Southampton, October 10, 2018

Holographic RG flows on Curved manifolds and F-functions.

Elias Kiritsis

CCTP/ITCP University of Crete APC, Paris

- Ongoing work with:
- Francesco Nitti, Lukas Witkowski, Jewel Ghosh (APC, Paris)
- Published work in:
- arXiv:1805.01769
- ArXiv:1711.08462
- ArXiv:1611.05493

Based on earlier work:

- with Francesco Nitti and Wenliang Li ArXiv:1401.0888
- with Vassilis Niarchos ArXiv:1205.6205

Curved Holographic RG flows+F-functions,

• The Wilsonian RG is controlled by first order flow equations of the form

$$\frac{dg_i}{dt} = \beta_i(g_i) \quad , \quad t = \log \mu$$

• Despite current knowledge, there are many aspects of QFT RG flows of unitary relativistic QFTs, that are still not understood.

♠ It is not known if the end-points of RG flows in 4d are fixed points or include other exotic possibilities (limit circles or "chaotic" behavior)

♠ This is correlated with the potential symmetry of scale invariant theories: are they always conformally invariant? (CFTs)?

• In 2d, the answer to this question is "yes".

♠ Although in 4d this has been analyzed also recently, there are still loopholes in the argument.
El Showk+Rychkov+Nakavama, Luty+Polchinski+Rattazzi, ♠ In 2d it is a folk-theorem that the strong version of the c-theorem is expected to exclude limit cycles and other exotic behavior in Unitary Relativistic QFTs.

Zamolodchikov

• The folk-theorem between the strong version of the a-theorem and the appearance of limit cycles has at least one important loop-hole:

If the β -functions have branch singularities away from the UV fixed point, then a limit cycle can be compatible with the strong version of the a/c-theorem.

Curtright+Zachos

• If this ever happens, it can only happen "beyond perturbation theory".

Curved Holographic RG flows+F-functions,

C-functions and F-Functions

• In 2 and 4 dimensions we have established c-theorems and associated c-functions, that interpolate properly between UV and IR CFTs along an RG flow.

Zamolodchikov, Cardy, Komargodky+Schwimmer,

• In 3-dimensions, there is an F-theorem for CFTs associated with the S^3 renormalized partition function.

Jafferis, Jafferis+Klebanov+Pufu+Safdi

• But the associated partition function fails to be a monotonic F-function along the the flow.

Klebanov+Pufu+Safdi, Taylor+Woodhead

• There is an alternative "F-function": the appropriately renormalized entanglement entropy associated to an S^2 in R^3 .

Myers+Sinha, Liu+Mazzei

• There is a general proof that in 3d this is always monotonic. Casini+Huerta+Myers, Casini+Huerta

Curved Holographic RG flows+F-functions,

• Build an understanding of the general structure of holographic RG flows of QFTs on flat space.

• Build an understanding of the general structure of holographic RG flows of QFTs on curved spaces (spheres etc)

• Use this knowledge to revisit F-functions in 3 and more dimensions.

 \bullet Here I will present some highlights of curved space flows and associated $\mathcal{F}\textsc{-}functions$

Curved Holographic RG flows+F-functions,

Holographic RG flows: the setup

• For simplicity and clarity I will consider the bulk theory to contain only the metric and a single scalar (Einstein-dilaton gravity), dual to the stress tensor $T_{\mu\nu}$ and a scalar operator O of a dual QFT.

• The two derivative action (after field redefinitions) is

$$S_{bulk} = M^{d-1} \int d^{d+1}x \, \sqrt{-g} \left[R - \frac{1}{2} (\partial \phi)^2 - V(\phi) \right] + S_{GH}$$

- We assume $V(\phi)$ is analytic everywhere except possibly at $\phi = \pm \infty$.
- We will consider the AdS regime: (V < 0 always) and look (in the beginning) for solutions with d-dimensional Poincaré invariance.

$$ds^{2} = du^{2} + e^{2A(u)} dx_{\mu} dx^{\mu} , \quad \phi(u)$$

• The Einstein equations have three integration constants.

• The Einstein equations can be turned to first order equations using the "superpotential" (no-supersymmetry here).

$$\dot{A} = -\frac{1}{2(d-1)}W(\phi) \quad , \quad \dot{\phi} = W'(\phi) \quad , \quad dot = \frac{d}{du}$$

$$-\frac{d}{4(d-1)}W(\phi)^{2} + \frac{1}{2}W(\phi)^{\prime 2} = V(\phi) \quad , \quad \prime = \frac{d}{d\phi}$$

Boonstra+Skenderis+Townsend, Skenderis+Townsend, De Wolfe+Freedman+Gubser+Karch, de Boer+Verlinde²

- These equations have the same number of integration constants. In particular there is a continuous one-parameter family of $W(\phi)$.
- Given a $W(\phi)$, A(u) and $\phi(u)$ can be found by integrating the first order flow equations.
- The two integration constants will be later interpreted as couplings of the dual QFT.

- The third integration constant hidden in the superpotential equation controls the vev of the operator dual to ϕ .
- Therefore:

RG flows are in one-to one correspondence with the solutions of the "superpotential equation".

$$-\frac{d}{4(d-1)}W(\phi)^2 + \frac{1}{2}W(\phi)^2 = V(\phi)$$

• Regularity of the bulk solution fixes the *W*-equation integration constant (uniquely in generic cases).

Curved Holographic RG flows+F-functions,

General properties of the superpotential

- Because of the symmetry $(W, u) \rightarrow (-W, -u)$ we can always take W > 0.
- The superpotential equation implies

$$W(\phi) = \sqrt{-\frac{4(d-1)}{d}V(\phi) + \frac{2(d-1)}{d}W'^2} \ge \sqrt{-\frac{4(d-1)}{d}V(\phi)} \equiv B(\phi) > 0$$

• The holographic "c-theorem" for all flows:

$$\frac{dW}{du} = \frac{dW}{d\phi} \frac{d\phi}{du} = W'^2 \ge 0$$

- The only singular flows are those that end up at $\phi \to \pm \infty$.
- All regular solutions to the equations are flows from an extremum of V to another extremum of V (for finite ϕ).

Curved Holographic RG flows+F-functions,

The standard holographic RG flows

• The standard lore says that the maxima of the potential correspond to UV fixed points, the minima to IR fixed points, and the flow from a maximum is to the next minimum.

• The real story is a bit more complicated.

Curved Holographic RG flows+F-functions,

• When W reaches the boundary region $B(\phi)$ at a generic point, it develops a generic non-analyticity.

$$W_{\pm}(\phi) = B(\phi_B) \pm (\phi - \phi_B)^{\frac{3}{2}} + \cdots$$

• There are two branches that arrive at such a point.

- Although W is not analytic at ϕ_B , the full solution (geometry+ ϕ) is regular at the bounce.
- The only special thing that happens is that $\dot{\phi} = 0$ at the bounce.
- All bulk curvature invariants are regular at the bounce!
- All fluctuation equations of the bulk fields are regular at the bounce!
- The holographic β -function behaves as

$$\beta \equiv \frac{d\phi}{dA} = \pm \sqrt{-2d(d-1)\frac{V'(\phi_B)}{V(\phi_B)}(\phi - \phi_B) + \mathcal{O}(\phi - \phi_B)}$$

• The β -function is patch-wise defined. It has a branch cut at the position of the bounce.

- It vanishes at the bounce without the flow stopping there.
- This is non-perturbative behavior.

• Such behavior was conjectured that could lead to limit cycles without violation of the a-theorem.

Curtright+Zachos

• We can show that limit cycles cannot happen in theories with holographic duals (and no extra "active" dimensions).

• Vev flow between two minima of the potential

- Exists only for special potentials. It is a flow driven by the vev of an irrelevant operator.
- A analogous phenomenon happens in N=1 sQCD.

Seiberg, Aharony

Curved Holographic RG flows+F-functions,

10

Regular multibounce flows

Quantum field theories on curved manifolds

• There are many reasons to be interested in QFTs over curved manifolds:

• Compact manifolds like S^n are important to regularize massless/CFTs in the IR.

♠ QFT on deSitter manifolds is interesting due to the fact we live in a patch of (almost) de Sitter.

♠ As we will see, a normal QFT on the static patch of de Sitter has a partition function that is thermal.

♠ The induced effective gravitational action as a function of curvature can serve as a Hartle-Hawking wave-function for three-metrics.

• AdS/CFT can provide concrete quantitative wave-functions that can depend on cosmological constant and the 3-geometry.

Hartle+Hertog

♠ Curvature, although UV-irrelevant, is IR relevant and can change importantly the IR structure of a given theory.

We will see examples of quantum phase transitions driven by curvature.

♠ It will also turn out to be a useful tool in analysing sphere partition functions and their relationship to \mathcal{F} -theorems.

♠ Finally it can be used to provide a concrete check on claims of particlecreation backreaction on the cosmological constant, beyond perturbation theory.

Tsamis+Woodard

The setup

• The holographic ansatz for the ground-state solution is

$$ds^{2} = du^{2} + e^{2A(u)}\zeta_{\mu\nu} dx^{\mu}dx^{\nu} , \phi(u)$$

• $\zeta_{\mu\nu}$ is proportional to the boundary metric: we will take it to be maximally symmetric and constant curvature.

- This includes sphere (S^d), de Sitter (dS_d) or Euclidean/Minkowski AdS_d.
- Therefore we consider a strongly-coupled QFT on S^d , dS_d , AdS_d .

• In the AdS case, the ansatz has two boundary singularities so the results in that case require some caution.

• We take the bulk theory to be the same as before

$$S_{bulk} = M^{d-1} \int d^{d+1}x \, \sqrt{-g} \left[R - \frac{1}{2} (\partial \phi)^2 - V(\phi) \right] + S_{GH}$$

• Now there are two parameters (couplings) for the solution: ϕ_0 and R_{UV} . They combine in a single dimensionless parameter:

$$\mathcal{R} \equiv \frac{R_{\rm UV}}{\phi_0^2}$$

- $\mathcal{R} \rightarrow 0$ will probe the full original theory except a small IR region.
- $\mathcal{R} \to \infty$ will explore only the UV of the original theory.
- Therefore by varying \mathcal{R} we have an invariant/well-defined dimensionless number that tracks the UV flow from the UV to the IR.
- The results are generalizable to the multi-field case.

Curved Holographic RG flows+F-functions,

The first order RG flows

• We have two first order flow equations:

$$\dot{A} = -\frac{1}{2(d-1)}W(\Phi)$$
, $\dot{\Phi} = S(\Phi)$

where the functions $W(\Phi)$, $S(\Phi)$ satisfy 2 first order non-linear equations

$$\frac{d}{2(d-1)}W^2 + (d-1)S^2 - dSW' + 2V = 0 \quad , \quad SS' - \frac{d}{2(d-1)}SW - V' = 0$$

• The two dimensionless integration constants that enter W, S, I will call C, \mathcal{R} . The first will be related to the vev of O dual to ϕ . \mathcal{R} is related to the the curvature of the boundary metric.

• We also define

$$T(\Phi) \equiv \mathbf{R} e^{-2A} = \frac{d}{2} S(\Phi) (W'(\Phi) - S(\Phi))$$

• $T \sim R$, and therefore T = 0 in the flat case.

Curved Holographic RG flows+F-functions,

The interpretation of parameters

- The solutions have four parameters:
- \clubsuit Two (A_0, ϕ_-) come from integrating the flow equations:

 $\dot{A} \sim W$, $\dot{\Phi} \sim S$

They are sources (generically):

- A_0 is the UV scale of length.
- ϕ_{-} is the UV coupling constant of O.

♠ The other two are in W, S. The expansion near a UV fixed point is $(\Phi \rightarrow 0)$

$$W(\Phi) = \frac{2(d-1)}{\ell} + \frac{\Delta_{-}}{2\ell} \Phi^{2} + \mathcal{O}(\Phi^{3}) + \delta W, \qquad S(\Phi) = \frac{\Delta_{-}}{2\ell} \Phi + \mathcal{O}(\Phi^{2}) + \delta S$$

• The non-analytic terms are:

$$\delta W(\Phi) = \frac{\mathcal{R}}{d\ell} |\Phi|^{\frac{2}{\Delta_{-}}} \left(1 + \mathcal{O}(\Phi) + \mathcal{O}(|\Phi|^{2/\Delta_{-}}\mathcal{R}) + \mathcal{O}(|\Phi|^{d/\Delta_{-}}C(\mathcal{R})) \right)$$
$$+ \frac{C(\mathcal{R})}{\ell} |\Phi|^{\frac{d}{\Delta_{-}}} \left(1 + \mathcal{O}(\Phi) + \mathcal{O}(|\Phi|^{2/\Delta_{-}}\mathcal{R}) + \mathcal{O}(|\Phi|^{d/\Delta_{-}}C(\mathcal{R})) \right)$$
$$\delta S(\Phi) = \frac{d}{\Delta_{-}} \frac{C(\mathcal{R})}{\ell} |\Phi|^{\frac{d}{\Delta_{-}}-1} \left(1 + \mathcal{O}(\Phi) + \mathcal{O}(|\Phi|^{2/\Delta_{-}}\mathcal{R}) + \mathcal{O}(|\Phi|^{d/\Delta_{-}}C(\mathcal{R})) \right) + \mathcal{O}\left(|\Phi|^{2/\Delta_{-}+1}\mathcal{R} \right)$$
$$T(\Phi) = \mathcal{R} |\phi|^{\frac{2}{\Delta_{-}}} + \cdots$$

- The expansions above give a precise definition of the function $C(\mathcal{R})$
- We obtain the connection to observables

$$\mathcal{R} = R |\Phi_{-}|^{-2/\Delta_{-}} , \qquad \langle O \rangle(\mathcal{R}) = \frac{d}{\Delta_{-}} C(\mathcal{R}) |\Phi_{-}|^{\frac{\Delta_{+}}{\Delta_{-}}}$$

- $\mathcal{R} > 0$ describes S^d and dS_d . $\mathcal{R} < 0$ describes AdS_d .
- C_0 is the second integration constant.

$$C(\mathcal{R}) \underset{\mathcal{R} \to 0}{=} C_0 + C_1 \mathcal{R} + \mathcal{O}(\mathcal{R}^2) + \mathcal{O}(\mathcal{R}^{3/2 - \Delta_-^{\mathrm{IR}}})$$

• The general structure near a maximum (UV) of the potential has the "resurgent" expansion

$$W(\phi) = \sum_{m,n,r \in Z_0^+} A_{m,n,r} (C \phi^{\frac{d}{\Delta_-}})^m (\mathcal{R} \phi^{\frac{2}{\Delta_-}})^n \phi^r$$

Curved Holographic RG flows+F-functions,

- When $R_{UV} = 0$ the IR end-poids are minima of $V(\Phi)$.
- When $R_{UV} \neq 0$, the IR end points cannot be minima of $V(\Phi)$.
- The flow can end at any Φ_0 , $V'(\Phi_0) \neq 0$, as

$$W(\Phi) = \frac{W_0}{\sqrt{|\Phi - \Phi_0|}} + \mathcal{O}\left(|\Phi - \Phi_0|^0\right) \quad , \quad S(\Phi) = S_0\sqrt{|\Phi - \Phi_0|} + \mathcal{O}\left(|\Phi - \Phi_0|\right)$$

with

$$S_0^2 = \frac{2|V'(\Phi_0)|}{d+1}$$
, $W_0 = (d-1)S_0$

• At $\Phi = \Phi_0$,

$$T \simeq \frac{d}{4} \frac{W_0 S_0}{|\Phi - \Phi_0|} \to \infty \quad \text{as} \quad \Phi \to \Phi_0$$

- We have a regular horizon (similar to the Poincaré horizon).
- Generically for each Φ_0 we have a unique solution.
- Solving the equations towards the UV, we obtain the parameters of the REGULAR flow \mathcal{R} and $C(\mathcal{R})$ as a function of Φ_0 .
- We can therefore take Φ_0 as the independent dimensionless parameter of the theory.
- It has the advantage, that there is a unique solution for each Φ_0 .

The vanilla flows at finite curvature

Detour: Curvature-dependent β -functions and geometric flows

• We can calculate from the first order formalism the curvature dependent (holographic) β -function

$$\beta(\Phi) \equiv \frac{d\Phi}{dA} = \frac{\dot{\phi}}{\dot{A}} = -2(d-1)\frac{S(\Phi)}{W(\Phi)}$$

• Near the UV

$$\beta(\Phi) = -\Delta_{-}\Phi + \mathcal{O}(\Phi^{2}) + \mathcal{O}\left(\mathcal{R}|\phi|^{1+\frac{2}{\Delta_{-}}}\right) + \cdots$$

• Near the IR (horizon)

 $\beta(\Phi) \sim (\Phi - \Phi_0)$

- The local RG takes couplings to weakly depend on x^{μ} .
- The holographic RG can be generalized straightforwardly to the local RG

$$\dot{\phi} = W' - U' R + \frac{1}{2} \left(\frac{W}{W'} U' \right)' (\partial \phi)^2 + \left(\frac{W}{W'} U' \right) \Box \phi + \cdots$$

$$\dot{\gamma}_{\mu\nu} = -\frac{W}{d-1}\gamma_{\mu\nu} - \frac{1}{d-1}\left(U R + \frac{W}{2W'}U'(\partial\phi)^2\right)\gamma_{\mu\nu} + \\ +2U R_{\mu\nu} + \left(\frac{W}{W'}U' - 2U''\right)\partial_{\mu}\phi\partial_{\nu}\phi - 2U'\nabla_{\mu}\nabla_{\nu}\phi + \cdots$$

Papadimitriou, Kiritsis+Li+Nitti

• $U(\phi)$, $W(\phi)$ are solutions of

$$-\frac{d}{4(d-1)}W^2 + \frac{1}{2}W'^2 = V \quad , \quad W' \ U' - \frac{d-2}{2(d-1)}W \ U = 1$$

• Like in 2d σ -models we may use it to define "geometric" RG flows. Curved Holographic RG flows+F-functions,

Osborn

The on-shell action

• Once we understand the structure of flows, we must calculate the on-shell action for such flows.

 \blacklozenge It is $S_{on-shell}$ that contains all the quantitative information that is important for the many applications.

• A direct calculation using the equations of motion gives:

$$F = 2M_p^{d-1}V_d \left[(d-1) \left[e^{dA} \dot{A} \right]_{\text{UV}} + \frac{R}{d} \int_{\text{IR}}^{\text{UV}} du \, e^{(d-2)A} \right] \,,$$

where we defined

$$V_d \equiv \int \mathrm{d}^d x \sqrt{|\zeta|} = \mathrm{Vol}(S^d)$$
.

• We may rewrite it as

$$F = -M_p^{d-1} \tilde{\Omega}_d \left(T^{-\frac{d}{2}}(\Phi) W(\Phi) + T^{-\frac{d}{2}+1}(\Phi) U(\Phi) \right) \Big|_{\Phi(u) \to \Phi(\log \epsilon)},$$

where $U(\Phi)$ satisfies

$$S(\Phi)U'(\Phi) - \frac{d-2}{2(d-1)}W(\Phi)U(\Phi) = -\frac{2}{d}U(\Phi)$$

with a UV expansion, near $\Phi \to 0$

$$U(\Phi) = \ell \left[\frac{2}{d(d-2)} + B(\mathcal{R}) |\Phi|^{(d-2)/\Delta_-} + \mathcal{O}(\mathcal{R} |\Phi|^{2/\Delta_-}) \right],$$

• It defined the new function $B(\mathcal{R})$ unambiguously.

• It is now clear that $F(\Lambda, \mathcal{R})$ depends on two dimensionless parameters: \mathcal{R} and the cutoff ϵ that we will translate to a conventional dimensionless cutoff:

$$\Lambda \equiv \frac{e^{A(u)}}{\ell |\Phi_{-}|^{1/\Delta_{-}}} \bigg|_{u = \log \epsilon},$$

Curved Holographic RG flows+F-functions,

Renormalization in d=3

• To define the finite on-shell action we must study the structure of divergences and then subtract them.

Skenderis+Henningson, Papadimitriou+Skenderis, Papadimitriou

$$F^{d=3}(\Lambda, \mathcal{R}) = -(M\ell)^2 \tilde{\Omega}_3 \left\{ \mathcal{R}^{-3/2} \left[4\Lambda^3 \left(1 + \mathcal{O} \left(\Lambda^{-2\Delta_-} \right) \right) + C(\mathcal{R}) \right] + \mathcal{R}^{-1/2} \left[\Lambda \left(1 + \mathcal{O} \left(\Lambda^{-2\Delta_-} \right) \right) + B(\mathcal{R}) \right] \right\} + \dots,$$

• To remove the divergences in general we must subtract two counterterms

$$F_{ct}^{(0)} = M^{d-1} \int_{\mathsf{UV}} d^d x \sqrt{|\gamma|} W_{ct}(\Phi) \quad , \quad F_{ct}^{(1)} = M^{d-1} \int_{\mathsf{UV}} d^d x \sqrt{|\gamma|} R^{(\gamma)} U_{ct}(\Phi)$$

where

$$\frac{d}{4(d-1)}W_{ct}^2 - \frac{1}{2}(W_{ct}')^2 = -V \quad , \quad W_{ct}'U_{ct}' - \frac{d-2}{2(d-1)}W_{ct}U_{ct} = -1.$$

• The functions W_{ct}, U_{ct} are determined by two constants C_{ct}, B_{ct} .
• Therefore the renormalized on-shell action is

$$F^{\text{ren}}(\mathcal{R}|B_{ct}, C_{ct}, \ldots) = \lim_{\Lambda \to \infty} \left[F(\Lambda, \mathcal{R}) + \sum_{n=0}^{n_{\text{max}}} F_{ct}^{(n)} \right]$$

• In d=3 we obtain

 $F^{d=3,\operatorname{ren}}(\mathcal{R}|B_{ct},C_{ct}) = -(M\ell)^2 \tilde{\Omega}_3 \left[\mathcal{R}^{-3/2} \left(C(\mathcal{R}) - C_{ct} \right) + \mathcal{R}^{-1/2} \left(B(\mathcal{R}) - B_{ct} \right) \right].$

- This is the (scheme-dependent) renormalized on-shell action on S^3 .
- It depends on two calculable functions $C(\mathcal{R})$ and $B(\mathcal{R})$ and two arbitrary renormalization constants C_{ct}, B_{ct} .
- It has two sources of IR divergences:
- $\clubsuit \mathcal{R}^{-3/2}$ is the expected volume divergence.
- $\clubsuit \mathcal{R}^{-1/2}$ is a subleading linear divergence.

Thermodynamics in de Sitter and (entanglement) entropy

• The F-function for 3d CFTs is given by the renormalized "free energy" (or partition function) on the 3-sphere.

• The interpolating F - function satisfying the F-theorem is given by the S^2 entanglement entropy.

Myers+Sinha, *Myers+Casini+Huerta*, *Liu+Mezzei*, *Casini+Huerta*

- The connection between S^3 partition function and the S^2 entanglement entropy seems puzzling at first.
- We will try to understand it a bit better in our context.

• We will show that there a natural entropy, that is also an entanglement entropy in de Sitter (defined as the analytic continuation of the sphere)

• And that it is related to the "free-energy"/partition function on S^3 .

• Consider a QFT_d on a d-dimensional deSitter space in global coordinates where it is a changing S^{d-1} sphere:

 $ds^{2} = -dt^{2} + R^{2} \cosh^{2}(t/R)(d\theta^{2} + \sin^{2}\theta \ d\Omega_{d-2}^{2})$

• Consider the entanglement entropy in that theory between two spatial hemispheres that have S^{d-2} as boundary.

• The EE of the two hemispheres can be computed holographically using the Ryu-Takayanagi formula. The result is,

$$S_{EE} = M_P^{d-1} \frac{2R}{d} \int d^d x \sqrt{-\zeta} \int_{\mathsf{UV}}^{\mathsf{IR}} du \, e^{(d-2)A(u)} \, .$$

Ben-Ami+Carmi+Smolkin

• This is precisely the second term that enters the curved on-shell action.

$$F = 2M_p^{d-1}V_d \left[(d-1) \left[e^{dA} \dot{A} \right]_{\text{UV}} + \frac{R}{d} \int_{\text{IR}}^{\text{UV}} du \, e^{(d-2)A} \right],$$

• The first term has also a thermodynamical interpretation: we change coordinates on the de Sitter slices and go to static patch coordinates. Casini+Huerta+Myers

$$ds^{2} = du^{2} + e^{2A(u)} \left[-\left(1 - \frac{r^{2}}{\alpha^{2}}\right) d\tau^{2} + \left(1 - \frac{r^{2}}{\alpha^{2}}\right)^{-1} dr^{2} + r^{2} d\Omega_{d-2}^{2} \right]$$

where α is the de Sitter radius and $0 < r < \alpha$.

• Now there is a bulk horizon at $r = \alpha$. The Bekenstein-Hawking entropy can be calculated and it is equal to the dS entanglement entropy, S_{EE} .

• The associated temperature to this horizon is constant

• A similar computation of the "energy" U gives

$$\beta U = 2(d-1)M_P^{d-1} \left[e^{dA(u)} \dot{A}(u) \right]_{UV} V_d.$$

• Putting everything together we get a familiar thermodynamic formula

F = U - T S

for the de Sitter free-energy and its S^3 analytic continuation.

• The standard rules of thermodynamics relate our two functions $B(\mathcal{R}), C(\mathcal{R})$.

$$C'(\mathcal{R}) = \frac{1}{2}B(\mathcal{R}) - \mathcal{R}B'(\mathcal{R})$$

• We conclude that de Sitter entanglement entropy and Free energy on S^3 are tightly connected.

• For a CFT, dS S_{EE} , is also the entanglement entropy for the S^2 in flat space.

Casini+Huerta+Myers

Curved Holographic RG flows+F-functions,

22-

• For a given F-function the F-theorem states that

$\mathcal{F}_{UV} > \mathcal{F}_{IR}$

• The refined version demands that there exists a function $\mathcal{F}(\mathcal{R})$, with \mathcal{R} some parameter along the flow, which exhibits the following properties:

At the fixed points of the flow, the function $\mathcal{F}(\mathcal{R})$ takes the values \mathcal{F}_{UV} and \mathcal{F}_{IR} respectively.

 \blacklozenge The function $\mathcal{F}(\mathcal{R})$ evolves monotonically along the flow,

$$rac{d}{d\mathcal{R}}\mathcal{F}(\mathcal{R})\leq 0\,,$$

♠ There is an extra option for stationarity at the beginning and end of the flow. This is optional.

• We will use \mathcal{R} as an interpolating variable between

 $IR: \mathcal{R} \to 0$ and $UV: \mathcal{R} \to \infty$

- 1. \mathcal{F} must be UV and IR finite.
- 2. An \mathcal{F} -function must also satisfy:

$$\lim_{\mathcal{R} \to \infty} \mathcal{F}(\mathcal{R}) \equiv \mathcal{F}_{UV} = 8\pi^2 (M\ell_{UV})^2$$
$$\lim_{\mathcal{R} \to 0} \mathcal{F}(\mathcal{R}) \equiv \mathcal{F}_{IR} = 8\pi^2 (M\ell_{IR})^2$$
$$\frac{d\mathcal{F}}{d\mathcal{R}} \ge 0$$

$$F^{d=3}(\Lambda, \mathcal{R}) = -(M\ell)^2 \tilde{\Omega}_3 \left\{ \mathcal{R}^{-3/2} \left[4\Lambda^3 \left(1 + \mathcal{O} \left(\Lambda^{-2\Delta_-} \right) \right) + C(\mathcal{R}) \right] + \mathcal{R}^{-1/2} \left[\Lambda \left(1 + \mathcal{O} \left(\Lambda^{-2\Delta_-} \right) \right) + B(\mathcal{R}) \right] \right\} + \dots,$$

 $F^{d=3,\text{ren}}(\mathcal{R}|B_{ct},C_{ct}) = -(M\ell)^2 \tilde{\Omega}_3 \left[\mathcal{R}^{-3/2} \left(C(\mathcal{R}) - C_{ct} \right) + \mathcal{R}^{-1/2} \left(B(\mathcal{R}) - B_{ct} \right) \right].$

• We have

$$B(\mathcal{R}) = B_0 + B_1 \mathcal{R} + \mathcal{O}(\mathcal{R}^2) - 8\pi^2 \tilde{\Omega}_3^{-2} \frac{\ell_{\mathrm{IR}}^2}{\ell^2} \mathcal{R}^{1/2} \left(1 + \mathcal{O}\left(\mathcal{R}^{-\Delta_-^{\mathrm{IR}}}\right) \right)$$
$$C(\mathcal{R}) = C_0 + C_1 \mathcal{R} + \mathcal{O}(\mathcal{R}^2) \quad , \quad \mathcal{R} \to 0$$

$$C(\mathcal{R}) = \mathcal{O}\left(\mathcal{R}^{3/2 - \Delta_{-}}\right), B(\mathcal{R}) = -8\pi^{2}\tilde{\Omega}_{3}^{-2}\mathcal{R}^{1/2}\left(1 + \mathcal{O}\left(\mathcal{R}^{-\Delta_{-}}\right)\right) \quad , \quad \mathcal{R} \to \infty$$

See also Taylor+Woodhouse

• Using the above we can see that the $\mathcal{R} \to \infty$ limit of $F^{ren}(\mathcal{R})$ is finite and scheme independent

• We also obtain in the IR limit $\mathcal{R}
ightarrow 0$

 $F^{\text{ren}} = -(M\ell)^2 \tilde{\Omega}_3 (C_0 - C_{ct}) \mathcal{R}^{-3/2} - (M\ell)^2 \tilde{\Omega}_3 (B_0 + C_1 - B_{ct}) \mathcal{R}^{-1/2} +$

$$+8\pi^2 (M\ell_{\mathrm{IR}})^2 + \mathcal{O}(\mathcal{R}^{-\Delta_-^{\mathrm{IR}}}) + \mathcal{O}(\mathcal{R}^{1/2}).$$

- It is generically IR divergent.
- There are two special values for the counterterms

$$B_{ct} = B_{ct,0} \equiv B_0 + C_1 \quad , \quad C_{ct} = C_{ct,0} \equiv C_0$$

- If chosen, the IR divergences cancel.
- We can also use the Liu-Mezzei method:

$$D_{3/2} \mathcal{R}^{-3/2} \equiv \left(\frac{2}{3} \mathcal{R} \frac{\partial}{\partial \mathcal{R}} + 1\right) \mathcal{R}^{-3/2} = 0$$
$$D_{1/2} \mathcal{R}^{-1/2} \equiv \left(2 \mathcal{R} \frac{\partial}{\partial \mathcal{R}} + 1\right) \mathcal{R}^{-1/2} = 0$$

• There are four proposals using the free energy:

 $\mathcal{F}_{1}(\mathcal{R}) \equiv D_{1/2} \ D_{3/2} \ F(\Lambda, \mathcal{R})$ $\mathcal{F}_{2}(\mathcal{R}) \equiv D_{1/2} \ F^{\text{ren}}(\mathcal{R}|B_{ct}, C_{ct,0})$ $\mathcal{F}_{3}(\mathcal{R}) \equiv D_{3/2} \ F^{\text{ren}}(\mathcal{R}|B_{ct,0}, C_{ct}),$ $\mathcal{F}_{4}(\mathcal{R}) \equiv F^{\text{ren}}(\mathcal{R}|B_{ct,0}, C_{ct,0}).$

- All of the above are "scheme independent".
- We can construct another two from the dS EE:

$$S_{EE}^{d=3,\text{ren}}(\mathcal{R}|\tilde{B}_{ct}) = (M\ell)^2 \tilde{\Omega}_3 \mathcal{R}^{-1/2} \left(B(\mathcal{R}) - \tilde{B}_{ct} \right),$$

• There are another two using the entanglement entropy

 $\mathcal{F}_5(\mathcal{R}) \equiv D_{1/2} S_{EE}(\Lambda, \mathcal{R})$

 $\mathcal{F}_{6}(\mathcal{R}) = S_{EE}^{\mathrm{ren}}(\mathcal{R}|B_{ct,0})$

• Using the identity that links $B(\mathcal{R})$ and $C(\mathcal{R})$.

$$C'(\mathcal{R}) = \frac{1}{2}B(\mathcal{R}) - \mathcal{R}B'(\mathcal{R}).$$

we can show that

$\mathcal{F}_6(\mathcal{R}) = \mathcal{F}_1(\mathcal{R}) \quad , \quad \mathcal{F}_5(\mathcal{R}) = \mathcal{F}_3(\mathcal{R})$

- It is interesting that renormalized EE and renormalized free-energy give the same answer in these cases.
- All $\mathcal{F}_{1,2,3,4}$ asymptote properly in the UV and IR limits.

All $\mathcal{F}_{1,2,3,4}$ are monotonic in many numerical holographic examples we analyzed when $\Delta > \frac{3}{2}$.

 $\mathcal{F}_{1,2,3,4}$ vs. log(\mathcal{R}) for a holographic model with Mex Hat potential and $\Delta_{-} = 1.2$.

 \mathcal{F}_1 vs. log(\mathcal{R}) for a holographic model with $\Delta_- = 0.9$ (dark blue), 1.1, (light blue), 1.2 (blue) and 1.3 (cyan).

♠ In order for the proposal to work properly, when $\Delta < \frac{3}{2}$, $\mathcal{F}_{1,2,3,4}$ should be replaced by their Legendre transforms.

♠ This prescription also makes the free theories (the massive fermion and boson) to be monotonic as well.

 $\tilde{\mathcal{F}}_{1,2,3,4}$ for a theory of a free massive scalar on S^3 .

Legendre-transformed $\mathcal{F}_{1,2,3,4}$ for a theory of a free massive boson on S^3 .

♠ We have no general proof of monotonicity so far.

Curved Holographic RG flows+F-functions,

- Exotic holographic flows can appear for rather generic potentials.
- The black holes associated with them have been analyzed and exhibit many of the phenomena mentioned for the finite curvature case. Gursoy+Kiritsis+Nitti+Silva-Pimenda, Attems+Bea+Casalderrey-Solana+Mateos+Triana+Zilhao
- One should try to prove monotonicity of \mathcal{F}_i and extend also to 5 dimensions.
- Our analysis and the unusual curved solutions we find, seem to have a radical impact on the stability of AdS minima due to CdL decay processes.

THANK YOU!

UV and IR divergences of F and S_{EE}

- The unrenormalized $F(\Lambda, \mathcal{R})$ and $S_{EE}(\Lambda, \mathcal{R})$.
- UV divergences $\Lambda \to \infty$:

$$F(\Lambda, \mathcal{R}) : \mathcal{R}^{-\frac{1}{2}}(\Lambda + \cdots) \text{ and } \mathcal{R}^{-\frac{3}{2}}(\Lambda^{3} + \cdots)$$
$$S_{EE}(\Lambda, \mathcal{R}) : \mathcal{R}^{-\frac{1}{2}}(\Lambda + \cdots)$$

 \blacklozenge IR divergences $\mathcal{R} \rightarrow 0$:

$$F(\Lambda, \mathcal{R}) : \mathcal{R}^{-\frac{1}{2}} (B_0 + C_1) \text{ and } \mathcal{R}^{-\frac{3}{2}} C_0$$
$$S_{EE}(\Lambda, \mathcal{R}) : \mathcal{R}^{-\frac{1}{2}} B_0$$

where

$$C(\mathcal{R}) \simeq C_0 + C_1 \mathcal{R} + \mathcal{O}(\mathcal{R}^2) \quad , \quad B(\mathcal{R}) \simeq B_0 + \mathcal{O}(\mathcal{R})$$

• The renormalized F and S_{EE} : only UR divergences, $\mathcal{R} \to 0$.

$$F^{\text{ren}}(\mathcal{R}|B_{ct},C_{ct}) : \mathcal{R}^{-\frac{1}{2}}(B_0+C_1-B_{ct}) \quad \text{and} \mathcal{R}^{-\frac{3}{2}}(C_0-C_{ct})$$
$$S_{EE}^{\text{ren}}(\mathcal{R}|\tilde{B}_{ct},C_{ct}) : \mathcal{R}^{-\frac{1}{2}}(B_0-\tilde{B}_{ct})$$

 \bullet We can remove UV divergences from unrenormalized functions by acting with

$$D_{3/2} \equiv \frac{2}{3} \frac{\partial}{\partial \mathcal{R}} + 1 \quad , \quad D_{1/2} \equiv 2 \frac{\partial}{\partial \mathcal{R}} + 1 \quad , \quad D_{3/2} \mathcal{R}^{-\frac{3}{2}} = 0 \quad , \quad D_{1/2} \mathcal{R}^{-\frac{1}{2}} = 0$$

• We can remove IR divergences by choosing appropriately our scheme (subtractions)

$$B_{ct,0} = B(0) + C'(0)$$
, $C_{ct,0} = C(0)$, $\tilde{B}_{ct,0} = B(0)$

Curved Holographic RG flows+F-functions,

In terms of the two functions $B(\mathcal{R})$ and $C(\mathcal{R})$ the \mathcal{F} functions can be written as

$$\frac{\mathcal{F}_{1}(\mathcal{R})}{(M\ell)^{2}\Omega_{3}} = -\frac{4}{3}\mathcal{R}^{\frac{1}{2}}(2B'(\mathcal{R}) + C''(\mathcal{R}) + \mathcal{R} \ B''(\mathcal{R}))$$

$$\frac{\mathcal{F}_{2}(\mathcal{R})}{(M\ell)^{2}\Omega_{3}} = -2\mathcal{R}^{-\frac{3}{2}}(-(C(\mathcal{R}) - C(0)) + \mathcal{R}C'(\mathcal{R}) + \mathcal{R}^{2}B'(\mathcal{R}))$$

$$\frac{\mathcal{F}_{3}(\mathcal{R})}{(M\ell)^{2}\Omega_{3}} = -\frac{4}{3}\mathcal{R}^{-\frac{1}{2}}(B(\mathcal{R}) + C'(\mathcal{R}) - B(0) - C'(0)) + \mathcal{R}B'(\mathcal{R}))$$

$$\frac{\mathcal{F}_{4}(\mathcal{R})}{(M\ell)^{2}\Omega_{3}} = -\mathcal{R}^{-\frac{3}{2}}(C(\mathcal{R}) - C(0)) + \mathcal{R}(B(\mathcal{R}) - B(0))$$

We also have the relation

$$C'(\mathcal{R}) = \frac{1}{2}B(\mathcal{R}) - \mathcal{R}B'(\mathcal{R}).$$

Curved Holographic RG flows+F-functions,

Holography and "Quantum" RG

- Enter holography as a means of probing strong coupling behavior.
- Holography provides a neat description of RG Flows.

• It also gives a natural a-function and the strong version of the a-theorem holds.

♠ But...the relevant equations that are converted into RG equations are second order!

• It is known for some time that the Hamilton-Jacobi formalism in holography gives first order RG-equations. de Boer+Verlinde², Skenderis+Townsend, Gursoy+Kiritsis+Nitti, Papadimitriou, Kiritsis+Li+Nitti

• This would imply that (conceptually at least) holographic RG flows are very similar to (perturbative) QFT flows.

Curved Holographic RG flows+F-functions,

The extrema of V

The expansion of the potential near an extremum is

$$V(\phi) = -\frac{1}{\ell^2} \left[d(d-1) - \frac{m^2 \ell^2}{2} \phi^2 + \mathcal{O}(\phi^3) \right]$$

$$\Delta_{\pm} = \frac{d}{2} \pm \sqrt{\frac{d^2}{4} + m^2 \ell^2} \quad ,$$

• The series solution of the superpotential is

$$W_{\pm} = 2(d-1) + \frac{\Delta_{\pm}}{2}\phi^2 + \cdots$$

• Near a maximum, W_{-} is part of a continuous family (parametrized by a vev)

- W_+ is an isolated solution.
- Near a minimum, regularity makes W_{-} unique.
- Near a minimum, W_+ describes a "UV fixed point"

Curved Holographic RG flows+F-functions,

- Review of the holographic RG flows.
- Understanding the space of solutions.
- Standard RG flows start a maximum of the bulk potential and end at a nearby minimum.
- We find exotic holographic RG flows:
- "Bouncing flows": the β -function has branch cuts.
- Skipping flows": the theory bypasses the next fixed point.

"Irrelevant vev flows": the theory flows between two minima of the bulk
 potential.

• Outlook

Curved Holographic RG flows+F-functions,

- One key point: out of all solutions W, typically one only gives rise to a regular bulk solution. (and more generally a discrete number^{*}).
- All others have bulk singularities and are therefore unacceptable* (holographic) classical solutions.
- This reduces the number of (continuous) integration constants from 3 to 2.
- This has a natural interpretation in the dual QFT: the theory determines it possible vevs (we exclude flat directions).
- The remaining first order equations are now the first order RG equations for the coupling and the space-time volume.
- Now we can favorably compare with QFT RG Flows.

General properties of the superpotential

• From the superpotential equation we obtain a bound:

$$W(\phi)^{2} = -\frac{4(d-1)}{d}V(\phi) + \frac{2(d-1)}{d}W'^{2} \ge -\frac{4(d-1)}{d}V(\phi) \equiv B^{2}(\phi) > 0$$

• Because of the $(u, W) \rightarrow (-u, -W)$ symmetry we can fix the flow (and sign of W) so that we flow from $u = -\infty$ (UV) to $u = \infty$ (IR). This implies that:

$$W > 0$$
 always so $W \ge B$

• The holographic "a-theorem":

$$\frac{dW}{du} = \frac{dW}{d\phi} \ \frac{d\phi}{du} = W'^2 \ge 0$$

so that the a-function any decreasing function of W always decreases along the flow, ie. W is positive and increases.

• The inequality now can be written directly in terms of W:

$$W(\phi) \geq B(\phi) \equiv \sqrt{-rac{4(d-1)}{d}V(\phi)}$$

 The maxima of V are minima of B and the minima of V are maxima of B.

- The bulk potential provides a lower boundary for W and therefore for the associated flows.
- Regularity of the flow=regularity of the curvature and other invariants of the bulk theory:

A flow is regular iff W, V remain finite during the flow.

• V aws assumed finite for ϕ finite. The same can be proven for W.

Therefore singular flows end up at $\phi \to \pm \infty$

Holographic RG Flows

• A QFT with a (relevant) scalar operator O(x) that drives a flow, has two parameters: the scale factor of a flat metric, and the O(x) coupling constant.

• These two parameters, generically correspond to the two integration constants of the first order bulk equations.

• Since ϕ is interpreted as a running coupling and A is the log of the RG energy scale, the holographic β -function is

$$\dot{A} = -\frac{1}{2(d-1)}W(\phi) \quad , \quad \dot{\phi} = W'(\phi)$$

$$\frac{d\phi}{dA} = -\frac{1}{2(d-1)} \frac{d}{d\phi} \log W(\phi) \equiv \beta(\phi) \sim \frac{1}{C} \frac{d}{d\phi} C(\phi)$$

• $C \sim 1/W^{d-1}$ is the (holographic) C-function for the flow. Girardello+Petrini+Porrati+Zaffaroni, Freedman+Gubser+Pilch+Warner • $W(\phi)$ is the non-derivative part of the Schwinger source functional of the dual QFT =on-shell bulk action.

$$S_{on-shell} = \int d^d x \sqrt{\gamma} \ W(\phi) + \cdots \Big|_{u \to u_{UV}}$$

The renormalized action is given by

$$S_{renorm} = \int d^d x \sqrt{\gamma} \, \left(W(\phi) - W_{ct}(\phi) \right) + \cdots \Big|_{u \to u_{UV}} =$$

$$= constant \int d^d x \ e^{dA(u_0) - \frac{1}{2(d-1)} \int_{\phi_U V}^{\phi_0} d\tilde{\phi}_W^{W'}} + \cdots$$

• The statement that $\frac{dS_{renorm}}{du_0} = 0$ is equivalent to the RG invariance of the renormalized Schwinger functional.

- It is also equivalent to the RG equation for ϕ .
- We can prove that

$$T_{\mu}{}^{\mu} = \beta(\phi) \langle O \rangle$$

• The Legendre transform of S_{renorm} is the (quantum) effective potential for the vev of the QFT operator O.

Curved Holographic RG flows+F-functions,

Detour: The local RG

• The holographic RG can be generalized straightforwardly to the local RG

$$\dot{\phi} = W' - f' R + \frac{1}{2} \left(\frac{W}{W'} f' \right)' (\partial \phi)^2 + \left(\frac{W}{W'} f' \right) \Box \phi + \cdots$$

$$\dot{\gamma}_{\mu\nu} = -\frac{W}{d-1}\gamma_{\mu\nu} - \frac{1}{d-1}\left(f R + \frac{W}{2W'}f'(\partial\phi)^2\right)\gamma_{\mu\nu} + \\ +2f R_{\mu\nu} + \left(\frac{W}{W'}f' - 2f''\right)\partial_{\mu}\phi\partial_{\nu}\phi - 2f'\nabla_{\mu}\nabla_{\nu}\phi + \cdots$$

Kiritsis+*Li*+*Nitti*

• $f(\phi)$, $W(\phi)$ are solutions of

$$-\frac{d}{4(d-1)}W^2 + \frac{1}{2}W'^2 = V \quad , \quad W' f' - \frac{d-2}{2(d-1)}W f = 1$$

• Like in 2d σ -models we may use it to define "geometric" RG flows. Curved Holographic RG flows+F-functions, More flow rules

• At every point away from the $B(\phi)$ boundary (W > B) always two solutions pass:

$$W' = \pm \sqrt{2V + \frac{d}{2(d-1)}}W^2 = \pm \sqrt{\frac{d}{2(d-1)}} \left(W^2 - B^2\right)$$

The critical points of W

- On the boundary W = B, we obtain W' = 0 and only one solution exists.
- The critical (W' = 0) points of W come in three kinds:

- \clubsuit W = B at non-extremum of the potential (generic).
- \clubsuit Maxima of V (minima of B) (non-generic)
- \clubsuit Minima of V (maxima of B) (non-generic)

• The BF bound can be written as

$$\frac{4(d-1)}{d} \, \frac{V''(0)}{V(0)} \leq 1$$

• If a solution for W near $\phi = 0$ exists, then the BF bound is automatically satisfied as it can be written

$$\left(rac{4(d-1)}{d}rac{W''(0)}{W(0)}-1
ight)^2\geq 0$$

- When BF is violated, although there is no (real) W, there exists a UV-regular solution for the flow: $\phi(u)$, A(u).
- This solution is unstable against linear perturbations (and corresponds to a non-unitary CFT).

Curved Holographic RG flows+F-functions,

BF violating flows

- As mentioned there can be flows out of a BF-violating UV fixed point.
- No β -function description of such flows in the UV.
- Such flows have an infinite-cascade of bounces as one goes towards the UV.

• Although the flow is regular, it is unstable.
The maxima of V

- We will examine solutions for W near a maximum of V.
- We put the maximum at $\phi = 0$.

$$V(\phi) = -\frac{1}{\ell^2} \left[d(d-1) - \frac{m^2 \ell^2}{2} \phi^2 + \mathcal{O}(\phi^3) \right]$$
$$\Delta_{\pm} = \frac{d}{2} \pm \sqrt{\frac{d^2}{4} + m^2 \ell^2} \quad , \quad m^2 \ell^2 \quad < 0 \quad , \quad \Delta_{\pm} \ge \Delta_{-} \ge 0$$

- We set (locally) $\ell = 1$ from now on.
- If W'(0) = 0 there are two classes of solutions:

• A continuous family of solutions (the W_{-} family)

$$W_{-} = 2(d-1) + \frac{\Delta_{-}}{2}\phi^{2} + \dots + C\phi^{\frac{d}{\Delta_{-}}}[1+\dots] + \mathcal{O}(C^{2})$$

• The solution for ϕ and A corresponding to this, is the standard UV source flow:

$$\phi(u) = \alpha \ e^{\Delta_{-} \ u} + \dots + \frac{\Delta_{-}}{d} \ C \ e^{\Delta_{+} \ u} + \dots \quad , \quad e^{A} = e^{u - A_{0}} + \dots \quad , \quad u \to -\infty$$

• the solution describes the UV region $(u \to -\infty)$ with a perturbation by a relevant operator of dimension $\Delta_+ < d$.

- The source is α . It is not part of W.
- *C* determines the vev: $\langle O \rangle \sim C \alpha^{\frac{\Delta_+}{\Delta_-}}$.

• A single isolated solution W_+

$$W_{+} = 2(d-1) + \frac{\Delta_{+}}{2}\phi^{2} + \mathcal{O}(\phi^{3}) \quad , \quad \Delta_{+} > \Delta_{-}$$

• The associated solution for ϕ, A is

$$\phi(u) = \alpha \ e^{\Delta_+ \ u} + \cdots , \quad e^A = e^{-u + A_0} + \cdots$$

• This is a vev flow ie. the source is zero.

$$\langle O \rangle = (2\Delta_+ - d) \alpha$$

- The value of the vev is NOT determined by the superpotential equation. This is a moduli space.
- The whole class of solutions exists both from the left of $\phi = 0$ and from the right.

The minima of V

• We expand the potential near the minimum:

$$V(\phi) = -\frac{1}{\ell^2} \left[d(d-1) - \frac{m^2 \ell^2}{2} \phi^2 + \mathcal{O}(\phi^3) \right] \quad , \quad \Delta_{\pm} = \frac{d}{2} \pm \sqrt{\frac{d^2}{4} + m^2 \ell^2}$$
$$m^2 > 0 \quad , \quad \Delta_{\pm} > 0 \quad , \quad \Delta_{\pm} > 0 \quad , \quad \Delta_{\pm} < 0$$

• There are two isolated solutions with W'(0) = 0.

$$W_{\pm}(\phi) = \frac{1}{\ell} \left[2(d-1) + \frac{\Delta_{\pm}}{2} \phi^2 + \mathcal{O}(\phi^3) \right],$$

- No continuous parameter here as it generates a singularity.
- Although the solutions look similar, their interpretation is very different. W_+ has a local minimum while W_- has a local maximum.

- There is again a moduli space.
- \blacklozenge A W_+ solution is globally regular only in special cases.

♠ Therefore a minimum of the potential can be either an IR fixed point or a UV fixed point.

Curved Holographic RG flows+F-functions,

- We will examine solutions for W near a maximum of V.
- We put the maximum at $\phi = 0$.
- When V'(0) = 0, W''(0) is finite.

$$V(\phi) = -\frac{1}{\ell^2} \left[d(d-1) - \frac{m^2 \ell^2}{2} \phi^2 + \mathcal{O}(\phi^3) \right]$$
$$\Delta_{\pm} = \frac{d}{2} \pm \sqrt{\frac{d^2}{4} + m^2 \ell^2} \quad , \quad m^2 \ell^2 \quad < 0 \quad , \quad \Delta_{\pm} \ge \Delta_{-} \ge 0$$

- We set (locally) $\ell = 1$ from now on.
- If $W'(0) \neq 0$ there is one solution (per branch) off the critical curve,
- If W'(0) = 0 there are two classes of solutions:

• A continuous family of solutions (the W_{-} family)

$$W_{-} = 2(d-1) + \frac{\Delta_{-}}{2}\phi^{2} + \dots + C\phi^{\frac{d}{\Delta_{-}}}[1+\dots] + \mathcal{O}(C^{2})$$

• The solution for ϕ and A corresponding to this, is the standard UV source flow:

$$\phi(u) = \alpha \ e^{\Delta_{-} \ u} + \dots + \frac{\Delta_{-}}{d} \ C \ e^{\Delta_{+} \ u} + \dots \quad , \quad e^{A} = e^{u - A_{0}} + \dots \quad , \quad u \to -\infty$$

• the solution describes the UV region $(u \to -\infty)$ with a perturbation by a relevant operator of dimension $\Delta_+ < d$.

- The source is α . It is not part of W.
- *C* determines the vev: $\langle O \rangle \sim C \alpha^{\frac{\Delta_+}{\Delta_-}}$.
- The near-boundary AdS is an attractor of all these solutions.

• A single isolated solution W_+ also arriving at W(0) = B(0)

$$W_{+} = 2(d-1) + \frac{\Delta_{+}}{2}\phi^{2} + \mathcal{O}(\phi^{3}) , \quad \Delta_{+} > \Delta_{-}$$

- Always $W''_{+} > W''_{-}$.
- The associated solution for ϕ , A is

$$\phi(u) = \alpha \ e^{\Delta_+ \ u} + \cdots \quad , \quad e^A = e^{-u + A_0} + \cdots$$

• This is a vev flow ie. the source is zero.

$$\langle O \rangle = (2\Delta_+ - d) \alpha$$

- The value of the vev is NOT determined by the superpotential equation.
- It can be reached in a appropriately defined limit $C \rightarrow \infty$ of the W_{-} family.
- The whole class of solutions exists both from the left of $\phi = 0$ and from the right.

• We expand the potential near the minimum:

$$V(\phi) = -\frac{1}{\ell^2} \left[d(d-1) - \frac{m^2 \ell^2}{2} \phi^2 + \mathcal{O}(\phi^3) \right] \quad , \quad \Delta_{\pm} = \frac{d}{2} \pm \sqrt{\frac{d^2}{4} + m^2 \ell^2}$$
$$m^2 > 0 \quad , \quad \Delta_{\pm} > 0 \quad , \quad \Delta_{-} < 0$$

• There are solutions with $W'(0) \neq 0$. These are solutions that do not stop at the minimum.

• There are two isolated solutions with W'(0) = 0.

$$W_{\pm}(\phi) = \frac{1}{\ell} \left[2(d-1) + \frac{\Delta_{\pm}}{2} \phi^2 + \mathcal{O}(\phi^3) \right],$$

- No continuous parameter here as it generates a singularity.
- Although the solutions look similar, their interpretation is very different. W_+ has a local minimum while W_- has a local maximum.

• The W_{-} solution:

$$\phi(u) = \alpha \ e^{\Delta_{-} \ u} + \cdots , \quad e^{A} = e^{-(u-u_0)} + \cdots .$$

- Since $\Delta_- < 0$, small ϕ corresponds to $u \to +\infty$ and $e^A \to 0$.
- This signal we are in the deep interior (IR) of AdS.
- The driving operator has (IR) dimension $\Delta_+ > d$ and a zero vev in the IR.
- Therefore W_{-} generates locally a flow that arrives at an IR fixed point.

• The W_+ solution is:

$$\phi(u) = \alpha \ e^{\Delta_+ \ u} + \cdots , \quad e^A = e^{-(u-u_0)} + \cdots .$$

- Since $\Delta_+ > 0$ small ϕ corresponds to $u \to -\infty$ and $e^A \to +\infty$.
- This solution described the near-boundary (UV) region of a fixed point.
- This solution is driven by the vev of an operator with (UV) dimension $\Delta_+ > d$ (irrelevant).

♠ A minimum of the potential can be either an IR fixed point or a UV fixed point.

The first order formalism

• In this case the two first order flow equations are modified:

$$\dot{A} = -\frac{1}{2(d-1)}W(\phi)$$
 , $\dot{\phi} = S(\phi)$

 $\frac{d}{2(d-1)}W^2 + (d-1)S^2 - dSW' = -2V \quad , \quad SS' - \frac{d}{2(d-1)}WS = V'$

- The two superpotential equations have two integration constants.
- One of them, C, is the vev of the scalar operator (as usual).
- The other is the dimensionless curvature, \mathcal{R} .
- The structure near an maximum (UV) of the potential has the "resurgent" expansion

$$W(\phi) = \sum_{m,n,r \in Z_0^+} A_{m,n,r} (C \phi^{\frac{d}{\Delta_-}})^m (\mathcal{R} \phi^{\frac{2}{\Delta_-}})^n \phi^r$$

Curved Holographic RG flows+F-functions,

Coordinates

Relation between Poincaré coordinates (t, z) and dS-slicing coordinates (τ, u) . Constant u curves are half straight lines all ending at the origin $(\tau \rightarrow 0^{-})$; Constant τ curves are branches of hyperbolas ending at u = 0 (null infinity on the z = -t line). The boundary z = 0 corresponds to $u \rightarrow -\infty$.

flow endpoint u = 0 corresponds to the point $\rho = 0, \psi = -\pi/2$ in global coordinates. The AdS boundary is at $\rho = +\infty$ and it is reached along u as $u \to -\infty$, and along τ both as $\tau \to -\infty$ and as $\tau \to 0$.

Embedding of the dS patch in global conformal coordinates, $\tan \Theta = \sinh \rho$, where each point is a d-1 sphere "filled" by Θ . The boundary is at $\Theta = \pi/2$. The dashed lines correspond to the Poincaré patch embedded in global conformal coordinates. The flow endpoint u = 0 is situated on the Poincaré horizon.

Relation between Poincaré coordinates (x, z) and AdS-slicing coordinates (ξ, u) . Constant u curves are half straight lines all ending at the origin $(\xi \to 0^-)$; Constant ξ curves are semicircle joining the two halves of the boundary at $u = \pm \infty$.

Curved Holographic RG flows+F-functions,

Curtright, Jin and Zachos gave an example of an RG Flow that is cyclic but respects the strong C-theorem

$$\beta_n(\phi) = (-1)^n \sqrt{1 - \phi^2} \quad \rightarrow \quad \phi(A) = sin(A)$$

If we define the superpotential branches by $\beta_n = -2(d-1)W'_n/W_n$ we obtain

$$\log W_n = \frac{(2n+1)\pi + 2(-1)^n (\arcsin(\phi) + \phi\sqrt{1-\phi^2})}{8(d-1)}$$

and we can compute the potentials from $V = W'^2/2 - dW^2/4(d-1)$ to obtain $V_n(\phi)$.

Such piece-wise potentials then satisfy

$$V_{n+2}(\phi) = e^{\frac{\pi}{2(d-1)}} V_n(\phi)$$

- No such potentials can arise in string theory.
- Holography can provide only "approximate" cycles.

Flows in AdS

QFT on AdS_d: dimensionless curvature $\mathcal{R} = R^{(uv)} |\Phi_{-}|^{-2/\Delta_{-}}$ and dimensionless vev $C = \frac{\Delta_{-}}{d} \langle \mathcal{O} \rangle |\Phi_{-}|^{-\Delta_{+}/\Delta_{-}}$ vs. Φ_{0} for the Mexican hat potential with $\Delta_{-} = 1.2$. Flows with turning points in the rose-colored region leave the UV fixed point at $\Phi = 0$ to the left before bouncing and finally ending at positive Φ_{0} . Flows with turning points in the white region are direct: They leave the UV fixed point at $\Phi = 0$ to the right and do

not exhibit a reversal of direction. The flow with turning point Φ_c on the border between the bouncing/non-bouncing regime corresponds to a theory with vanishing source Φ_- . As a result, both \mathcal{R} and C diverge at this point.

Curved Holographic RG flows+F-functions,

RG flows with IR endpoint $\Phi_0 \rightarrow \Phi_!$. When the endpoint Φ_0 approaches $\Phi_!$ flows from both UV₁ and UV₂ pass by closely to IR₁, passing through IR₁ exactly for $\Phi_0 = \Phi_!$. This is shown by the purple and red curves. Beyond IR₁ both these solutions coincide, which is denoted by the colored dashed curve. These have the following interpretation. The flows from UV₁ and UV₂ should not be continued beyond IR₁, which becomes the IR endpoint for the zero curvature flows W_{11} and W_{21} . The remaining branch (the colored dashed curve) is now an independent flow denoted by W_{3+} . This is a flow from a UV fixed point at a minimum of the potential (denoted by UV₃ above) to $\Phi_!$ and corresponds to a W_+ solution with fixed value $\mathcal{R} = \mathcal{R}^{uv} |\Phi_+|^{-2/\Delta_+} \neq 0$. While flows from UV₁ and UV₂ can end arbitrarily close to $\Phi_!$, the endpoint $\Phi_0 = \Phi_!$ cannot be reached from UV₁ or UV₂.

• It is not possible in this example to redefine the topology on the line so that the flow looks "normal"

• The two flows $UV_1 \rightarrow IR_1$ and $UV_1 \rightarrow IR_2$ correspond to the same source but different vev's.

• One can calculate the free-energy difference of these two flows: the one that arrives at the IR fixed point with lowest a, is the dominant one.

u

Renormalization in 3d

$$F_{d=3}(\Lambda,\mathcal{R}) = -(M\ell)^2 \Omega_3 \left[\mathcal{R}^{-\frac{3}{2}} \left(4\Lambda^3 (1 + \mathcal{O}(\Lambda^{-2\Delta_-})) + C(\mathcal{R}) \right)' + \mathcal{R}^{-\frac{1}{2}} \left(\Lambda (1 + \mathcal{O}(\Lambda^{-2\Delta_-})) + \mathcal{B}(\mathcal{R}) + \cdots \right] \quad , \quad \Lambda \equiv \frac{e^{A(\epsilon)}}{\ell |\phi_0|^{\frac{1}{\Delta_-}}}$$

• $B(\mathcal{R}), C(\mathcal{R})$ are the vevs of O and a (part of a) derivative of the stress tensor.

• We renormalize

$$F_{d=3}^{\text{renorm}}(\mathcal{R}|B_{ct},C_{ct}) = -(M\ell)^2 \Omega_3 \left[\mathcal{R}^{-\frac{3}{2}}(\mathcal{C}(\mathcal{R}) - C_{ct}) + \mathcal{R}^{-\frac{1}{2}}(\mathcal{B}(\mathcal{R}) - B_{ct}) \right]$$

• Similarly the renormalized deSitter entanglement entropy is $S_{EE}^{\text{renorm}}(\mathcal{R}|B_{ct} = (M\ell)^2 \Omega_3 \mathcal{R}^{-\frac{1}{2}}(B(\mathcal{R}) - B_{ct})$

Curved Holographic RG flows+F-functions,

Skipping flows at finite curvature

The solid lines represent the superpotential $W(\Phi)$ corresponding to the three different solutions starting from UV₁ which exist at small positive curvature. Two of them (red and green curves) are skipping flows and the third one (orange curve) is non-skipping. For comparison, we also show the flat RG flows (dashed curves)

A quantum phase transition for UV_1

Free energy difference between the skipping and the non-skipping solution.
The red curve corresponds to the on-shell action difference between the W_{s,1}(Φ) solution and the non-skipping solution.

• The green curve corresponds to the on-shell action difference between the $W_{s,2}(\Phi)$ solution and the non-skipping solution $W_{ns}(\Phi)$.

Curved Holographic RG flows+F-functions,
The RG flows from UV_2

Spontaneous breaking saddle points

- \bullet There are two flows with $\mathcal{R} \to \infty$
- One is the standard flow associated with UV_2 . $\mathcal{R} \to \infty$ because $\phi_0 = 0$ although R_{UV} can be anything. The solution is exact AdS, with $\langle O \rangle = 0$.
- The $\mathcal{R} \to \infty$ solution associated with $\phi = \phi_*$ is a distinct branch of the theory.
- At $\phi = \phi_*$, ϕ_0 (the source) vanishes, therefore $\mathcal{R} \to \infty$ although R_{uv} =finite.
- The point $\phi = \phi_*$ (a single solution) is a one-parameter family of saddle points with $\phi_0 = 0$ but a non trivial (relevant) vev

$$\langle O \rangle = \xi_* \ R_{UV}^{\frac{\Delta_+}{2}}$$

• Therefore the CFT UV₂ has two saddle points at finite positive curvature R_{UV} . In one $\langle O \rangle = 0$ and in the other $\langle O \rangle \neq 0$.

Curved Holographic RG flows+F-functions,

Stabilisation by curvature

- The theories with $\phi_0 > 0$ and $\mathcal{R} < \mathcal{R}_*$ do not exist.
- But for $\mathcal{R} > \mathcal{R}_*$ there are two non-trivial saddle points
- This is an example of a theory that in flat space, it exists for $\phi_0 < 0$ but not for $\phi_0 > 0$.
- But the theory with $\phi_0 > 0$ exists when $\mathcal{R} > \mathcal{R}_*$.

• There is a simple example from weakly-coupled field theory that exhibits similar behavior:

$$V_{flat}(\phi) = -\lambda \phi^4 - m^2 \phi^2$$

- When $\lambda > 0$ the theory does not exist.
- At sufficiently high curvature

$$V_R(\phi) = -\lambda \phi^4 - m^2 \phi^2 + \frac{1}{6R^2} \phi^2$$

the theory develops new extrema:

- Φ_1 cannot be reached from either UV_1 or UV_2 but only from IR₁.
- The Flow from IR₁ to $\Phi_{!}$ has zero source and a vev

$$\langle O \rangle = \xi_! \ R_{UV}^{\frac{\Delta_+}{2}}$$

• At the IR_1 we have an AdS boundary.

• As
$$\mathcal{R} \equiv R_{\text{UV}}\phi_0^{-\frac{2}{\Delta_-}}$$
, $\mathcal{R} \to 0$ when $\phi_0 \to 0$.

- This is again a one-parameter family of saddle points with different curvature where the theory is driven by the vev of an irrelevant operator.
- As before the CFT at IR₁ has two saddle points at finite curvature: one with $\langle O \rangle = 0$, and one with $\langle O \rangle \neq 0$.
- The one with $\langle O \rangle = 0$ has lower free energy.

Curved Holographic RG flows+F-functions,

Dependence of \mathcal{F}_i on $B(\mathcal{R}), C(\mathcal{R})$

In terms of the two functions $B(\mathcal{R})$ and $C(\mathcal{R})$ the candidate \mathcal{F} functions can be written as

$$\frac{\mathcal{F}_{1}(\mathcal{R})}{(M\ell)^{2}\Omega_{3}} = -\frac{4}{3}\mathcal{R}^{\frac{1}{2}}(2B'(\mathcal{R}) + C''(\mathcal{R}) + \mathcal{R} \ B''(\mathcal{R}))$$
$$\frac{\mathcal{F}_{2}(\mathcal{R})}{(M\ell)^{2}\Omega_{3}} = -2\mathcal{R}^{-\frac{3}{2}}(-(C(\mathcal{R}) - C(0)) + \mathcal{R}C'(\mathcal{R}) + \mathcal{R}^{2}B'(\mathcal{R}))$$
$$\frac{\mathcal{F}_{3}(\mathcal{R})}{(M\ell)^{2}\Omega_{3}} = -\frac{4}{3}\mathcal{R}^{-\frac{1}{2}}(B(\mathcal{R}) + C'(\mathcal{R}) - B(0) - C'(0)) + \mathcal{R}B'(\mathcal{R}))$$
$$\frac{\mathcal{F}_{4}(\mathcal{R})}{(M\ell)^{2}\Omega_{3}} = -\mathcal{R}^{-\frac{3}{2}}(C(\mathcal{R}) - C(0)) + \mathcal{R}(B(\mathcal{R}) - B(0))$$
RETURN

Curved Holographic RG flows+F-functions,

Detailed plan of the presentation

- Title page 0 minutes
- Bibliography 1 minutes
- Introduction 3 minutes
- C-functions and F-functions 4 minutes
- The goal 5 minutes
- Holographic RG: the setup 9 minutes
- General Properties of the superpotential 10 minutes
- The standard holographic RG Flows 11 minutes
- Bounces 14 minutes
- Exotica 15 minutes
- Regular Multibounce flows 15 minutes
- Skipping fixed points 16 minutes
- Holographic flows on curved manifolds 17 minutes
- The setup 19 minutes

- The first order flows 21 minutes
- The interpretation of parameters 23 minutes
- The IR limits 25 minutes
- The vanilla flows 29 minutes
- Detour: Curvature-dependent β -functions and geometric flows 33 minutes
- The on-shell effective action 35 minutes
- Renormalization 39 minutes
- Thermodynamics in de Sitter and entanglement entropy 45 minutes
- F-functions 57 minutes
- Outlook 58 minutes

• UV and IR divergences of F and S_{EE} 59 minutes

- *F*-functions, II 60 minutes
- Holography and the Quantum RG 61 minutes
- The extrema of V 62 minutes
- The strategy 63 minutes
- Regularity 64 minutes
- General Properties of the superpotential 67 minutes
- Holographic RG Flows 71 minutes
- Detour: the local RG 73 minutes
- More flow rules 74 minutes

- The critical points of W 76 minutes
- The BF bound 77 minutes
- BF-violating flows 79 minutes
- The maxima of V 87 minutes
- The minima of V 94 minutes
- The first order formalism 96 minutes
- Coordinates 98 minutes
- Bounces 100 minutes
- AdS flows 102 minutes
- Renormalization in 3d 103 minutes
- Skipping flows at finite curvature 106 minutes
- A quantum phase transition for UV_1 107 minutes
- The RG flows from UV_1 109 minutes
- Spontaneous breaking saddle points 110 minutes
- Stabilisation by curvature 112 minutes
- The Φ_1 saddle-point 115 minutes