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Introduction

• The Wilsonian RG is controlled by first order flow equations of the form

dgi
dt

= βi(gi) , t = logµ

• Despite current knowledge, there are many aspects of QFT RG flows of

unitary relativistic QFTs, that are still not understood.

♠ It is not known if the end-points of RG flows in 4d are fixed points or

include other exotic possibilities (limit circles or “chaotic” behavior)

♠ This is correlated with the potential symmetry of scale invariant theories:

are they always conformally invariant? (CFTs)?

• In 2d, the answer to this question is ”yes”.

♠ Although in 4d this has been analyzed also recently, there are still loop-

holes in the argument.
El Showk+Rychkov+Nakayama, Luty+Polchinski+Rattazzi,
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Bzowski+Skenderis, Dymarsky+Komargodksi+Schwimmer+Theisen+Farnsworth+Luty+Prilepina

♠ In 2d it is a folk-theorem that the strong version of the c-theorem is

expected to exclude limit cycles and other exotic behavior in Unitary Rela-

tivistic QFTs.
Zamolodchikov

• The folk-theorem between the strong version of the a-theorem and the

appearance of limit cycles has at least one important loop-hole:

If the β-functions have branch singularities away from the UV fixed point,

then a limit cycle can be compatible with the strong version of the a/c-

theorem.
Curtright+Zachos

• If this ever happens, it can only happen “beyond perturbation theory”.

Curved Holographic RG flows+F-functions, Elias Kiritsis
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C-functions and F-Functions

• In 2 and 4 dimensions we have established c-theorems and associated
c-functions, that interpolate properly between UV and IR CFTs along an
RG flow.

Zamolodchikov, Cardy, Komargodky+Schwimmer, ....

• In 3-dimensions, there is an F-theorem for CFTs associated with the S3

renormalized partition function.
Jafferis, Jafferis+Klebanov+Pufu+Safdi

• But the associated partition function fails to be a monotonic F-function
along the the flow.

Klebanov+Pufu+Safdi, Taylor+Woodhead

• There is an alternative “F-function”: the appropriately renormalized en-
tanglement entropy associated to an S2 in R3.

Myers+Sinha, Liu+Mazzei

• There is a general proof that in 3d this is always monotonic.
Casini+Huerta+Myers, Casini+Huerta

Curved Holographic RG flows+F-functions, Elias Kiritsis
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The Goal

• Build an understanding of the general structure of holographic RG flows

of QFTs on flat space.

• Build an understanding of the general structure of holographic RG flows

of QFTs on curved spaces (spheres etc)

• Use this knowledge to revisit F-functions in 3 and more dimensions.

• Here I will present some highlights of curved space flows and associated

F-functions

Curved Holographic RG flows+F-functions, Elias Kiritsis
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Holographic RG flows: the setup

• For simplicity and clarity I will consider the bulk theory to contain only

the metric and a single scalar (Einstein-dilaton gravity), dual to the stress

tensor Tµν and a scalar operator O of a dual QFT.

• The two derivative action (after field redefinitions) is

Sbulk =Md−1
∫
dd+1x

√
−g

[
R−

1

2
(∂ϕ)2 − V (ϕ)

]
+ SGH

• We assume V (ϕ) is analytic everywhere except possibly at ϕ = ±∞.

• We will consider the AdS regime: (V < 0 always) and look (in the

beginning) for solutions with d-dimensional Poincaré invariance.

ds2 = du2 + e2A(u)dxµdx
µ , ϕ(u)

• The Einstein equations have three integration constants.
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• The Einstein equations can be turned to first order equations using the

“superpotential” (no-supersymmetry here).

Ȧ = −
1

2(d− 1)
W (ϕ) , ϕ̇ =W ′(ϕ) , dot =

d

du

−
d

4(d− 1)
W (ϕ)2 +

1

2
W (ϕ)′2 = V (ϕ) , ′ =

d

dϕ

Boonstra+Skenderis+Townsend, Skenderis+Townsend, De Wolfe+Freedman+Gubser+Karch, de

Boer+Verlinde2

• These equations have the same number of integration constants. In

particular there is a continuous one-parameter family of W (ϕ).

• Given a W (ϕ), A(u) and ϕ(u) can be found by integrating the first order

flow equations.

• The two integration constants will be later interpreted as couplings of

the dual QFT.
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• The third integration constant hidden in the superpotential equation

controls the vev of the operator dual to ϕ.

• Therefore:

RG flows are in one-to one correspondence with the solutions of the “su-

perpotential equation”.

−
d

4(d− 1)
W (ϕ)2 +

1

2
W (ϕ)′2 = V (ϕ)

• Regularity of the bulk solution fixes the W -equation integration constant

(uniquely in generic cases).

Curved Holographic RG flows+F-functions, Elias Kiritsis
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General properties of the superpotential

• Because of the symmetry (W,u) → (−W,−u) we can always take W > 0.

• The superpotential equation implies

W (ϕ) =

√
−
4(d− 1)

d
V (ϕ) +

2(d− 1)

d
W ′2 ≥

√
−
4(d− 1)

d
V (ϕ) ≡ B(ϕ) > 0

• The holographic “c-theorem” for all flows:

dW

du
=
dW

dϕ

dϕ

du
=W ′2 ≥ 0

• The only singular flows are those that end up at ϕ→ ±∞.

• All regular solutions to the equations are flows from an extremum of V

to another extremum of V (for finite ϕ).

Curved Holographic RG flows+F-functions, Elias Kiritsis
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The standard holographic RG flows

• The standard lore says that the maxima of the potential correspond to UV
fixed points, the minima to IR fixed points, and the flow from a maximum
is to the next minimum.

UV UV UVIR IR

+ + +

• The real story is a bit more complicated.

Curved Holographic RG flows+F-functions, Elias Kiritsis
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Bounces

• When W reaches the boundary region B(ϕ) at a generic point, it develops

a generic non-analyticity.

W±(ϕ) = B(ϕB)± (ϕ− ϕB)
3
2 + · · ·

• There are two branches that arrive at such a point.
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• Although W is not analytic at ϕB, the full solution (geometry+ϕ) is

regular at the bounce.

• The only special thing that happens is that ϕ̇ = 0 at the bounce.

• All bulk curvature invariants are regular at the bounce!

• All fluctuation equations of the bulk fields are regular at the bounce!

• The holographic β-function behaves as

β ≡
dϕ

dA
= ±

√√√√−2d(d− 1)
V ′(ϕB)

V (ϕB)
(ϕ− ϕB) +O(ϕ− ϕB)

• The β-function is patch-wise defined. It has a branch cut at the position

of the bounce.
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• It vanishes at the bounce without the flow stopping there.

• This is non-perturbative behavior.

• Such behavior was conjectured that could lead to limit cycles without

violation of the a-theorem.
Curtright+Zachos

• We can show that limit cycles cannot happen in theories with holographic

duals (and no extra ”active” dimensions).

Curved Holographic RG flows+F-functions, Elias Kiritsis
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Exotica

• Vev flow between two minima of the potential

ϕ

B(ϕ)

W(ϕ)

V(ϕ)

• Exists only for special potentials. It is a flow driven by the vev of an
irrelevant operator.

• A analogous phenomenon happens in N=1 sQCD.
Seiberg, Aharony

Curved Holographic RG flows+F-functions, Elias Kiritsis

10



Regular multibounce flows

W

Curved Holographic RG flows+F-functions, Elias Kiritsis
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Skipping fixed points

Φ

W (Φ)

UV1

IR1 UV2

IR2

W12(Φ)

W11(Φ)

W21(Φ)

B(Φ) =
√
−3V (Φ)

Curved Holographic RG flows+F-functions, Elias Kiritsis
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Quantum field theories on curved manifolds

• There are many reasons to be interested in QFTs over curved manifolds:

♠ Compact manifolds like Sn are important to regularize massless/CFTs in

the IR.

♠ QFT on deSitter manifolds is interesting due to the fact we live in a

patch of (almost) de Sitter.

♠ As we will see, a normal QFT on the static patch of de Sitter has a

partition function that is thermal.

♠ The induced effective gravitational action as a function of curvature can

serve as a Hartle-Hawking wave-function for three-metrics.

• AdS/CFT can provide concrete quantitative wave-functions that can

depend on cosmological constant and the 3-geometry.
Hartle+Hertog
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♠ Curvature, although UV-irrelevant, is IR relevant and can change impor-

tantly the IR structure of a given theory.

We will see examples of quantum phase transitions driven by curvature.

♠ It will also turn out to be a useful tool in analysing sphere partition

functions and their relationship to F-theorems.

♠ Finally it can be used to provide a concrete check on claims of particle-

creation backreaction on the cosmological constant, beyond perturbation

theory.
Tsamis+Woodard

Curved Holographic RG flows+F-functions, Elias Kiritsis
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The setup

• The holographic ansatz for the ground-state solution is

ds2 = du2 + e2A(u)ζµν dx
µdxν , ϕ(u)

• ζµν is proportional to the boundary metric: we will take it to be maximally

symmetric and constant curvature.

• This includes sphere (Sd), de Sitter (dSd) or Euclidean/Minkowski AdSd.

• Therefore we consider a strongly-coupled QFT on Sd, dSd, AdSd.

• In the AdS case, the ansatz has two boundary singularities so the results

in that case require some caution.
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• We take the bulk theory to be the same as before

Sbulk =Md−1
∫
dd+1x

√
−g

[
R−

1

2
(∂ϕ)2 − V (ϕ)

]
+ SGH

• Now there are two parameters (couplings) for the solution: ϕ0 and RUV .
They combine in a single dimensionless parameter:

R ≡
RUV

ϕ

2
∆−
0

• R → 0 will probe the full original theory except a small IR region.

• R → ∞ will explore only the UV of the original theory.

• Therefore by varying R we have an invariant/well-defined dimensionless
number that tracks the UV flow from the UV to the IR.

• The results are generalizable to the multi-field case.

Curved Holographic RG flows+F-functions, Elias Kiritsis
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The first order RG flows

• We have two first order flow equations:

Ȧ = −
1

2(d− 1)
W (Φ) , Φ̇ = S(Φ)

where the functions W (Φ), S(Φ) satisfy 2 first order non-linear equations

d

2(d− 1)
W2 + (d− 1)S2 − dSW ′ +2V = 0 , SS′ −

d

2(d− 1)
SW − V ′ = 0

• The two dimensionless integration constants that enter W,S, I will call
C,R. The first will be related to the vev of O dual to ϕ. R is related to
the the curvature of the boundary metric.

• We also define

T (Φ) ≡ Re−2A =
d

2
S(Φ)(W ′(Φ)− S(Φ))

• T ∼ R, and therefore T = 0 in the flat case.

Curved Holographic RG flows+F-functions, Elias Kiritsis

15



The interpretation of parameters

• The solutions have four parameters:

♠ Two (A0, ϕ−) come from integrating the flow equations:

Ȧ ∼W , Φ̇ ∼ S

They are sources (generically):

• A0 is the UV scale of length.

• ϕ− is the UV coupling constant of O.

♠ The other two are in W,S. The expansion near a UV fixed point is

(Φ → 0)

W (Φ)=
2(d− 1)

ℓ
+

∆−
2ℓ

Φ2+O
(
Φ3

)
+δW , S(Φ) =

∆−
2ℓ

Φ+O
(
Φ2

)
+δS

16



• The non-analytic terms are:

δW (Φ) =
R
dℓ

|Φ|
2

∆−
(
1+O(Φ) +O(|Φ|2/∆−R) +O(|Φ|d/∆−C(R))

)

+
C(R)

ℓ
|Φ|

d
∆−

(
1+O(Φ) +O(|Φ|2/∆−R) +O(|Φ|d/∆−C(R))

)

δS(Φ) =
d

∆−

C(R)

ℓ
|Φ|

d
∆−

−1
(
1+O(Φ)+O(|Φ|2/∆−R)+O(|Φ|d/∆−C(R))

)
+

+O
(
|Φ|2/∆−+1R

)

T (Φ) = R|ϕ|
2

∆− + · · ·

• The expansions above give a precise definition of the function C(R)

• We obtain the connection to observables

16-



R = R |Φ−|−2/∆− , ⟨O⟩(R) =
d

∆−
C(R)|Φ−|

∆+
∆−

• R > 0 describes Sd and dSd. R < 0 describes AdSd.

• C0 is the second integration constant.

C(R) =
R→0

C0 + C1R+O
(
R2

)
+O

(
R3/2−∆IR

−
)

• The general structure near a maximum (UV) of the potential has the
“resurgent” expansion

W (ϕ) =
∑

m,n,r∈Z+
0

Am,n,r (C ϕ
d

∆−)m (R ϕ
2

∆−)n ϕr

Curved Holographic RG flows+F-functions, Elias Kiritsis
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The IR limits

• When RUV = 0 the IR end-poids are minima of V (Φ).

• When RUV ̸= 0, the IR end points cannot be minima of V (Φ).

• The flow can end at any Φ0, V
′(Φ0) ̸= 0, as

W (Φ) =
W0√

|Φ−Φ0|
+O

(
|Φ−Φ0|0

)
, S(Φ) = S0

√
|Φ−Φ0|+O

(
|Φ−Φ0|

)

with

S0
2 = 2|V ′(Φ0)|

d+1 , W0 = (d− 1)S0

17



• At Φ = Φ0,

T ≃
d

4

W0S0
|Φ−Φ0|

→ ∞ as Φ → Φ0

• We have a regular horizon (similar to the Poincaré horizon).

• Generically for each Φ0 we have a unique solution.

• Solving the equations towards the UV, we obtain the parameters of the

REGULAR flow R and C(R) as a function of Φ0.

• We can therefore take Φ0 as the independent dimensionless parameter of

the theory.

• It has the advantage, that there is a unique solution for each Φ0.

Curved Holographic RG flows+F-functions, Elias Kiritsis
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The vanilla flows at finite curvature

UV
Φ0

IR

Φ

W (Φ)

WC,R(Φ)
√
−4(d−1)V (Φ)

d

18
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Detour: Curvature-dependent β-functions and

geometric flows

• We can calculate from the first order formalism the curvature dependent

(holographic) β-function

β(Φ) ≡
dΦ

dA
=

ϕ̇

Ȧ
= −2(d− 1)

S(Φ)

W (Φ)

• Near the UV

β(Φ) = −∆−Φ+O(Φ2) +O
(
R|ϕ|

1+ 2
∆−

)
+ · · ·

• Near the IR (horizon)

β(Φ) ∼ (Φ−Φ0)

19
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• The local RG takes couplings to weakly depend on xµ.
Osborn

• The holographic RG can be generalized straightforwardly to the local RG

ϕ̇ =W ′ − U ′ R+
1

2

(
W

W ′U
′
)′
(∂ϕ)2 +

(
W

W ′U
′
)
�ϕ+ · · ·

γ̇µν = −
W

d− 1
γµν −

1

d− 1

(
U R+

W

2W ′U
′(∂ϕ)2

)
γµν+

+2U Rµν +
(
W

W ′U
′ − 2U ′′

)
∂µϕ∂νϕ− 2U ′∇µ∇νϕ+ · · ·

Papadimitriou, Kiritsis+Li+Nitti

• U(ϕ), W (ϕ) are solutions of

−
d

4(d− 1)
W2 +

1

2
W ′2 = V , W ′ U ′ −

d− 2

2(d− 1)
W U = 1

• Like in 2d σ-models we may use it to define “geometric” RG flows.

Curved Holographic RG flows+F-functions, Elias Kiritsis
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The on-shell action

• Once we understand the structure of flows, we must calculate the on-shell

action for such flows.

♠ It is Son−shell that contains all the quantitative information that is im-

portant for the many applications.

• A direct calculation using the equations of motion gives:

F = 2Md−1
p Vd

[
(d− 1)

[
edAȦ

]
UV

+
R

d

∫ UV

IR
du e(d−2)A

]
,

where we defined

Vd ≡
∫

ddx
√
|ζ| = Vol(Sd) .

20



• We may rewrite it as

F = −Md−1
p Ω̃d

(
T−d

2(Φ)W (Φ) + T−d
2+1(Φ)U(Φ)

) ∣∣∣∣
Φ(u)→Φ(log ϵ)

,

where U(Φ) satisfies

S(Φ)U ′(Φ)−
d− 2

2(d− 1)
W (Φ)U(Φ) = −

2

d
U(Φ)

with a UV expansion, near Φ → 0

U(Φ) = ℓ

[
2

d(d− 2)
+B(R) |Φ|(d−2)/∆− +O

(
R|Φ|2/∆−

)]
,

• It defined the new function B(R) unambiguously.

• It is now clear that F (Λ,R) depends on two dimensionless parameters:

R and the cutoff ϵ that we will translate to a conventional dimensionless

cutoff:

Λ ≡
eA(u)

ℓ |Φ−|1/∆−

∣∣∣∣∣∣
u=log ϵ

,

Curved Holographic RG flows+F-functions, Elias Kiritsis
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Renormalization in d=3

• To define the finite on-shell action we must study the structure of diver-

gences and then subtract them.
Skenderis+Henningson, Papadimitriou+Skenderis, Papadimitriou

F d=3(Λ,R) = −(Mℓ)2Ω̃3

 R−3/2
[
4Λ3

(
1+O

(
Λ−2∆−

))
+ C(R)

]

+R−1/2
[
Λ
(
1+O

(
Λ−2∆−

))
+B(R)

]+ . . . ,

• To remove the divergences in general we must subtract two counterterms

F
(0)
ct =Md−1

∫
UV

ddx
√
|γ|Wct(Φ) , F

(1)
ct =Md−1

∫
UV

ddx
√
|γ|R(γ)Uct(Φ)

where

d

4(d− 1)
W2
ct −

1

2

(
W ′
ct

)2
= −V , W ′

ctU
′
ct −

d− 2

2(d− 1)
WctUct = −1 .

• The functions Wct, Uct are determined by two constants Cct, Bct.
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• Therefore the renormalized on-shell action is

F ren(R|Bct, Cct, . . .) = lim
Λ→∞

F (Λ,R) +
nmax∑
n=0

F
(n)
ct



• In d=3 we obtain

F d=3,ren(R|Bct, Cct) = −(Mℓ)2Ω̃3

[
R−3/2

(
C(R)−Cct

)
+R−1/2

(
B(R)−Bct

)]
.

• This is the (scheme-dependent) renormalized on-shell action on S3.

• It depends on two calculable functions C(R) and B(R) and two arbitrary
renormalization constants Cct, Bct.

• It has two sources of IR divergences:

♠ R−3/2 is the expected volume divergence.

♠ R−1/2 is a subleading linear divergence.

Curved Holographic RG flows+F-functions, Elias Kiritsis
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Thermodynamics in de Sitter and

(entanglement) entropy

• The F-function for 3d CFTs is given by the renormalized “free energy”
(or partition function) on the 3-sphere.

Jafferis, Jafferis+Klebanov+Pufu+Safdi

• The interpolating F − function satisfying the F-theorem is given by the
S2 entanglement entropy.

Myers+Sinha, Myers+Casini+Huerta, Liu+Mezzei,Casini+Huerta

• The connection between S3 partition function and the S2 entanglement
entropy seems puzzling at first.

• We will try to understand it a bit better in our context.

• We will show that there a natural entropy, that is also an entanglement
entropy in de Sitter (defined as the analytic continuation of the sphere)

• And that it is related to the “free-energy”/partition function on S3.

22



• Consider a QFTd on a d-dimensional deSitter space in global coordinates

where it is a changing Sd−1 sphere:

ds2 = −dt2 +R2 cosh2(t/R)(dθ2 + sin2 θ dΩ2
d−2)

• Consider the entanglement entropy in that theory between two spatial

hemispheres that have Sd−2 as boundary.

22-



• The EE of the two hemispheres can be computed holographically using
the Ryu-Takayanagi formula. The result is,

SEE =Md−1
P

2R

d

∫
ddx

√
−ζ

∫ IR

UV
du e(d−2)A(u) .

Ben-Ami+Carmi+Smolkin

• This is precisely the second term that enters the curved on-shell action.

F = 2Md−1
p Vd

[
(d− 1)

[
edAȦ

]
UV

+
R

d

∫ UV

IR
du e(d−2)A

]
,

• The first term has also a thermodynamical interpretation: we change
coordinates on the de Sitter slices and go to static patch coordinates.

Casini+Huerta+Myers

ds2 = du2 + e2A(u)

−(
1−

r2

α2

)
dτ2 +

(
1−

r2

α2

)−1

dr2 + r2dΩ2
d−2

 .

where α is the de Sitter radius and 0 < r < α.

• Now there is a bulk horizon at r = α. The Bekenstein-Hawking entropy
can be calculated and it is equal to the dS entanglement entropy, SEE.

22-



• The associated temperature to this horizon is constant

T =
1

2πα
• A similar computation of the “energy” U gives

βU = 2(d− 1)Md−1
P

[
edA(u)Ȧ(u)

]
UV

Vd.

• Putting everything together we get a familiar thermodynamic formula

F = U − T S

for the de Sitter free-energy and its S3 analytic continuation.

• The standard rules of thermodynamics relate our two functions B(R), C(R).

C′(R) =
1

2
B(R)−RB′(R)

• We conclude that de Sitter entanglement entropy and Free energy on
S3 are tightly connected.

• For a CFT, dS SEE, is also the entanglement entropy for the S2 in flat
space.

Casini+Huerta+Myers

Curved Holographic RG flows+F-functions, Elias Kiritsis
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F-functions

• For a given F-function the F-theorem states that

FUV > FIR
• The refined version demands that there exists a function F(R), with R
some parameter along the flow, which exhibits the following properties:

♠ At the fixed points of the flow, the function F(R) takes the values FUV

and FIR respectively.

♠ The function F(R) evolves monotonically along the flow,

d

dR
F(R) ≤ 0 ,

♠ There is an extra option for stationarity at the beginning and end of the

flow. This is optional.

23



• We will use R as an interpolating variable between

IR : R → 0 and UV : R → ∞

1. F must be UV and IR finite.

2. An F-function must also satisfy:

lim
R→∞

F(R) ≡ FUV = 8π2(MℓUV )
2

lim
R→0

F(R) ≡ FIR = 8π2(MℓIR)
2

dF
dR

≥ 0
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F d=3(Λ,R) = −(Mℓ)2Ω̃3

 R−3/2
[
4Λ3

(
1+O

(
Λ−2∆−

))
+ C(R)

]

+R−1/2
[
Λ
(
1+O

(
Λ−2∆−

))
+B(R)

]+ . . . ,

F d=3,ren(R|Bct, Cct) = −(Mℓ)2Ω̃3

[
R−3/2

(
C(R)−Cct

)
+R−1/2

(
B(R)−Bct

)]
.

• We have

B(R) = B0 +B1R+O(R2)− 8π2Ω̃−2
3
ℓ2IR
ℓ2

R1/2
(
1+O

(
R−∆IR

−
))

C(R) = C0 + C1R+O(R2) , R → 0

C(R)=O
(
R3/2−∆−

)
, B(R)=− 8π2Ω̃−2

3 R1/2
(
1+O

(
R−∆−

))
, R → ∞

See also Taylor+Woodhouse
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• Using the above we can see that the R → ∞ limit of F ren(R) is finite and
scheme independent

• We also obtain in the IR limit R → 0

F ren=− (Mℓ)2Ω̃3

(
C0 − Cct

)
R−3/2 − (Mℓ)2Ω̃3

(
B0 + C1 −Bct

)
R−1/2+

+8π2(MℓIR)
2 +O(R−∆IR

− ) +O(R1/2) .

• It is generically IR divergent.

• There are two special values for the counterterms

Bct = Bct,0 ≡ B0 + C1 , Cct = Cct,0 ≡ C0

• If chosen, the IR divergences cancel.

• We can also use the Liu-Mezzei method:

D3/2R
−3/2 ≡

(
2

3
R

∂

∂R
+1

)
R−3/2 = 0

D1/2R
−1/2 ≡

(
2R

∂

∂R
+1

)
R−1/2 = 0
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• There are four proposals using the free energy:

F1(R) ≡ D1/2 D3/2 F (Λ,R)

F2(R) ≡ D1/2 F
ren(R|Bct, Cct,0)

F3(R) ≡ D3/2 F
ren(R|Bct,0, Cct),

F4(R) ≡ F ren(R|Bct,0, Cct,0).

• All of the above are “scheme independent”.

• We can construct another two from the dS EE:

S
d=3,ren
EE (R|B̃ct) = (Mℓ)2Ω̃3R−1/2

(
B(R)− B̃ct

)
,

• There are another two using the entanglement entropy

F5(R) ≡ D1/2 SEE(Λ,R)

F6(R) = Sren
EE(R|Bct,0)

• Using the identity that links B(R) and C(R).

C′(R) =
1

2
B(R)−RB′(R).
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we can show that

F6(R) = F1(R) , F5(R) = F3(R)

• It is interesting that renormalized EE and renormalized free-energy give

the same answer in these cases.

• All F1,2,3,4 asymptote properly in the UV and IR limits.
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♠ All F1,2,3,4 are monotonic in many numerical holographic examples we

analyzed when ∆ > 3
2.

-6 -4 -2 2 4 6

72

74

76

78

log(R)

8π2ℓ2IR

8π2ℓ2UV

F1

F2

F3

F4

F1,2,3,4 vs. log(R) for a holographic model with Mex Hat potential and

∆− = 1.2.

23-



-6 -4 -2 2 4 6

72

74

76

78

log(R)

8π2ℓ2IR

8π2ℓ2UV

∆− = 1.3

∆− = 1.2

∆− = 1.1

∆− = 0.9 F1

F1 vs. log(R) for a holographic model with ∆− = 0.9 (dark blue), 1.1,

(light blue), 1.2 (blue) and 1.3 (cyan).
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♠ In order for the proposal to work properly, when ∆ < 3
2 , F1,2,3,4 should

be replaced by their Legendre transforms.

♠ This prescription also makes the free theories (the massive fermion and

boson) to be monotonic as well.
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F̃1,2,3,4 for a theory of a free massive scalar on S3.
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Legendre-transformed F1,2,3,4 for a theory of a free massive boson on S3.

♠ We have no general proof of monotonicity so far.

Curved Holographic RG flows+F-functions, Elias Kiritsis
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Outlook

• Exotic holographic flows can appear for rather generic potentials.

• The black holes associated with them have been analyzed and exhibit

many of the phenomena mentioned for the finite curvature case.
Gursoy+Kiritsis+Nitti+Silva-Pimenda, Attems+Bea+Casalderrey-Solana+Mateos+Triana+Zilhao

• One should try to prove monotonicity of Fi and extend also to 5 dimen-

sions.

• Our analysis and the unusual curved solutions we find, seem to have a

radical impact on the stability of AdS minima due to CdL decay processes.

Curved Holographic RG flows+F-functions, Elias Kiritsis
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THANK YOU!
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UV and IR divergences of F and SEE

• The unrenormalized F (Λ,R) and SEE(Λ,R).

♠ UV divergences Λ → ∞:

F (Λ,R) : R−1
2(Λ+ · · · ) and R−3

2(Λ3 + · · · )

SEE(Λ,R) : R−1
2(Λ+ · · · )

♠ IR divergences R → 0 :

F (Λ,R) : R−1
2 (B0 + C1) and R−3

2 C0

SEE(Λ,R) : R−1
2 B0

where

C(R) ≃ C0 + C1R+O(R2) , B(R) ≃ B0 +O(R)
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• The renormalized F and SEE: only UR divergences, R → 0.

F ren(R|Bct, Cct) : R−1
2(B0 + C1 −Bct) andR−3

2(C0 − Cct)

Sren
EE(R|B̃ct, Cct) : R−1

2(B0 − B̃ct)

• We can remove UV divergences from unrenormalized functions by acting
with

D3/2 ≡
2

3

∂

∂R
+1 , D1/2 ≡ 2

∂

∂R
+1 , D3/2R

−3
2 = 0 , D1/2R

−1
2 = 0

• We can remove IR divergences by choosing appropriately our scheme
(subtractions)

Bct,0 = B(0) + C′(0) , Cct,0 = C(0) , B̃ct,0 = B(0)

Curved Holographic RG flows+F-functions, Elias Kiritsis
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F-functions (II)

In terms of the two functions B(R) and C(R) the F functions can be written

as

F1(R)

(Mℓ)2Ω3
= −

4

3
R

1
2(2B′(R) + C′′(R) +R B′′(R))

F2(R)

(Mℓ)2Ω3
= −2R−3

2(−(C(R)− C(0)) +RC′(R) +R2B′(R))

F3(R)

(Mℓ)2Ω3
= −

4

3
R−1

2(B(R) + C′(R)−B(0)− C′(0)) +RB′(R))

F4(R)

(Mℓ)2Ω3
= −R−3

2(C(R)− C(0)) +R(B(R)−B(0))

We also have the relation

C′(R) =
1

2
B(R)−RB′(R).

Curved Holographic RG flows+F-functions, Elias Kiritsis
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Holography and “Quantum” RG

• Enter holography as a means of probing strong coupling behavior.

• Holography provides a neat description of RG Flows.

• It also gives a natural a-function and the strong version of the a-theorem

holds.

♠ But...the relevant equations that are converted into RG equations are

second order!

• It is known for some time that the Hamilton-Jacobi formalism in holog-

raphy gives first order RG-equations.
de Boer+Verlinde2, Skenderis+Townsend, Gursoy+Kiritsis+Nitti, Papadimitriou, Kiritsis+Li+Nitti

• This would imply that (conceptually at least) holographic RG flows are

very similar to (perturbative) QFT flows.

Curved Holographic RG flows+F-functions, Elias Kiritsis
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The extrema of V

The expansion of the potential near an extremum is

V (ϕ) = −
1

ℓ2

[
d(d− 1)−

m2ℓ2

2
ϕ2 +O(ϕ3)

]

∆± =
d

2
±

√
d2

4
+m2ℓ2 ,

• The series solution of the superpotential is

W± = 2(d− 1) +
∆±
2
ϕ2 + · · ·

• Near a maximum, W− is part of a continuous family (parametrized by a
vev)

• W+ is an isolated solution.

• Near a minimum, regularity makes W− unique.

• Near a minimum, W+ describes a “UV fixed point”

Curved Holographic RG flows+F-functions, Elias Kiritsis
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The strategy

• Review of the holographic RG flows.

• Understanding the space of solutions.

• Standard RG flows start a maximum of the bulk potential and end at a
nearby minimum.

• We find exotic holographic RG flows:

♠ “Bouncing flows”: the β-function has branch cuts.

♠ “Skipping flows”: the theory bypasses the next fixed point.

♠ “Irrelevant vev flows”: the theory flows between two minima of the bulk
potential.

• Outlook

Curved Holographic RG flows+F-functions, Elias Kiritsis
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Regularity

• One key point: out of all solutions W , typically one only gives rise to a

regular bulk solution. (and more generally a discrete number∗).

• All others have bulk singularities and are therefore unacceptable∗ (holo-

graphic) classical solutions.

• This reduces the number of (continuous) integration constants from 3

to 2.

• This has a natural interpretation in the dual QFT: the theory determines

it possible vevs (we exclude flat directions).

• The remaining first order equations are now the first order RG equations

for the coupling and the space-time volume.

• Now we can favorably compare with QFT RG Flows.

Curved Holographic RG flows+F-functions, Elias Kiritsis
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General properties of the superpotential

• From the superpotential equation we obtain a bound:

W (ϕ)2 = −
4(d− 1)

d
V (ϕ) +

2(d− 1)

d
W ′2 ≥ −

4(d− 1)

d
V (ϕ) ≡ B2(ϕ) > 0

• Because of the (u,W ) → (−u,−W ) symmetry we can fix the flow (and

sign of W ) so that we flow from u = −∞ (UV) to u = ∞ (IR). This implies

that:

W > 0 always so W ≥ B

• The holographic “a-theorem”:

dW

du
=
dW

dϕ

dϕ

du
=W ′2 ≥ 0

so that the a-function any decreasing function of W always decreases along

the flow, ie. W is positive and increases.
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• The inequality now can be written directly in terms of W :

W (ϕ) ≥ B(ϕ) ≡

√
−
4(d− 1)

d
V (ϕ)

• The maxima of V are minima of B and the minima of V are maxima of
B.

• The bulk potential provides a lower boundary for W and therefore for the
associated flows.

• Regularity of the flow=regularity of the curvature and other invariants of
the bulk theory:

A flow is regular iff W,V remain finite during the flow.

• V aws assumed finite for ϕ finite. The same can be proven for W .

Therefore singular flows end up at ϕ→ ±∞

.

Curved Holographic RG flows+F-functions, Elias Kiritsis
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Holographic RG Flows

• A QFT with a (relevant) scalar operator O(x) that drives a flow, has

two parameters: the scale factor of a flat metric, and the O(x) coupling

constant.

• These two parameters, generically correspond to the two integration

constants of the first order bulk equations.

• Since ϕ is interpreted as a running coupling and A is the log of the RG

energy scale, the holographic β-function is

Ȧ = −
1

2(d− 1)
W (ϕ) , ϕ̇ =W ′(ϕ)

dϕ

dA
= −

1

2(d− 1)

d

dϕ
logW (ϕ) ≡ β(ϕ) ∼

1

C

d

dϕ
C(ϕ)

• C ∼ 1/W d−1 is the (holographic) C-function for the flow.
Girardello+Petrini+Porrati+Zaffaroni, Freedman+Gubser+Pilch+Warner
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• W (ϕ) is the non-derivative part of the Schwinger source functional of the
dual QFT =on-shell bulk action.

de Boer+Verlinde2

Son−shell =
∫
ddx

√
γ W (ϕ) + · · ·

∣∣∣∣
u→uUV

• The renormalized action is given by

Srenorm =
∫
ddx

√
γ (W (ϕ)−Wct(ϕ)) + · · ·

∣∣∣∣
u→uUV

=

= constant
∫
ddx e

dA(u0)− 1
2(d−1)

∫ ϕ0
ϕUV

dϕ̃W
′

W + · · ·

• The statement that dSrenorm
du0

= 0 is equivalent to the RG invariance of
the renormalized Schwinger functional.

• It is also equivalent to the RG equation for ϕ.

• We can prove that

Tµ
µ = β(ϕ) ⟨O⟩

• The Legendre transform of Srenorm is the (quantum) effective potential
for the vev of the QFT operator O.

Curved Holographic RG flows+F-functions, Elias Kiritsis
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Detour: The local RG

• The holographic RG can be generalized straightforwardly to the local RG

ϕ̇ =W ′ − f ′ R+
1

2

(
W

W ′f
′
)′
(∂ϕ)2 +

(
W

W ′f
′
)
�ϕ+ · · ·

γ̇µν = −
W

d− 1
γµν −

1

d− 1

(
f R+

W

2W ′f
′(∂ϕ)2

)
γµν+

+2f Rµν +
(
W

W ′f
′ − 2f ′′

)
∂µϕ∂νϕ− 2f ′∇µ∇νϕ+ · · ·

Kiritsis+Li+Nitti

• f(ϕ), W (ϕ) are solutions of

−
d

4(d− 1)
W2 +

1

2
W ′2 = V , W ′ f ′ −

d− 2

2(d− 1)
W f = 1

• Like in 2d σ-models we may use it to define “geometric” RG flows.

Curved Holographic RG flows+F-functions, Elias Kiritsis
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More flow rules

• At every point away from the B(ϕ) boundary (W > B) always two solu-

tions pass:

W ′ = ±
√
2V +

d

2(d− 1)
W2 = ±

√
d

2(d− 1)

(
W2 −B2

)

Curved Holographic RG flows+F-functions, Elias Kiritsis
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The critical points of W

• On the boundary W = B, we obtain W ′ = 0 and only one solution exists.

• The critical (W ′ = 0) points of W come in three kinds:

♠ W = B at non-extremum of the potential (generic).

♠ Maxima of V (minima of B) (non-generic)

♠ Minima of V (maxima of B) (non-generic)

Curved Holographic RG flows+F-functions, Elias Kiritsis
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The BF bound

• The BF bound can be written as

4(d− 1)

d

V ′′(0)

V (0)
≤ 1

• If a solution for W near ϕ = 0 exists, then the BF bound is automatically

satisfied as it can be written(
4(d− 1)

d

W ′′(0)

W (0)
− 1

)2
≥ 0

• When BF is violated, although there is no (real) W , there exists a UV-

regular solution for the flow: ϕ(u), A(u).

• This solution is unstable against linear perturbations (and corresponds to

a non-unitary CFT).

Curved Holographic RG flows+F-functions, Elias Kiritsis
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BF violating flows

• As mentioned there can be flows out of a BF-violating UV fixed point.

• No β-function description of such flows in the UV.

• Such flows have an infinite-cascade of bounces as one goes towards the
UV.

38
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• Although the flow is regular, it is unstable.

Curved Holographic RG flows+F-functions, Elias Kiritsis
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The maxima of V

• We will examine solutions for W near a maximum of V .

• We put the maximum at ϕ = 0.

V (ϕ) = −
1

ℓ2

[
d(d− 1)−

m2ℓ2

2
ϕ2 +O(ϕ3)

]

∆± =
d

2
±

√
d2

4
+m2ℓ2 , m2ℓ2 < 0 , ∆+ ≥ ∆− ≥ 0

• We set (locally) ℓ = 1 from now on.

• If W ′(0) = 0 there are two classes of solutions:
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• A continuous family of solutions (the W− family)

W− = 2(d− 1) +
∆−
2
ϕ2 + · · ·+ Cϕ

d
∆− [1 + · · · ] +O(C2)

• The solution for ϕ and A corresponding to this, is the standard UV source

flow:

ϕ(u) = α e∆− u+· · ·+
∆−
d

C e∆+ u+· · · , eA = eu−A0+· · · , u→ −∞

• the solution describes the UV region (u → −∞) with a perturbation by

a relevant operator of dimension ∆+ < d.

• The source is α. It is not part of W .

• C determines the vev: ⟨O⟩ ∼ C α

∆+
∆− .
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• A single isolated solution W+

W+ = 2(d− 1) +
∆+

2
ϕ2 +O(ϕ3) , ∆+ >∆−

• The associated solution for ϕ, A is

ϕ(u) = α e∆+ u+ · · · , eA = e−u+A0 + · · ·

• This is a vev flow ie. the source is zero.

⟨O⟩ = (2∆+ − d) α

• The value of the vev is NOT determined by the superpotential equation.

This is a moduli space.

• The whole class of solutions exists both from the left of ϕ = 0 and from

the right.
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RETURN1 RETURN2

Curved Holographic RG flows+F-functions, Elias Kiritsis
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The minima of V

• We expand the potential near the minimum:

V (ϕ) = −
1

ℓ2

[
d(d− 1)−

m2ℓ2

2
ϕ2 +O(ϕ3)

]
, ∆± =

d

2
±

√
d2

4
+m2ℓ2

m2 > 0 , ∆+ > 0 , ∆− < 0

• There are two isolated solutions with W ′(0) = 0.

W±(ϕ) =
1

ℓ

[
2(d− 1) +

∆±
2
ϕ2 +O(ϕ3)

]
,

• No continuous parameter here as it generates a singularity.

• Although the solutions look similar, their interpretation is very different.

W+ has a local minimum while W− has a local maximum.
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• There is again a moduli space.

♠ A W+ solution is globally regular only in special cases.

♠ Therefore a minimum of the potential can be either an IR fixed point or
a UV fixed point.

Curved Holographic RG flows+F-functions, Elias Kiritsis
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The maxima of V

• We will examine solutions for W near a maximum of V .

• We put the maximum at ϕ = 0.

• When V ′(0) = 0, W ′′(0) is finite.

V (ϕ) = −
1

ℓ2

[
d(d− 1)−

m2ℓ2

2
ϕ2 +O(ϕ3)

]

∆± =
d

2
±

√
d2

4
+m2ℓ2 , m2ℓ2 < 0 , ∆+ ≥ ∆− ≥ 0

• We set (locally) ℓ = 1 from now on.

• If W ′(0) ̸= 0 there is one solution (per branch) off the critical curve,

• If W ′(0) = 0 there are two classes of solutions:
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• A continuous family of solutions (the W− family)

W− = 2(d− 1) +
∆−
2
ϕ2 + · · ·+ Cϕ

d
∆− [1 + · · · ] +O(C2)

• The solution for ϕ and A corresponding to this, is the standard UV source

flow:

ϕ(u) = α e∆− u+· · ·+
∆−
d

C e∆+ u+· · · , eA = eu−A0+· · · , u→ −∞

• the solution describes the UV region (u → −∞) with a perturbation by

a relevant operator of dimension ∆+ < d.

• The source is α. It is not part of W .

• C determines the vev: ⟨O⟩ ∼ C α

∆+
∆− .

• The near-boundary AdS is an attractor of all these solutions.
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• A single isolated solution W+ also arriving at W (0) = B(0)

W+ = 2(d− 1) +
∆+

2
ϕ2 +O(ϕ3) , ∆+ >∆−

• Always W ′′
+ > W ′′

−.

• The associated solution for ϕ, A is

ϕ(u) = α e∆+ u+ · · · , eA = e−u+A0 + · · ·

• This is a vev flow ie. the source is zero.

⟨O⟩ = (2∆+ − d) α

• The value of the vev is NOT determined by the superpotential equation.

• It can be reached in a appropriately defined limit C → ∞ of the W− family.

• The whole class of solutions exists both from the left of ϕ = 0 and from
the right.

41-



RETURN1 RETURN2

Curved Holographic RG flows+F-functions, Elias Kiritsis
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The minima of V

• We expand the potential near the minimum:

V (ϕ) = −
1

ℓ2

[
d(d− 1)−

m2ℓ2

2
ϕ2 +O(ϕ3)

]
, ∆± =

d

2
±

√
d2

4
+m2ℓ2

m2 > 0 , ∆+ > 0 , ∆− < 0

• There are solutions with W ′(0) ̸= 0. These are solutions that do not stop
at the minimum.

• There are two isolated solutions with W ′(0) = 0.

W±(ϕ) =
1

ℓ

[
2(d− 1) +

∆±
2
ϕ2 +O(ϕ3)

]
,

• No continuous parameter here as it generates a singularity.

• Although the solutions look similar, their interpretation is very different.
W+ has a local minimum while W− has a local maximum.
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• The W− solution:

ϕ(u) = α e∆− u+ · · · , eA = e−(u−u0) + · · · .

• Since ∆− < 0, small ϕ corresponds to u→ +∞ and eA → 0.

• This signal we are in the deep interior (IR) of AdS.

• The driving operator has (IR) dimension ∆+ > d and a zero vev in the

IR.

• Therefore W− generates locally a flow that arrives at an IR fixed point.
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• The W+ solution is:

ϕ(u) = α e∆+ u+ · · · , eA = e−(u−u0) + · · · .

• Since ∆+ > 0 small ϕ corresponds to u→ −∞ and eA → +∞.

• This solution described the near-boundary (UV) region of a fixed point.

• This solution is driven by the vev of an operator with (UV) dimension

∆+ > d (irrelevant).
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♠ A minimum of the potential can be either an IR fixed point or a UV fixed

point.

Curved Holographic RG flows+F-functions, Elias Kiritsis
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The first order formalism

• In this case the two first order flow equations are modified:

Ȧ = −
1

2(d− 1)
W (ϕ) , ϕ̇ = S(ϕ)

d

2(d− 1)
W2 + (d− 1)S2 − dSW ′ = −2V , SS′ −

d

2(d− 1)
WS = V ′

• The two superpotential equations have two integration constants.

• One of them, C, is the vev of the scalar operator (as usual).

• The other is the dimensionless curvature, R.

• The structure near an maximum (UV) of the potential has the “resurgent”
expansion

W (ϕ) =
∑

m,n,r∈Z+
0

Am,n,r (C ϕ
d

∆−)m (R ϕ
2

∆−)n ϕr

Curved Holographic RG flows+F-functions, Elias Kiritsis
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Coordinates

Τ

u

Τ " 0

u " 0

z
t

Relation between Poincaré coordinates (t, z) and dS-slicing coordinates (τ, u). Constant u

curves are half straight lines all ending at the origin (τ → 0−); Constant τ curves are

branches of hyperbolas ending at u = 0 (null infinity on the z = −t line). The boundary

z = 0 corresponds to u→ −∞.
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u
!
"
#

u
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Embedding of the dS patch in global coordinates. The

flow endpoint u = 0 corresponds to the point ρ = 0, ψ = −π/2 in global coordinates. the

AdS boundary is at ρ = +∞ and it is reached along u as u→ −∞, and along τ both as

τ → −∞ and as τ → 0.
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Embedding of the dS patch in global conformal coordinates, tanΘ = sinh ρ, where each

point is a d− 1 sphere “filled” by Θ. The boundary is at Θ = π/2. The dashed lines

correspond to the Poincaré patch embedded in global conformal coordinates. The flow

endpoint u = 0 is situated on the Poincaré horizon.
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u = +¥
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z

x

Relation between Poincaré coordinates (x, z) and AdS-slicing coordinates (ξ, u). Constant

u curves are half straight lines all ending at the origin (ξ → 0−); Constant ξ curves are

semicircle joining the two halves of the boundary at u = ±∞.
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Bounces
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Curtright, Jin and Zachos gave an example of an RG Flow that is cyclic

but respects the strong C-theorem

βn(ϕ) = (−1)n
√
1− ϕ2 → ϕ(A) = sin(A)

If we define the superpotential branches by βn = −2(d−1)W ′
n/Wn we obtain

logWn =
(2n+1)π+2(−1)n(arcsin(ϕ) + ϕ

√
1− ϕ2)

8(d− 1)

and we can compute the potentials from V = W ′2/2− dW2/4(d− 1) to

obtain Vn(ϕ).

Such piece-wise potentials then satisfy

Vn+2(ϕ) = e
π

2(d−1) Vn(ϕ)

• No such potentials can arise in string theory.

• Holography can provide only “approximate” cycles.

Curved Holographic RG flows+F-functions, Elias Kiritsis
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Flows in AdS
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C

QFT on AdSd: dimensionless curvature R = R(uv)|Φ−|−2/∆− and dimensionless vev C = ∆−
d
⟨O⟩|Φ−|−∆+/∆−

vs. Φ0 for the Mexican hat potential with ∆− = 1.2. Flows with turning points in the rose-colored region

leave the UV fixed point at Φ = 0 to the left before bouncing and finally ending at positive Φ0. Flows with

turning points in the white region are direct: They leave the UV fixed point at Φ = 0 to the right and do

not exhibit a reversal of direction. The flow with turning point Φc on the border between the

bouncing/non-bouncing regime corresponds to a theory with vanishing source Φ−. As a result, both R and

C diverge at this point.
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ΦΦ!

W (Φ)

UV1

IR1

UV3

UV2

IR2

W3+(Φ)

W11(Φ)

W21(Φ)

B(Φ) =
√
−3V (Φ)
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RG flows with IR endpoint Φ0 → Φ!. When the endpoint Φ0 approaches Φ! flows from both UV1 and UV2

pass by closely to IR1, passing through IR1 exactly for Φ0 = Φ!. This is shown by the purple and red

curves. Beyond IR1 both these solutions coincide, which is denoted by the colored dashed curve. These

have the following interpretation. The flows from UV1 and UV2 should not be continued beyond IR1, which

becomes the IR endpoint for the zero curvature flows W11 and W21. The remaining branch (the colored

dashed curve) is now an independent flow denoted by W3+. This is a flow from a UV fixed point at a

minimum of the potential (denoted by UV3 above) to Φ! and corresponds to a W+ solution with fixed

value R = Ruv|Φ+|−2/∆+ ̸= 0. While flows from UV1 and UV2 can end arbitrarily close to Φ!, the endpoint

Φ0 = Φ! cannot be reached from UV1 or UV2.
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UVIR IRUV

• It is not possible in this example to redefine the topology on the line so

that the flow looks “normal”

• The two flows UV1 → IR1 and UV1 → IR2 correspond to the same source

but different vev’s.

• One can calculate the free-energy difference of these two flows: the one

that arrives at the IR fixed point with lowest a, is the dominant one.

Curved Holographic RG flows+F-functions, Elias Kiritsis
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AdS flows
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Renormalization in 3d

Fd=3(Λ,R) = −(Mℓ)2Ω3

[
R−3

2
(
4Λ3(1 +O(Λ−2∆−)) + C(R)

)
‘+

+R−1
2
(
Λ(1+O(Λ−2∆−)) +B(R

)
+ · · ·

]
, Λ ≡

eA(ϵ)

ℓ|ϕ0|
1

∆−

• B(R), C(R) are the vevs of O and a (part of a) derivative of the stress
tensor.

• We renormalize

F renorm
d=3 (R|Bct, Cct) = −(Mℓ)2Ω3

[
R−3

2 (C(R)− Cct) +R−1
2 (B(R)−Bct)

]

• Similarly the renormalized deSitter entanglement entropy is

Srenorm
EE (R|Bct = (Mℓ)2Ω3R−1

2 (B(R)−Bct)

Curved Holographic RG flows+F-functions, Elias Kiritsis
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Skipping flows at finite curvature

Φ

W (Φ)

UV1

IR1 UV2

IR2

W12(Φ)

W11(Φ)

W21(Φ)

B(Φ) =
√
−3V (Φ)
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Φ

W (Φ)

UV1
IR1 UV2

IR2

Ws,1(Φ)

Wns(Φ)

Ws,2(Φ)

B(Φ) =
√
−3V (Φ)

W12(Φ)

W11(Φ)

The solid lines represent the superpotential W (Φ) corresponding to the three different solutions starting

from UV1 which exist at small positive curvature. Two of them (red and green curves) are skipping flows

and the third one (orange curve) is non-skipping. For comparison, we also show the flat RG flows (dashed

curves)
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Φ0Φ∗ Φ!

R

UV1

IR1 UV2

IR2

B(Φ)

Non-skipping
Φ− > 0
From UV1

Non-bounce
Φ− < 0
From UV2

Non-
bounce
Φ− > 0
From
UV2

Bounce
Φ− < 0
From
UV2

Skipping
Φ− > 0
From
UV1
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A quantum phase transition for UV1

RRc

∆F = Fskip − Fnon-skip

Fskip,1 − Fnon-skip
Fskip,2 − Fnon-skip

• Free energy difference between the skipping and the non-skipping solution.

• The red curve corresponds to the on-shell action difference between the

Ws,1(Φ) solution and the non-skipping solution.

• The green curve corresponds to the on-shell action difference between

the Ws,2(Φ) solution and the non-skipping solution Wns(Φ).

Curved Holographic RG flows+F-functions, Elias Kiritsis
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The RG flows from UV2
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Spontaneous breaking saddle points

• There are two flows with R → ∞

• One is the standard flow associated with UV2. R → ∞ because ϕ0 = 0

although RUV can be anything. The solution is exact AdS, with ⟨O⟩ = 0.

• The R → ∞ solution associated with ϕ = ϕ∗ is a distinct branch of the

theory.

• At ϕ = ϕ∗, ϕ0 (the source) vanishes, therefore R → ∞ although Ruv =finite.

• The point ϕ = ϕ∗ ( a single solution) is a one-parameter family of saddle

points with ϕ0 = 0 but a non trivial (relevant) vev

⟨O⟩ = ξ∗ RUV
∆+
2

• Therefore the CFT UV2 has two saddle points at finite positive curvature

RUV . In one ⟨O⟩ = 0 and in the other ⟨O⟩ ̸= 0.

Curved Holographic RG flows+F-functions, Elias Kiritsis
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Stabilisation by curvature

• The theories with ϕ0 > 0 and R < R∗ do not exist.

• But for R > R∗ there are two non-trivial saddle points

• This is an example of a theory that in flat space, it exists for ϕ0 < 0 but

not for ϕ0 > 0.

• But the theory with ϕ0 > 0 exists when R > R∗.
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• There is a simple example from weakly-coupled field theory that exhibits

similar behavior:

Vflat(ϕ) = −λϕ4 −m2ϕ2

• When λ > 0 the theory does not exist.

• At sufficiently high curvature

VR(ϕ) = −λϕ4 −m2ϕ2 +
1

6R2
ϕ2

the theory develops new extrema:

Curved Holographic RG flows+F-functions, Elias Kiritsis
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The Φ! saddle-point
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Skipping flows from UV1

Bouncing flows from UV2
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Zero-RUV flow UV2 → IR1
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Zero-RUV flow UV2 → IR1
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• Φ! cannot be reached from either UV1 or UV2 but only from IR1.

• The Flow from IR1 to Φ! has zero source and a vev

⟨O⟩ = ξ! RUV

∆+
2

• At the IR1 we have an AdS boundary.

• As R ≡ RUVϕ
− 2

∆−
0 , R → 0 when ϕ0 → 0.

• This is again a one-parameter family of saddle points with different cur-
vature where the theory is driven by the vev of an irrelevant operator.

• As before the CFT at IR1 has two saddle points at finite curvature: one
with ⟨O⟩ = 0, and one with ⟨O⟩ ̸= 0.

• The one with ⟨O⟩ = 0 has lower free energy.

Curved Holographic RG flows+F-functions, Elias Kiritsis
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Dependence of Fi on B(R), C(R)

In terms of the two functions B(R) and C(R) the candidate F functions

can be written as

F1(R)

(Mℓ)2Ω3
= −

4

3
R

1
2(2B′(R) + C′′(R) +R B′′(R))

F2(R)

(Mℓ)2Ω3
= −2R−3

2(−(C(R)− C(0)) +RC′(R) +R2B′(R))

F3(R)

(Mℓ)2Ω3
= −

4

3
R−1

2(B(R) + C′(R)−B(0)− C′(0)) +RB′(R))

F4(R)

(Mℓ)2Ω3
= −R−3

2(C(R)− C(0)) +R(B(R)−B(0))

RETURN

Curved Holographic RG flows+F-functions, Elias Kiritsis
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