(ωs0)) : t ∈ ((l− 1)ε, Lε]} for all ωs0; similarly, for

each seller at t ∈ ((l−1)ε, lε] with history ht = in and endowment ωs0 the equilibrium strategy

(Y ∗ε,t(ω
s
0), S∗ε,t(ω

s
0)) is the solution to the problem (2) when {(Y ∗ε,t(ωs0), S∗ε,t(ω

s
0)) : t ∈ (lε, Lε]}

are her future strategies and {F b∗
ε,t : t ∈ (lε, Lε]} are the present and future distributions of

active buyers equilibrium bids {B∗ε,t(ωb0) : t ∈ (lε, Lε]} for all ωs0. Finally, the bond market

clears, i.e. at equilibrium q∗ε is such that:

∫ 1

0

∫ ∫
[Y ∗ε,t(ω

b
0) + Y ∗ε,t(ω

s
0)]dF b∗

ε,t(S
∗
ε,t(ω

s
0))dF s∗

ε,t (B
∗
ε,t(ω

b
0))dt = 0

In Lemma 1 we show that the optimal bond’s holding is independent of ε and t. The existence

of the equilibrium can be shown by backward induction and by noting that the only relevant

state is in. The equilibrium in session t = Lε follows from Mas-Colell (1984) and hence for

all trading session t ∈ {ε, . . . , (L− 1)ε}.

Proof of Lemma 1:

Define the following static problem:

G(s, Y : ω, V, F b) =

∫ ∞
s

[u(ω +
s+ x

2
− qY ) + Eu(ω1 + Y )]dF b(x) + F b(s)V,

s.t. Y ∈ arg max
y
u(ω +

s+ x

2
− qy) + Eu(ω1 + y)for all x > st
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or:

G(s, Y : ω, V, F b) =

∫ ∞
s

[u(ω +
s+ x

2
− qY ) + Eu(ω1 − Y )]dF b(x) + F b(s)V,

s.t u′
(
ω +

s+ x

2
− qY

)
= Eu′ (ω1 + Y )

Writing the Lagrangian as:

L(s, x, y : ω, V, F b) = [u(ω + s+x
2
− qy) + Eu(ω1 + y)]I [x > s] + I [x < s]V

+λ (x)
[
u′
(
ω + s+x

2
− qy

)
− Eu′ (ω1 + y)

]
,

we note that the Lagrangian is independent of F b.

Letting Y the argmax of the Lagrangian, we obtain:

∂Y

∂V
= − ∂L

∂V ∂y
/
∂L
∂2y

∣∣∣∣
y=Y

.

Computing the derivative with respect to y :

∂L(s, x, y : ω, V, F b)

∂y
= u′(ω +

s+ x

2
− qy)− Eu′(ω1 + ρ+ y)] +

λ (x)

[
u′′
(
ω +

s+ x

2
− qy

)
+ Eu′′ (ω1 + ρ+ y)

]
= λ (x)

[
u′′
(
ω +

s+ x

2
− qy

)
+ Eu′′ (ω1 + ρ+ y)

]
∂L(s, y : ω, V, F b)

∂y∂V
= 0,

therefore obtain:
∂Y

∂V
= 0. (24)

hence Y does not change with V.
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Note that

V s
ε (t;ω0) = max

s
G(s, Y : ω0, V

s
ε (t+ ε;ω0), F

b
t )

V s
ε (t′;ω0) = max

s
G(s, Y : ω0, V

s
ε (t′;ω0), F

b
t′) for t > t′.

Since by (24) Yt = arg maxy L(s, x, y : ω, V s
ε (t+ε;ω0), F

b
t ) does not change with V s

ε (t+ε;ω0),

we have:

Yt = Yt′ = Y.

The ε−independence of the last period value functions follow from equations (3) and (4).

The following two results (Lemma A1 and Lemma A2) will be useful in proving Lemma2 in

the text.

Lemma A 1. The risk neutral agent’s value function is such that:

∂V a
ε (t;ω0)

∂ω0

= k2 for all t ∈ Tε, a = b, s. (25)

Proof of Lemma A 1: Consider the ε-step problem for the trader of type s and endowment

ω0. For t = 1 the derivative of the last trading session value function (4) is given by:

∂V s
ε (1;ω0)

∂ω0

=
∂u(ω0 − qY ) + Eu(ω1 + ρ+ Y )

∂ω0

= k2.

If (25) holds for t + ε then it holds for any t ∈ Tε. In fact since Sε,t is the argmax of the

problem in (2) it follows that:

∂V s
ε (t;ω0)

∂ω0

=

∫ ∞
Sε,t

∂

∂ω0

[u(ω0 +
Sε,t + x

2
− qY ) + Eu(ω1 + Y )]dF b

ε,t(x)

+ F b
ε,t(Sε,t)

∂

∂ω0

V s
ε (t+ ε;ω0).
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Therefore:
∂V s

ε (t;ω0)

∂ω0

=

∫ ∞
Sε,t

k2dF
b
ε,t(x) + F b

ε,t(Sε,t)k2 = k2.

It now suffices to notice that this is true for all ε-step problems to obtain the result. The

proof is similar for buyers.

Lemma A 2. The risk neutral agents’ reservation price is endowment independent, i.e.:

∂Bε,t

∂ω0

=
∂Sε,t
∂ω0

= 0, for all t ∈ Tε.

Proof of Lemma A 2: Consider a risk-neutral agent as in the proof of Lemma A 1. For a

given t ∈ Tε define:

Gε,t(st, ω0) =

∫ ∞
st

[u(ω0 +
st + x

2
− qY ) + Eu(ω1 + Y )]dF b

ε,t(x)

+ F b
ε,t(st)V

s
ε (t+ ε;ω0),

and notice that:

Gε,t(Sε,t, ω0) = V s
ε (t;ω0).

Being Sε,t the argmax and the second derivative of Gε,t negative, we obtain :

∂Sε,t
∂ω0

= −
∂Gε,t(st,ω0)

∂st∂ω0

∂Gε,t(st,ω0)

∂st∂st

∣∣∣∣∣
st=Sε,t

.

Computing the derivative with respect to ω0 and using Lemma 1 obtain:

∂Gε,t(st, ω0)

∂ω0

=

∫ ∞
st

∂

∂ω0

[u(ω0 +
st + x

2
− qY ) + Eu(ω1+)]dF b

ε,t(x)

+ F b
ε,t(st)

∂

∂ω0

V s
ε (t+ ε;ω0)

=

∫ ∞
st

k2dF
b
ε,t(x) + F b

ε,t(st)k2 = k2,
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then:
∂Gε,t(st, ω0)

∂st∂ω0

= 0.

It follows that:
∂Sε,t
∂ω0

= 0, for all t ∈ Tε.

The proof is similar for the buyers.

Proof of Theorem 2: Consider two continuity points t, t′ ∈ (0, 1) such that t > t′. Consider

also a seller s with endowment ωs0 and a buyer b with endowment ωb0 such that for some

“trading frequency” ε > 0, Bε,t′(ω
b
0) > Sε,t′(ω

s
0). Then from Proposition (13) and (14) we

have Bε,t(ω
b
0) ≥ Bε,t′(ω

s
0) and Sε,t(ω

s
0) ≤ Sε,t′(ω

s
0), we obtain Bε,t(ω

b
0) > Sε,t(ω

s
0).

Therefore,

{(ωb0, ωs0) : Bε,t(ω
b
0) > Sε,t(ω

s
0)} ⊇ {(ωb0, ωs0) : Bε,t′(ω

b
0) > Sε,t′(ω

s
0)}.

It follows that:

vε,t = Pr{(ωb0, ωs0) : Bε,t(ω
b
0) > Sε,t(ω

s
0)}

≥ Pr{(ωb0, ωs0) : Bε,t′(ω
b
0) > Sε,t′(ω

s
0)} = vε,t′ .

Proof of Lemma 2: Consider the ε-step problem. By Lemma A 2 since the ask prices

Sε,t and the bid prices Bε,t are independent of the endowment ω0 at each t ∈ Tε then the

distribution F b
t,ε(x) is degenerate. Let B̄ε,t be the degenerate bid of the buyers, then:

dF b
ε,t(x) = 1 if x = B̄t,ε

= 0 otherwise.

Notice that since the distribution of bids is degenerate at B̄ε,t, no seller will ask strictly less

than B̄ε,t and hence it will be optimal to proceed to the next interval. Therefore F b
ε,t(Sε,t) = 1.
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Hence it follows from (5) that:

V s
ε (t;ω0) = V s

ε (t+ ε;ω0) for all t ∈ Tε and for all ε > 0.

Since V s
ε (1;ω0) = u(ω0 − qY ) + Eu(ω1 + ρ + Y ) from equation (4) the result follows. The

proof is similar for the buyers’ reservation price.

Proof of Theorem 3: Consider two points t, t′ ∈ (0, 1) such that t > t′. By Lemma 2 and

computing the limit as ε→ 0:

V s(t;ω0) = V s(t′;ω0)

u(ω0 + St − qY ) + Eu(ω1 + Y ) = u(ω0 + St′ − qY ) + Eu(ω1 + Y ).

It follows that:

St = St′ .

The same is true for the bid prices Bt.

In the last trading session, the ask price S1 can be solved as:

u(ω0 + S1 − qY ) + Eu(ω1 + Y ) = u(ω0 − qY ) + Eu(ω1 + ρ+ Y ),

or

S1 =
E(ω1 + ρ+ Y )− E(ω1 + Y )

k2

for all ω0.

Similarly, in the last period the bid B0 can be solved as:

u(ω0 −B1 − qY ) + Eu(ω1 + ρ+ Y ) = u(ω0 − qY ) + Eu(ω1 + Y ).

It follows that:

B∗1 =
Eu(ω1 + ρ+ Y )− Eu(ω1 + Y )

k2

for all ω0.
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Then obtain:

P1 = B1 = S1 =
Eu(ω1 + ρ+ Y )− Eu(ω1 + Y )

k2

= ρ. (26)

Proof of Lemma 3: Suppose equations (17) and (18) hold. Then for any pair t 6= t′ ∈ (0, 1)

following the first trading session and a trading frequency ε > 0:

vt = Pr
{

(ωb0, ω
s
0) : B(ωb0) ≥ S(ωs0)

}
= vt′ .

If instead (17) does not hold then by (13) there exists a t such that for all t > t there exists

a subset of sellers such that:

Ωt = {ωs0 : St(ω
s
0) > St(ω

s
0)} and Pr(Ωt) > 0.

This implies:

vt = Pr
{

(ωb0, ω
s
0) : B(ωb0) ≥ St(ω

s
0)
}

= Pr
{

(ωb0, ω
s
0) : B(ωb0) ≥ St(ω

s
0) s.t. ωs0 ∈ Ωt)

}
+ Pr

{
(ωb0, ω

s
0) : B(ωb0) ≥ S(ωs0) s.t. ωs0 ∈ Ωc

t

}
< Pr

{
(ωb0, ω

s
0) : B(ωb0) ≥ St(ω

s
0) s.t. ωs0 ∈ Ωt)

}
+ Pr

{
(ωb0, ω

s
0) : B(ωb0) ≥ S(ωs0) s.t. ωs0 ∈ Ωc

t

}
= Pr

{
(ωb0, ω

s
0) : B(ωb0) ≥ St(ω

s
0)
}

= vt.

a contradiction. Similarly if (18) does not hold there is a contradiction.

Proof of Theorem 4: Consider a seller with endowment ω0. Since:

u(ω0 + S1 − qY ) + Eu(ω1 + Y ) = u(ω0 − qY ) + Eu(ω1 + ρ+ Y ),
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and Eu(ω1 + Y ) < Eu(ω1 + ρ+ Y ) then S1 > 0. By Lemma 3 and the envelope theorem:

∂V s(t;ω0)

∂ω0

=

∫ ∞
S1

∂

∂ω0

[
u(ω0 +

S1 + x

2
− qY ) + Eu(ω1 + Y )

]
dF b(x),

+ F b(S1)
∂

∂ω0

V s(t+ ε;ω0),

u′(ω0 − qY ) =

∫ ∞
S1

u′(ω0 +
S1 + x

2
− qY )dF b(x) + F b(S1)u

′(ω0 − qY )

0 =

∫ ∞
S1

[
u′(ω0 − qY )− u′(ω0 +

S1 + x

2
− qY )

]
dF b(x) for all ω0 and x ≥ S1.

Since u′′ ≤ 0 we have u′(ω0 + ρ + Y )− u′(ω0 + S1+x
2

+ Y ) ≥ 0 for almost all x ≥ S1. So the

last equation is true if:

u′(ω0 − qY ) = u′(ωi +
S1 + x

2
− qY ) for a.e. x ≥ S1, or (27)

dF b(x) = 0 for all x ≥ S1. (28)

If (27) is true then the utility is linear. If (28) is true then the distribution of bid prices are

degenerate at some B′ for all ω0’s:

u(ω0 −B′ − qY ) + Eu(ω1 + ρ+ Y ) = u(ω0 − qY ) + Eu(ω1 + Y ), for all ω0.

Computing the derivatives obtain:

u′(ω0 −B′ − qY ) = u′(ω0 − qY ), for all ω0,

implying that the utility function is linear.

Proof of Theorem 6: Consider a seller with endowment ω0. Consider the lagrangian
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function:

L(s, x, y : ω, V, V ) = [u(ω +
s+ x

2
+ y) + Eu(ω1 + ρ− y)]I [x > s] + I [x < s]

[
τV + (1− τ)V

]
+λ (x)

[
u′
(
ω +

s+ x

2
+ y

)
− Eu′ (ω1 + ρ− y)

]
.

Notice that V s
ε (t;ω0, τt) =

∫∞
Sε,t(ω0,τt)

L(s, x, Yε,t : ω, V s
ε (t + ε;ω0, τt+ε), V

s

ε(ω1))dF
b
ε,t(x; τt).

Then define a functional Φ : V → V , where V is the space of bounded continuous functions

such that:

Φ (V s
ε (t;ω0, τt)) =

∫ ∞
Sε,t(ω0,τt)

L(Sε,t(ω0, τt), x, Yε,t : ω, V s
ε (t;ω0, τt), V

s

ε(ω1))dF
b
ε,t(x; τt).

where (Sε,t(ω0, τt),Yε,t) is the argmax of (22). We show that Φ is a contraction mapping. Let

V s
ε (t;ω0, τt) and V

′s
ε (t;ω0, τt) be two functions then:

Φ(V s
ε (t;ω0, τt))− Φ(V

′s
ε (t;ω0, τt)) = τt+εF

b
ε,t(Sε,t−)(V s

ε (t+ ε;ω0, τt)− V
′s
ε (t+ ε;ω0, τt)).

Since supt∈(0,∞) τt < 1 and F b
ε,t(Sε,t(ω0, τt)) ≤ 1, we can choose a δ < 1 such that supt∈(0,∞) τt

F b
ε,t(Sε,t(ω0, τt)−) ≤ δ < 1 therefore,

∥∥∥Φ(V s(t;ω0, τt))− Φ(V
′s(t;ω0, τt))

∥∥∥ ≤ δ
∥∥∥V s(t+ ε;ω0, τt)− V

′s(t+ ε;ω0, τt)
∥∥∥ . (29)

Therefore for any ε > 0, by the contraction mapping theorem it follows that: a) V s
ε (t;ω0, τt) =

V s(t;ω0, τt) = V
s

0(ω1). b) The ask prices are stationary and independent of τt. The proof for

the bid prices is similar.

Proof of Theorem 7: From part b) of Theorem 6, let Sε,t(ω0, τt) = Ŝ(ω0) for all ω0, the

stationary ask prices. Therefore F a
ε,t(x) = F a(x) , a = b, s are stationary distributions and

V a(t;ω0, τt) = V
a
(ω0), a = b, s. Then:
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V
s
(ω0) =

∫ ∞
Ŝ(ω0)

[u(ω0 +
Ŝ(ω0) + x

2
− qY ) + Eu(ω1 + Y )]dF b(x)

+ F b(Ŝ(ω0))
[
qt+εu(ω0 − qY ) + (1− τt+ε)V

s
(ω0)

]
=

∫ ∞
Ŝ(ω0)

[u(ω0 +
Ŝ(ω0) + x

2
− qY ) + Eu(ω1 + Y )]dF b(x)

+ F b(Ŝ(ω0))V
s
(ω0).

Therefore:

∫ ∞
Ŝ(ω0)

[u(ω0 +
Ŝ(ω0) + x

2
− qY ) + Eu(ω1 + Y )− V s

(ω0)]dF
b(x) = 0,

implying that:

[u(ω0 +
Ŝ0(ω0) + x

2
− qY ) + Eu(ω1 + Y )− V s

(ω0)]dF
b(x) for almost all x ∈ (Ŝ(ω0),∞).

In particular, for x >Ŝ0(ω0) dF
b(x) = 0 since u is strictly increasing hence

u(ω0 + Ŝ0(ω0)− qY ) + Eu(ω1 + Y ) = V
s
(ω0).

Or:

u(ω0 + Ŝ0(ω0)− qY ) + Eu(ω1 + Y ) = u(ω0 − qY ) + Eu(ω1 + ρ+ Y ),

that implies that Ŝ(ω0) is the price of the last trading opportunity when scheduled announce-

ments are credible (see (15)). The same argument applies to the buyers.

As before the expected volume at t, is given by:

vτ = Pr{(ωb0, ωs0) : B̂0(ω
b
0) ≥ Ŝ0(ω

s
0)}

= Pr{(ωb0, ωs0) : B0(ω
b
0) ≥ S1(ω

s
0)} = v,
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since the bid and ask prices are stationary.

Proof of Corollary 1: By theorem (2) and (7) for some t ∈ (0, 1] , vτ = v > vt for all t < t.

Therefore ∫ 1

0

vτdt >

∫ 1

0

vtdt.
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