
Introduction to the SBLI code
N. De Tullio and N.D.Sandham

Faculty of Engineering and the Environment
University of Southampton

1

• Overview of the numerical algorithms

• Review of recent code re-engineering

• Examples of current numerical investigations

• Code design and structure

• Introduction to HiPSTAR – new code building
partly on SBLI structure

Outline

2

• Compressible Navier-Stokes solver (Fortran 95+)

• 4th order central differences (5-point stencil)

• 3rd order explicit Runge-Kutta (RK3 and RK4) time advance

• Stability improved via an entropy splitting approach

• Characteristic BCs to avoid wave reflections

• Shock capturing with TVD

• Implicit 6th order filter (7-point stencil)

• Multi-block capabilities

• Inter- and intra-block parallelism using MPI (in-house library)

Numerics overview

3

Previous re-engineering project[1]

[1] Yao et al., Re-engineering a DNS code for high-performance computation of turbulent flows.
AIAA Paper 2009-566.

• Unifications of different code versions: Multi-block, LES, Airfoil
simulations (C-grid), fully 3D code version (3D curvilinear grids)

• Update to Fortran 95+ standard
• Development of a validation suite including:

– Shock boundary-layer/interactions

4

Previous re-engineering project[1]

[1] Yao et al., Re-engineering a DNS code for high-performance computation of turbulent flows.
AIAA Paper 2009-566.

• Unifications of different code versions: Multi-block, LES, Airfoil
simulations (C-grid), fully 3D code version (3D curvilinear grids)

• Update to Fortran 95+ standard
• Development of a validation suite including:

– Shock boundary-layer/interactions

– Mack mode instability

5

Previous re-engineering project[1]

[1] Yao et al., Re-engineering a DNS code for high-performance computation of turbulent flows.
AIAA Paper 2009-566.

• Unifications of different code versions: Multi-block, LES, Airfoil
simulations (C-grid), fully 3D code version (3D curvilinear grids)

• Update to Fortran 95+ standard
• Development of a validation suite including:

– Shock boundary-layer/interactions

– Mack mode instability

– 3D curvilinear capability

6

Previous re-engineering project[1]

[1] Yao et al., Re-engineering a DNS code for high-performance computation of turbulent flows.
AIAA Paper 2009-566.

• Unifications of different code versions: Multi-block, LES, Airfoil
simulations (C-grid), fully 3D code version (3D curvilinear grids)

• Update to Fortran 95+ standard
• Development of a validation suite including:

– Shock boundary-layer/interactions

– Mack mode instability

– 3D curvilinear capability

• Scalability tests
– up to 1024 processors in 2009

– up to 200,000 by Mike Ashworth (Daresbury Lab.)

7

a) Boundary-layer instability over a porous surface

• 64 blocks

• Approximately 150,000 points per block

Current research examples

8

b) Roughness-induced transition to turbulence

• 6 blocks
• 156 million points in block 6, 2 million in block 2

Current research examples

9

b) Roughness-induced transition to turbulence

• 6 blocks
• 156 million points in block 6, 2 million in block 2
• Special treatment of density at edges

Current research examples

10

Code design
1. Number and size of blocks: 1-64 with 100,000 to 200 M points
2. Block connectivity: matching nodes
3. FD stecil: 5 points, 2 halos (central diff), 7 points, 3 halos

(filter), 6-point stencil for one-sided scheme
4. Time-marching: explicit
5. Language: FORTRAN 95 - 2000
6. Parallelism: MPI
7. Inter-block communications: own “swap” routines (more later)
8. Mesh refinement: No
9. Data per grid-point: 70 numbers (work arrays and metrics)
10. Parallel I/O: MPI I/O (seems problematic for large arrays)
11. Viz. during parallel exec: No, but might be worth looking at
12. Other notes: grid and multi-block interfaces loaded by one proc

and broadcast to the rest 11

Code structure
INIT (allocate arrays, read grids and block interf, set communicators, etc…)

do t = tin, tend

do i = 1, RKsteps

call SWAP

call RHS ! most of the effort due to work array multiplication

call BC

end do

if(filter) call SWAP, call FILTER

if(TVD) call SWAP, call TVD

if(writeflag) call WRITE_Q

end do

end program

12

Swap routines for inter-block comm.
l = 0
do intf = 1, intf_num

intf_start(intf) = l+1
do n = intf_start, intf_end

l = l+1
qout(l) = q(n) ! pack halo data for all interfaces into contiguous array

end do
end do
! Communicate
do intf = 1, intf_num

intfproc = intf_proc(intf) ! interface processor for this interface (set in init stages)
l = intf_start(intf)
call MPI_isend(qo(l), count, type, intfproc, intf_intercomm(intf), request, ierr)
call MPI_irecv(qin (l), count, type, intfproc, intf_intercomm(intf), request, ierr)

end do
13

Typical RHS structure
! Viscosity calculation
do k = 1-zhalo:nz+zhalo

do j = 1-yhalo:ny+yhalo
do i = 1-xhalo:nx+xhalo

wx(i,j,k,1-4) = q(i,j,k,1-4) ! rho, rho*u, rho*v, rho*w
wx(i,j,k,7) = q(i,j,k,5) ! rho*E
q(i,j,k,2-4) = q(i,j,k,2-4)/q(i,j,k,1) ! u, v and w
wx(i,j,k,5) = ct*wx(i,j,k,7)/wx(i,j,k,1)-0.5*(q(i,j,k,2)*q(i,j,k,2)

+q(i,j,k,3)*q(i,j,k,3)
+q(i,j,k,4)*q(i,j,k,4)) ! Temperature

wx(i,j,k,17) = reinv*(wx(i,j,k,5)*sqrt(wx(i,j,k,5))*
(1+T1/T2)/(wx(i,j,k,5)+T1/T2) ! Viscosity

end do
end do

end do
14

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14

