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Abstract

In this paper we develop a test of the joint null hypothesis of parameter stability and a unit root

within an ADF style autoregressive specification whose entire parameter structure is potentially subject

to a structural break at an unknown time period. The maintained underlying null model is a linear

autoregression with a unit root, stationary regressors and a constant term. We derive the limiting

distribution of a Supremum Wald type test statistic and show that it can be expressed as the sum of

two components each corresponding to the nonstationary and stationary regressors respectively. As a

byproduct we also obtain the limiting behaviour of a related Wald statistic designed to solely test the

null of parameter stability in an environment with a unit root. These distributions are free of nuisance

parameters and easily tabulated. The finite sample properties of our tests are subsequently assessed

through a series of simulations.
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1 Introduction

A vast body of research in the recent time series econometrics literature has explored the interactions

between nonlinear dynamics and unit root type of nonstationarities. Although initially nonlinearities

and nonstationarities were often treated as separate and sometimes mutually exclusive phenomena the

development of new functional central limit theory amongst other technical tools has led to a growing

body of research dealing with models in which both features could coexist. Under structural break type of

nonlinearities for instance and starting with the early work of Perron (1989) there has been a vast literature

on designing unit root tests that allowed for the presence of breaks in the underlying deterministic trend

function of a series. One motivation for this line of research was the observation that the omission or

misspecification of such trend breaks could lead to misleading inferences about the presence of unit roots.

Important contributions in this area include Zivot and Andrews (1992), Banerjee, Lumsdaine and Stock

(1992) and more recently Kim and Perron (2009), Harris, Harvey, Leybourne and Taylor (2009) amongst

numerous others. The complications induced by the coexistence of structural breaks and unit roots have

also triggered an interesting research agenda that instead focused on the impact of unit roots on Chow

type parameter stability tests and documented a spurious break phenomenon (see Bai (1998)) whereby

ignoring the presence of a unit root in an otherwise linear model was shown to frequently lead to the

detection of spurious break points. Despite the voluminous literature that explored these issues numerous

open questions on the impact of nonstationarity on tests for structural breaks still remain.

In this paper our goal is to explore the joint interaction of structural change and unit roots by

allowing the parameters of both the deterministic and stochastic components of an augmented Dickey-

Fuller (ADF) type autoregressive model to be subject to a structural break. Unlike the existing literature

that has mainly seeked to robustify unit root inferences to trend breaks and other related features we

instead concentrate on detecting the presence of parameter instability and nonstationarity in an ADF

specification whose autoregressive parameters may also be subject to structural breaks. More specifically,

we are interested in exploring the properties of a Wald type test statistic designed to test the joint

hypothesis of parameter stability and a unit root within an ADF style autoregression. We view our test

as a useful and practical diagnostic tool for further enhancing the existing apparatus on structural break

and unit root testing. Subject to some confidence level for instance, a non rejection of our joint null of

a unit root and parameter stability may preclude the need to undertake further break point or related

analyses. In addition, and unlike traditional unit root tests our new test is also shown to have a strong
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ability to detect switches from a unit root to a stationary regime and vice versa.

As a byproduct of the above objectives we also derive the properties of a related Wald statistic whose

sole purpose is to test the constancy of all the parameters characterising an ADF style autoregression

when a unit root is imposed in the underlying model. This latter test statistic will help highlight the

consequences of ignoring the presence of a unit root on commonly used tests for structural breaks. Finally,

we also view the motivation of this paper as following closely Caner and Hansen (2001) where the authors

explored similar issues in models characterised by threshold effects as opposed to the structural break

setting considered here. This comparison allows us to make interesting parallels between the two very

different ways of capturing change.

The plan of the paper is as follows. Section 2 presents our operating model and motivates the

hypotheses of interest. Section 3 develops the large sample theory of our Wald type test statistics. Section

4 provides numerical simulations and Section 6 concludes. All proofs are relegated to the appendix.

2 The Model and Hypotheses

Our operating model is given by the familiar ADF specification with all the parameters of its deterministic

and stochastic components allowed to switch at some unknown time period k. Specifically, we consider

∆yt =

{
α1 + β1t+ ρ1yt−1 +

∑p
j=1 γ1j∆yt−j + et t ≤ k

α2 + β2t+ ρ2yt−1 +
∑p

j=1 γ2j∆yt−j + et t > k
(1)

with et denoting an iid disturbance. It is also convenient to reformulate (1) in matrix form as

∆Y = X1θ1 +X2θ2 + e (2)

with ∆Y = (∆y1, . . . ,∆yT )′. Letting rt = (1 t)′ and zt−1 = (∆yt−1, . . . ,∆yt−p)′, X1 above stacks the

elements of (r′t yt−1 z
′
t)I(t ≤ k), X2 those of (r′t yt−1 z

′
t)I(t > k) and θi = (αi βi ρi γi1 . . . γip)′ for i = 1, 2.

Throughout this paper k will denote the unknown breakpoint location and for later use we also introduce

the break fraction π = limT→∞ k/T with π ∈ [π, π] ⊂ (0, 1). For notational simplicity we will also refer

to the two indicator functions as I1 ≡ I(t ≤ k) and I2 ≡ I(t > k). Letting X = X1 + X2 denote the

matrix that stacks the elements (r′t yt−1 z
′
t−1) of the linear model it is also convenient to reparameterise

(2) as

∆Y = Xθ2 +X1Ψ + e (3)
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with Ψ ≡ (θ1 − θ2).

Our main concern is to develop a test of the joint null of a unit root and the absence of a structural

break in all the ADF parameters. We write this hypothesis as HA
0 : Ψ = 0, ρ1 = 0. A non rejection

of this null would indicate support for the presence of a unit root in yt together with the suitability of

a linear autoregressive specification while precluding the need to explore further the potential presence

of breakpoints in some or all of the ADF parameters. In this sense, we view the implementation of

a test such as HA
0 : Ψ = 0, ρ1 = 0 as a useful diagnostic tool. Furthermore and as demonstrated

below we expect our test to display a strong ability to detect scenarios where ρi switches from zero

to a stationary region such as {ρ1 = 0, ρ2 < 0} or {ρ1 = 0, ρ2 < 0}. As a byproduct of our theory

underlying HA
0 : Ψ = 0, ρ1 = 0 we also obtain the limiting distribution of a Wald type test statistic for

testing the null of parameter constancy formulated as HB
0 : Ψ = 0. An important goal here is to use our

distributional theory surrounding HB
0 : Ψ = 0 to formally highlight the dangers of ignoring the presence

of a unit root when implementing breakpoint tests via standard methods (e.g. following the asymptotic

theory developed in Andrews (1992)). At this stage it is also important to point out that throughout

this paper and as in Caner and Hansen (2001) our maintained model under our null hypotheses is given

by ∆yt = α+
∑p

j=1 γj∆yt−j + et and rules out the presence of any deterministic trend components.

Viewing the model in (3) as our most general specification it is easy to note that its corresponding

sum of squared residuals, say SSRMG, can be written as SSRMG = ∆Y ′MX,X1∆Y with MX,X1 =

MX −MXX1(X ′1MXX1)−1X ′1MX and MX = I −X(X ′X)−1X ′. Letting W stack the regressors of the

model restricted by HA
0 : Ψ = 0, ρ1 = 0 we have SSRA = ∆Y ′MW∆Y so that WA

T (k) = [∆Y ′MW∆Y −

∆Y ′MX,X1∆Y ]/σ̂2
e . Similarly, for the model restricted by HB

0 : Ψ = 0 we have SSRB = ∆Y ′MX∆Y

so that the standard Wald statistic for testing HB
0 : Ψ = 0 and a given k can now be formulated as

WB
T (k) = [∆Y ′MX∆Y −∆Y ′MX,X1∆Y ]/σ̂2

e with σ̂2
e denoting the residual variance from (3). In practice

since the break parameter is unidentified under the null hypothesis inferences are conducted using the

well known supremum versions of WA
T (k) and WB

T (k). Following common practice in the literature we

trim a percentage of the top and bottom of the sample by setting [k1, k2] = [[Tπ1], [Tπ2]] and using

π2 = 1− π1 with π1 = 0.10 so that our test statistics are now given by SupWaldA ≡ supπ∈[π1,π2]W
A
T (π)

and SupWaldB ≡ supπ∈[π1,π2]W
B
T (π).
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3 Large Sample Inference

In what follows we will operate under assumptions that are similar to those maintained in Caner and

Hansen (2001). Throughout this paper W (r) will denote a standard univariate Brownian Motion and

W̃ 0(.) a p dimensional Brownian Bridge.

ASSUMPTIONS: (A1) et is an i.i.d(0, σ2
e) random variable satisfying the Functional Central Limit

Theorem
∑[Tr]

t=1 et/
√
T ⇒ σeW (r), (A2) yt is such that ∆yt = α +

∑p
j=1 γj∆yt−j + et with Γ(z) =

1− γ1z − . . .− γpzp having all its roots lie outside the complex unit circle.

With the above assumptions we are now in a position to state our main result about the limiting dis-

tributions of SupWaldA and SupWaldB. Note that the underlying DGP may have a nonzero drift since

our fitted specification contains a deterministic time trend but it can obviously not contain any determin-

istic trend components. To economise on notation we let W (r) = (1 r W (r))′, M(π) =
∫ π
0 W (r)W (r)′dr

and M(π)∗ = M(π) −M(π)M(1)−1M(π). We also let ADF∞ refer to the standard unit root limiting

distribution of the t-ratio under the scenario of a random walk with drift in the DGP and a fitted model

with a constant and trend (see Hamilton (1994, pp. 497-500)).

PROPOSITION 1: Under (A1) and (A2) and as T →∞ we have

sup
π∈[π1,π2]

WA
T (π) ⇒ ADF 2

∞ + sup
π∈[π1,π2]

[Q1(π) +Q2(π)] (4)

sup
π∈[π1,π2]

WB
T (π) ⇒ sup

π∈[π1,π2]
[Q1(π) +Q2(π)] (5)

where

Q1(π) =
[∫ π

0
WdW −M(π)M(1)−1

∫ 1

0
WdW

]′
M∗(π)−1

[∫ π

0
WdW −M(π)M(1)−1

∫ 1

0
WdW

]
and

Q2(π) =
W̃ 0(π)′W̃ 0(π)
π(1− π)

.

It is important to first note that both distributions in (4) and (5) are free of any nuisance parameters

and can easily be tabulated across alternative magnitudes of p and possible choices of π. If the model

does not include any lagged dependent regressors (4) and (5) continue to hold as stated but without the

Q2(π) component.
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The limiting random variable in (5) has two components with the first one arising due to the presence

of a nonstationary regressor and deterministic trend components while the second one given by the

normalised quadratic form in Brownian Bridges is induced by the inclusion of the p stationary regressors

zt−1 in the right hand side of (1). This latter component Q2(π) is well known in the literature on testing

for structural breaks within purely stationary environments (see Andrews (1992), Hansen (1997) amongst

others) while the first component Q1(π) is novel and nonstandard, arising due to the joint interaction of

breaks and unit roots. When the model in (1) contains no lagged dependent regressors (i.e. when p = 0)

we have supπWA
T (π)⇒ supπ Q1(π).

At this stage it is interesting to highlight the fact that controlling for the number of parameters

whose stability is being tested, supπ Q1(π) lies far off to the right of its counterpart arising under pure

stationarity (i.e supπ Q2(π)). This can be observed through a comparison of the simulated quantiles of

(5) presented in Table 2 below under p = 0 with those in Table 1 of Andrews (1992). An immediate

implication of this observation is the fact that ignoring a unit root when conducting inferences about

structural breaks under a wrongly assumed stationary setting will systematically lead to the detection of

spurious breaks.

It is also interesting to contrast the formulation in (5) with its counterpart occurring when the regimes

are determined by a stationary threshold variable as in Caner and Hansen (2001) instead of time itself.

Ignoring the presence of lagged dependent regressors for instance we have supπWA
T (π) ⇒ supπ Q1(π)

which can be contrasted with a limit of the form supπ Q2(π) that arises in the threshold setting for the

same set of regressors (see Proposition 3 in Pitarakis (2008)). Under both scenarios the limits are clearly

free of nuisance parameters as long as the fitted model does not contain stationary regressors. When such

regressors are included our limit in (5) continues to be free of nuisance parameters while in the threshold

setting the limiting random variable becomes a complicated function of unknown model specific moments.

4 Tabulations and Experimental Illustrations

4.1 Empirical Quantiles

Our initial objective is to provide a tabulation of the limiting distributions presented in (4) and (5). We

take ∆yt = α + et as our DGP and with no loss of generality set α = 0. Note that both distributions

depend on p the number of parameters associated with the stationary lagged dependent regressors whose
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stability is being tested and π1 = 1− π2 which we set at 10% following standard practice. Results across

key quantiles and magnitudes of p are presented in Table 1 below for SupWaldA and in Table 2 for

SupWaldB. All our experiments are conducted using N = 5000 replications and take et ≡ NID(0, 1)

throughout.

Table 1. Quantiles of SupWaldA

T = 200 T = 400 T = 1000

90% 95% 97.5% 90% 95% 97.5% 90% 95% 97.5%

p = 0 29.66 32.24 34.47 30.23 32.59 35.09 30.80 33.28 35.57

p = 1 30.99 33.81 36.11 31.52 33.92 36.52 32.22 34.74 37.32

p = 2 32.45 35.24 37.94 32.96 35.67 37.94 33.53 36.09 38.76

p = 3 33.89 36.52 39.28 34.49 37.34 39.55 35.01 37.69 40.22

p = 4 35.04 38.06 40.68 35.66 38.15 40.52 36.43 38.92 41.61

p = 5 36.97 39.81 42.16 37.08 39.68 42.74 37.67 40.43 42.88

p = 6 37.82 40.67 43.63 38.65 41.44 43.98 39.07 41.84 44.40

p = 7 39.00 41.93 45.38 39.91 42.68 45.17 40.35 43.41 46.11

p = 8 40.21 43.39 46.24 40.73 43.69 46.85 41.67 44.36 47.11

Looking first at the variation in critical values across different sample sizes we note that the T=200

and T=400 based finite sample distributions lie slightly to the left of their asymptotic counterpart as

proxied by T=1000. Although the relevant quantiles remain numerically very close and thus distortions

should remain limited when basing finite sample inferences on asymptotic quantiles the above figures

suggest that the test based on SupWaldA may be slightly undersized in small samples.

We also repeated the above exercise for the finite sample distributions of SupWaldB whose quantiles

are presented in Table 2 below. The simulated quantiles continue to suggest that inferences based on

moderately sized samples should be sufficiently accurate even when the hypotheses being tested involve

a large number of parameters but our earlier discussion about the potential finite sample undersizeness

remains valid for SupWaldB as well. The row labelled p = 0 corresponds to a scenario where the ADF

regression contains no lagged dependent regressors so that the relevant limiting distribution is in fact

given by supπ Q1(π) in (5). It is interesting to note that this limiting distribution lies markedly to the

right of that of supπ Q2(π) which is commonly used when testing for structural breaks in stationary

settings and whose quantiles across different magnitudes of p are available from Andrews (1992). This is

an important and useful observation since it points to a spurious detection of a break phenomenon when
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a model contains a unit root variable but its presence is ignored and inferences are conducted using the

Brownian Bridge asymptotics that are valid solely under stationarity.

Table 2. Quantiles of SupWaldB

T = 200 T = 400 T = 1000

90% 95% 97.5% 90% 95% 97.5% 90% 95% 97.5%

p = 0 24.64 27.34 29.81 25.14 27.73 30.23 25.97 28.71 31.27

p = 1 26.21 28.88 31.54 26.63 29.31 31.88 27.25 29.88 32.48

p = 2 27.72 30.66 33.31 27.97 30.72 33.25 28.56 31.17 33.72

p = 3 29.27 32.23 35.09 29.56 32.36 35.10 29.99 32.84 35.38

p = 4 30.21 33.25 36.18 30.86 33.90 36.78 31.29 34.17 36.69

p = 5 31.84 34.89 37.58 32.00 34.94 37.55 32.70 35.51 38.06

p = 6 32.90 35.99 38.56 33.32 36.08 38.79 34.21 37.00 39.31

p = 7 34.41 37.26 40.75 34.90 37.90 40.68 35.37 38.09 41.18

p = 8 35.41 38.43 41.58 35.98 39.27 41.96 36.61 39.48 41.97

The above observations suggest that under small to moderate sample sizes it may be preferable to use

our finite sample quantiles obtained under T = 200 or T = 400. To gain further insight into the size

properties of our two tests when using the T = 1000 based quantiles, Table 3 below presents various

empirical size estimates across different magnitudes of p for 2.5% and 5% nominal levels. The critical

values are those displayed under T = 1000 in Tables 1-2 above.

Table 3. Empirical Size Properties of SupWaldA and SupWaldB

SupWaldA SupWaldB

T = 200 T = 400 T = 600 T = 200 T = 400 T = 600

2.5% 5.0% 2.5% 5.0% 2.5% 5.0% 2.5% 5.0% 2.5% 5.0% 2.5% 5.0%

p = 0 1.82 3.72 2.12 4.16 2.62 4.66 1.68 3.36 1.92 4.10 2.00 4.50

p = 1 2.22 4.60 2.42 4.74 2.58 5.08 2.18 4.34 2.48 4.74 2.36 4.92

p = 2 2.26 4.84 2.50 4.90 2.54 5.66 2.22 4.58 2.62 5.06 2.60 5.48

The T=200 based figures displayed in Table 3 above confirm our earlier discussion about the undersizeness

of the two tests when inferences are based on asymptotic quantiles. As T is allowed to grow however

and taking simulation variation into account we note that empirical sizes match closely their nominal

counterparts for both test statistics.
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4.2 Power Properties

Here we explore the power properties of our test statistics across a range of fixed departures from the

null hypotheses of interest. Our experiments are conducted across samples of size T = 200 and T = 400

and make use of the corresponding quantiles displayed in Tables 1-2. Our most general DGP is given by

∆yt = (α1 + ρ1yt−1 + γ11∆yt−1)I1t + (α2 + ρ2yt−1 + γ21∆yt−1)I1t + et so that we concentrate on a p = 1

scenario and the following parameterisations

Table 4. DGP Parameterisations

α1 α2 ρ1 ρ2 γ11 γ21

M1 0.0 0.0 0.0 −0.1 0.5 0.5

M2 0.0 0.0 0.0 −0.2 0.5 0.5

M3 0.0 0.0 −0.1 0.0 0.5 0.5

M4 0.0 0.0 −0.2 0.0 0.5 0.5

M5 0.0 0.0 −0.1 0.0 −0.1 0.3

M6 0.0 0.0 −0.1 0.0 −0.1 0.5

M7 0.0 0.0 0.0 0.0 −0.1 0.3

M8 0.0 0.0 0.0 0.0 −0.1 0.5

M9 0.0 0.0 −0.1 −0.1 −0.1 0.3

M10 0.0 0.0 −0.2 −0.2 −0.1 0.5.

The above models cover a wide range of scenarios with a particular focus on breaks in the ρ′s and γ′s. We

are particularly interested in assessing the ability of a test statistic such as SupWaldA to detect switches

in the ρ′s from unit root to stationarity and vice-versa (models M1 to M6). All our specifications have

the structural break occur at π0 = 0.5. Models M7 and M8 are AR models in first differences having their

slope parameters shift following a structural break while models M9 and M10 are AR(2) specifications

that are stationary within each regime.

Table 5 below presents the correct decision frequencies corresponding to our two test statistics. Its

last column also includes the corresponding outcomes for the squared version of the standard ADF t-

statistic of the unit root hypothesis. Note that our power figures have been computed using the correct

critical values obtained under T = 200 and T = 400. In the case of the ADF based squared t-ratio we

also obtained its quantiles through simulations. More specifically, its 90%, 95% and 97.5% quantiles are

given by {9.85, 11.73, 13.73}, {9.96, 11.77, 13.62} and {9.89, 11.76, 13.87} for T = 200, 400 and T = 1000
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respectively. At this stage it is important to reiterate that it is not our aim to view our tests as alternatives

to the standard ADF test and Table 5 below includes its performance solely for the purpose of gauging

the usefulness of our Sup based tests under particular scenarios.

Table 5. Empirical Power

SupWaldA SupWaldB Wald ADF (ρ = 0)

T = 200 T = 400 T = 200 T = 400 T = 200 T = 400

M1 39.00 80.08 29.12 59.84 12.70 18.48

M2 81.28 99.86 61.81 96.12 74.00 23.80

M3 10.78 44.12 6.84 28.26 11.24 15.54

M4 43.64 97.84 29.72 89.70 14.68 17.12

M5 26.28 78.92 26.28 74.24 2.36 3.48

M6 70.68 99.84 71.52 99.32 1.02 1.26

M7 16.50 45.08 17.46 45.44 1.26 1.26

M8 54.82 94.86 57.32 94.86 0.64 0.54

M9 36.08 94.38 6.94 25.16 47.00 99.12

M10 98.00 100.00 39.90 92.16 99.56 100.00

It is interesting to note that our SupWaldA statistic is able to successfully detect departures from the

null when the shift affects solely ρ1 or ρ2. Under M2 for instance SupWaldA is able to correctly reject

the null close to 100% of the times under T = 400 and is characterised by equally powerful outcomes

across most other configurations. It is also important to note a marked difference in behaviour when the

ρ′is switching from a unit root type of behaviour to stationarity (e.g. M1 and M2) as opposed the ρ′is

switching from stationarity to a unit root region (e.g. M3, M4, M5 and M6). Across smaller sample sizes

our SupWaldA based test is substantially more powerful in detecting departures from the null such as

M1 or M2 than when the model switches from stationarity to a unit root scenario. This phenomenon can

clearly be observed when comparing M1 with M3. Overall and looking across all our scenarios we note a

good to excellent ability of SupWaldA to detect departures from the null along a variety of directions.

At this stage it is also interesting to compare our joint tests with the behaviour of the standard

ADF statistic. As expected we first note that under models such as M9 and M10 which have both their

autoregressive roots outside the unit circle, the ADF statistic displays good power properties similar in

magnitude to the correct decision frequencies characterising SupWaldA. For most other scenarios we note

that ADF based inferences are mostly unable to move away from the unit root null even with moderately
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large samples. This is perhaps not surprising since fundamentally it is not designed to handle cases such

as M1 −M6 and if one is interested in exploring the presence of such scenarios in the data then our

proposed test statistic appears to be particularly suitable.

Cases M7 and M8 are also interesting. They correspond to DGPs with a unit root throughout but

shifts in the parameters corresponding to the stationary regressors. In this instance the ADF is rightly

unable to move away from the unit root null while our SupWaldA based inferences also rightly lead to

rejections of the joint null under T=400 in particular due to the presence of a break.

5 Conclusions and Further Remarks

We proposed test statistics designed to test the joint hypothesis of a unit root and parameter stability

in the context of an autoregressive model. Their limiting distributions were shown to be free of nuisance

parameters and easily tabulated. Finally through a set of numerical experiments we illustrated their

usefulness for detecting a wide range of departures from the null hypotheses of interest. Although our

probabilitic framework is sufficiently general to allow our proposed toolkit wide applicability numerous

extensions such as the inclusion of further breaks, possible regime dependent heteroskedasticity etc. are

also possible and would be interesting to pursue. It is also important to emphasise that our use of a

series of test statistics such as SupWaldA, SupWaldB and the standard ADF based unit root test should

not be seen as an attempt to include them within a sequential testing strategy. Each test has its own

merit and may be considered individually depending on the application in hand. Combining inferences

from different tests that may or may not be correlated is a notoriously difficult problem which is beyond

the scope of this paper. Even under independence which would allow one to control the overall size of a

sequentially implemented test the choice of individual significance levels is not obvious and may lead to

very different conclusions.
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APPENDIX

PROOF OF PROPOSITION 1. We focus on the proof of (4) since that of (5) is included in our results

below. Recall that our maintained model is as described in Assumption (A2) and given by ∆yt =

α +
∑p

j=1 γj∆yt−j + et which for greater convenience we also reformulate as ∆yt = µ + ut with ut =∑p
j=1 γjut−j + et and µ = α/(1− γ1 − . . .− γp). Our fitted model is given by (1). Setting ζt = yt − µt =∑t
j=1 uj we rewrite it as

∆yt =

{
α1 + β1t+ ρ1(yt−1 − µ(t− 1)) +

∑p
j=1 γ1j(∆yt−j − µ) + ρ1µ(t− 1) + µ

∑p
j=1 γ1j + et t ≤ k

α2 + β2t+ ρ2(yt−1 − µ(t− 1)) +
∑p

j=1 γ2j(∆yt−j − µ) + ρ2µ(t− 1) + µ
∑p

j=1 γ2j + et t > k

(6)

and more compactly as

∆yt =

{
α∗1 + β∗1t+ ρ1ζt−1 +

∑p
j=1 γ1jut−j + et t ≤ k

α∗2 + β∗2t+ ρ2ζt−1 +
∑p

j=1 γ2jut−j + et t > k.
(7)

Letting X∗ = (1 t ζt−1 ut−1 . . . ut−p) and X∗i = (1 t ζt−1 ut−1 . . . ut−p)Ii for i = 1, 2 we can write (7) as

∆Y = X∗1θ
∗
1 +X∗2θ

∗
2 +e = X∗θ∗2 +X∗1 (θ∗1−θ∗2)+e. Here θ∗i = (α∗i , β

∗
i , ρi, γi1, . . . , γip). Letting Ψ∗ = θ∗1−θ∗2

it is now immediately apparent that testing HA
0 in (1) is equivalent to testing HA∗

0 : Ψ∗ = 0, ρ1 = 0 in

our reparameterised model. With W stacking the elements of (1 t ut−1 . . . ut−p) and defining MW =

I −W (W ′W )−1W ′ as well as MX∗,X∗
1

= MX∗ −MX∗X∗1 (X∗1
′MX∗X∗1 )−1X∗1MX∗ it follows that the Wald

statistic can be written as WA
T (k) = [∆Y ′MW∆Y −∆Y ′MX∗,X∗

1
∆Y ]/σ̂2

e and imposing the null hypothesis

leads to WA
T (k) = [e′MW e−e′MX∗,X∗

1
e]/σ̂2

e . Here σ̂2
e = ∆Y ′∆Y −

∑2
i=1 ∆Y ′X∗i (X∗i

′X∗i )−1X∗i
′∆Y . Before

proceeding with the limiting behaviour of WA
T (k) it is convenient to reformulate our test statistic as

WA
T (k) =

1
σ̂2
∗

(
e′MW e− e′MX∗e

) σ̂2
∗
σ̂2
e

+
1
σ̂2
e

(
e′MX∗e− e′MX∗,X∗

1
e
)
. (8)

Within the above formulation it is easy to note that the first component in the right hand side of (8) does

not depend on k and corresponds to a Wald statistic for testing the null of a unit root within an ADF

specification that includes a constant and trend and when the underlying model is a random walk with

drift. From the WLLN it is also clear that σ̂2
∗/σ̂

2
e

p→ 1 hence establishing the ADF 2
∞ limit for the first

component in the right hand side of (8) (see Hamilton (1994), pp. 497-500 for a more explicit formulation

of ADF∞). The use of the Continuous mapping theorem combined with the following intermediate distri-

butional results will then lead to our representation in (4). For simplicity and no loss of generality we set

σ2
e = 1 throughout and let DT = diag(

√
T , T 3/2, T,

√
T , . . . ,

√
T ) refer to a suitable (p+3)×(p+3) diago-

nal normalisation matrix. We first note that e′MX∗e−e′MX∗,X∗
1
e = e′MX∗X∗1 (X∗1

′MX∗X∗1 )−1X∗1
′MX∗e =
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[e′X∗1 − e′X∗(X∗′X∗)−1X∗1
′X∗1 ][X∗1

′X∗1 −X∗1 ′X∗1 (X∗′X∗)−1X∗1
′X∗1 ]−1[X∗1

′e−X∗1 ′X∗1 (X∗′X∗)−1X∗′e]. Us-

ing standard unit root asymptotics (see Hamilton (1994, pp.)) the CMT together with the fact that with

u stacking the elements of (ut−1, . . . , ut−p) under our assumptions the Ergodic Theorem ensures that

u′u/T
p→ E[u′u] ≡ V > 0 we have

D−1
T [X∗1

′MX∗X∗1 ]D−1
T ⇒

(
M∗(π) 0

0′ π(1− π)V

)
(9)

and

D−1
T (X∗1

′X∗1 )(X∗′X∗)−1D−1
T ⇒

 ∫ π
0 WW

′
(∫ 1

0 WW
′
)−1

0

0′ πIp

 . (10)

Next we note that

D−1
T X∗1

′e = (
∑Tπ

t=1 et/
√
T ,
∑[Tπ]

t=1 tet/T
3/2,

∑[Tπ]
t=1 ζt−1et/T,

∑[Tπ]
t=1 ut−1et/

√
T , . . . ,

∑[Tπ]
t=1 ut−pet/

√
T )′.

so that standard CLT and FCLT based arguments lead to

D−1
T X∗1

′e ⇒

( ∫ π
0 WdW (r)

V 1/2W̃p(π)

)
. (11)

with W̃p(π) denoting a p-dimensional standard Brownian Motion. Similarly, we have

D−1
T X∗′e ⇒

( ∫ 1
0 WdW (r)

V 1/2W̃p(1)

)
(12)

so that combining (9)-(11) leads to

X∗1
′e−X∗1 ′X∗1 (X∗′X∗)−1X∗′e ⇒

( ∫ π
0 WdW (r)−M(π)M(1)−1

∫ 1
0 WdW (r)

V 1/2[W̃p(π)− πW̃p(1)]

)
. (13)

Combining (9) and (13) then leads to the desired result.
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