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Motivation

» Bridge gap between NR and perturbation theory —
quantifying deviations important for waveform modeling

» QNM calculations are in Schwarzschild/Regge-Wheeler
coordinates (Leaver, Andersson, Berti+) hence incompatible
with horizon penetrating coordinates.

» Computation of the excitation amplitudes and tails from any
initial configuration of the scalar field for all observers.

» Overtone excitation and detection for different types of initial
data.

» Compare with numerical results using bamps (Briigmann,
Hilditch+).



QNMs and the confluent Heun equation

» Solve [0® = 0 on a Schwarzschild background in Kerr-Schild

> CD(t, r,0, ¢) = Zl,m K/,m(ta r) Yl,m(aa ¢)
» QNM boundary conditions (@ = wM):
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» Frequency domain Green's function (for single /):
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Gim(w,r,r') =

where p = r?(r — 2M)~4“M and A = w (f_f_(_ — fif+).
> fp = e “TH(r/2M) with H being two linearly independent solutions
of the confluent Heun equation (Heun, Ronveaux, Fiziev), r = 2Mx:
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Using analytic continuation (Slavyanov+, Philipp+) and U-series solutions
(Leaver):
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Both {a,} — same three term recurrence — QNMs continuous fraction
equation — same result as Leaver!
Initial data evolves according to:

Kym(t,r) = / Grm(t, 1, )0 Ky m(0, )’ + / 0:Grm(t, 1, F')K1.m(0, F) .
Calculate separately individual contribution of poles and branch cut:
Gim=G2 + G5+ ...
Respect causality! Integration limits by solving:
r' +4Mlog(r' — 2M) = r + 4Mlog(r — 2M) — t,

and r’ = r + t for the upper limit.



Exact solution tests
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» Very accurate QNM extraction: 0.11043074 — 0.10485913/ (< 0.01%
error) for n =0 and 0.0857 — 0.3472i (< 0.1% error) for n = 1.



Branch cut contribution
» Branch cut contribution:
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» Simplify expression for asymptotic observers — use Whittaker
solutions.

> Late times — low frequency expansion of Whittaker functions —
BesselJ!

» Approximate Green's function for asymptotic observers:
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> Alternative expression:
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» Obtain familiar power law at late times:
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Tail tests
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QNM excitation factors
» QNM contribution to Green’s function:
Oty = S5 e ot [PVt st ),
p(w, r')f—(win, ') (win, 1),

» Can now calculate excitation amplitudes for all observers.
» Assume near the poles:

Alwrp) =~ (w — w/),,)A/(w/),,).
» Some QNEfs:
/ n A'(wh,,) B/7n

0 0 1.32962 4 3.01240/ 0.55566 + 0.24526
1 4.37158 4+ 0.92283/ 0.09244 + 0.43798i
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Resu
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» Overtones become more important at earlier times — n =1 just an
order of magnitude less than n = 0 near start.

» Summing overtones not sufficiently good at intermediate and late
ringing.

> Late time tail result works remarkably well for earlier times — error
becomes one order less at intermediate and late time ringing.

» Need contribution from high frequency arc to explain the beginning
— unfortunately not so easy!



Results
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» [ =0 ringdown short in general — branch cut contribution dominates
after a few cycles

» n = 0 dominates for all ID — can recover wonp within ~ 1% error.

> Longer ringdown with sine-Gaussian ID — more reliable wgnm
extracted (~ 0.03%)

» n =1 for sine-Gaussian ID — larger errors (~ 10%).



Ongoing work

» Solve the conformal transverse traceless form of constraints for W and
Vi,

» Hyperbolic relaxation (Riiter+): 02t 4 0pp = Ay

» Conformal quantities — Schwarzschild quantities in Kerr-Schild

» Evolve using generalized harmonic coordinates (Lindblom+)

» Event horizon locator: Integrate ‘outgoing’ null geodesic backwards

(Bohn+)
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» Excision fails for ‘large’ perturbations — fix!



Thanks!




