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Why study the crust?

Magnetic instabilities in the crust could lead to:
@ magnetic spots / hotspots at the surface

@ enhanced magnetic dissipation
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Why study the crust?

Magnetic instabilities in the crust could lead to:
@ magnetic spots / hotspots at the surface

@ enhanced magnetic dissipation

Three known magnetic instabilities:

@ Density-shear instability  (requires density gradient)
(Gordeev & Rudakov 1969, Rheinhardt et al. 2004, Wood et al. 2014)

@ Resistive tearing instability  (requires resistivity)
(Gordeev 1970, Rheinhardt & Geppert 2002, Wood et al. 2014)

@ Thermo-electric instability ~ (requires temperature gradient)
(Blandford et al. 1983, Urpin et al. 1986)
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Electron MHD / Hall MHD

@ Assume the crust is a rigid ionic lattice

@ Charge and heat carried entirely by electrons.
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Electron MHD / Hall MHD

@ Assume the crust is a rigid ionic lattice

@ Charge and heat carried entirely by electrons.
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The magneto-thermal evolution model
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The magneto-thermal evolution model
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@ A strong field inhibits heat flow across field lines:

kE-VT=k(b-VT)b
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The magneto-thermal evolution model
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@ A strong field inhibits heat flow across field lines:
k-VT =k(b-VT)b

@ But a weak field encourages heat flow across field lines!

k-VT =kVT+ k(ect/1)B x VT
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So what happens?

0.303 500 kyr

0.296

Pons et al. (2009) Wood & Hollerbach (2015)
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Thermoelectric instability

The principal effect leading to field generation can be understood as follows. Suppose
that there is a small horizontal component of magnetic field of strength B. Hot electrons
from below will be deflected horizontally by the field; cooler electrons from above will be
deflected slightly less in the opposite direction. The net effect is to produce a horizontal
heat flux, F| ~ (er/,u)ﬁx F, where e =|e| is the magnitude of the electronic charge, 7 is
the electron collision time, u is the electron chemical potential and F is the vertical heat flux
(we use units in which ¢ = kg=1h = 1). Fourier components of the magnetic field with hori-
zontal wavelength comparable with the depth z create horizontal temperature gradients
~ F[k, where k is the thermal conductivity. The pressure of a degenerate, relativistic free
electron gas is P(ne, T') = P (ne, T = 0) + (7%/6) ne T % /1. Hence there is an additional pressure
gradient ~ n, TV T/u, which must be balanced by a thermoelectric field £ ~ TV T/ue ~
BF[un,. This field has a non-vanishing curl and so — VxE = 3B/at = I.B, where I, ~ Flungz.
The growth rate I',is positive when the heat flows down the density gradient.

Blandford et al. (1983)
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Thermoelectric instability
For perturbations to a background with B = 0:

0B c
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Thermoelectric instability
For perturbations to a background with B = 0:
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@ Biermann battery generates .J, o V471" (analogous to buoyancy).

@ Heat flux converges where J - VT' > 0 (analogous to advection).
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@ Biermann battery generates .J, o V471" (analogous to buoyancy).

@ Heat flux converges where J - VT' > 0 (analogous to advection).

@ Instability onset identical to convection in a porous medium!
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Thermoelectric instability
For perturbations to a background with B = 0:

0Jr n 9 2 (0S\ dn _, .,
ot v [TZV(T JT)] T e <8n>T dr Vil

T
0=V (kVT)+ (47Te7'k:/u)i—r Iy

Biermann battery generates J, oc V41" (analogous to buoyancy).

@ Heat flux converges where J - VT' > 0 (analogous to advection).

[

Instability onset identical to convection in a porous medium!

F 1\ 1
Max growth rate ~ 37 <;> ~ 105 yr (Blandford et al. 1983).
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Thermoelectric instability

Do we actually get the instability?
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Conclusions

@ Significant ohmic heating in the crust.

@ Magnetic field reduces luminosity.
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@ No sign of thermo-electric instability (so far).
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Part 1l
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Tearing instablity
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@ Furth, Killeen & Rosenbluth (1963; 2515 citations)

Karimabadi et al. (2013)

Toby Wood (Newcastle) Magneto-thermal & tearing instabilities 11 / 14



EMHD tearing instablity

Almost certainly seen by Rheinhardt & Geppert (2002)

0.0E

—05E

-1.0

@ Localised near boundary (where B = 0)
o Growthrate ~ 7%/7 (Wood et al. 2014)
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Tearing instablity

@ “Normal” MHD gives the boundary-layer equation:

d t2 du
dt <1 + 12 dt) “

solved by Pegoraro & Schep (1986)
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@ “Normal” MHD gives the boundary-layer equation:
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u=t"3/? [Wl_1
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@ Electron MHD gives the boundary-layer equation:

d t2 du 2 2
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@ “Normal” MHD gives the boundary-layer equation:
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@ Electron MHD gives the boundary-layer equation:
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Prospects for the crust

@ Density-shear instability
> Quite likely (Wood et al. 2014)

@ Resistive tearing instability
» Possible. But perhaps more relevant to the magnetosphere?

@ Thermo-electric instability
» Unlikely, except for particular field geometries
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