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The Kohn-Sham Equations
• Since pseudopotentials aid in the calculation of the potential between the nuclei and electrons, a decent 

place to start is by reciting the Kohn-Sham equations:1
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1. Note: the variables of the single-particle wavefunction are position and spin. Here, only position has been explicitly considered for simplicity. 
Also, 4!67/% is a normalization factor which ensures ∫ Ψ % ;(7 ⋯(= = 1.

∇%*1 = −4@A ( ; A ( =C
'
&' ( % ;

Ψ (7, … , (= = 1
4!

&7 (7 ⋯ &7 (=
⋮ ⋱ ⋮

&= (7 ⋯ &= (=

*0 ( = −C
G
⁄IG ( − JG *23 ( = K⁄LM23 A LA

N (



• One way of solving the Kohn-Sham equations is by representing the wavefunctions as a Fourier series 
and solving for the Fourier coefficients.2

• To justify this, consider a unit cell described by the three vectors !", !$ and !% with the volume given 
by the triple product,

Ω = !" ( !$ × !% ,

and these vectors define a lattice in real (direct) space by rigid, integral translations:

* = +"!" + +$!$ + +%!%

• Thus, the box used when performing a DFT calculation may be the primitive unit cell of a crystal or a 
supercell containing a sufficient number of independent atoms to mimic locally an amorphous solid or 
liquid phase.3

• From this, both the potential and electron density are periodic:

- . + * = - . ; 0121 . + * = 0121 . ,

suggesting that the properties of the system may be described by a Fourier analysis…

2. This approach is particularly suited to periodic boundary conditions and the strategy used most often in solid-state/condensed-matter physics.

3. It is essential to make the supercells large enough to prevent the defects, surfaces or molecules in neighbouring cells from interacting appreciably with each 
other.



The Reciprocal Lattice
• The Fourier transforms for the density and potential in three-dimensions is:
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and the reciprocal lattice as the set of all vectors % given by,

% = 6787 + 6:8: + 6;8;

87 = 2= >: × >;
>7 ( >: × >;

; 8: = 2= >; × >7
>7 ( >: × >;

; 8; = 2= >7 × >:
>7 ( >: × >;

8' ( >@ = 2=A'@



Bloch Theorem

• The Bloch theorem:
Single-particle electronic wavefunctions in a periodic potential may be 
expressed as the product of a function periodic in the unit cell and a plane 
wave. That is,

!" # → !"% # = '"% # ("%)#,

'"% # + , = '"% #

and eigenvalues corresponding to wavevectors % and % + - coincide.



So, plane waves…
• Since the function !"# is periodic, the wavefunction may be represented as a linear 

combination of plane waves:
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4. Note that the . in ("# represents the band index, where that in )" '-# *$ represents the complex part of the exponential.

so the energy bands in a crystal lattice are periodic functions in reciprocal space and we 
want to solve for the coefficients ("# ' :4
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• Owing to this property, it is natural to study the band structure within one unit cell of the 
reciprocal lattice.

• In practice, !-vectors inside a volume of reciprocal space called the first Brillouin zone (1BZ) is 
considered

• The 1BZ is formally defined as the volume containing !-vectors whose distance from " = 0 is 
smaller than the distance from any other "-vector.4

4. In practice, the 1BZ is constructed by first determining the plane waves which bisect all "-vectors, and then taking the smallest volume centred at " = 0 which is 
enclosed by these planes.



• Plane waves forming the basis set (i.e. the basis set size) are traditionally 
specified by one single parameter: the kinetic energy cutoff
• This is the quantum mechanical kinetic energy associated with the planewave 

having the largest !-vector:
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• Those reciprocal lattice vectors with a kinetic 
energy less than the cut-off  are kept in the 
expansion; the remaining coefficients are set to 
zero.



• The volume of the 1BZ is given by

Ω"# = %& ' %( × %* = 2, *

Ω
• The volume occupied by a single plane is the same as that of the 1BZ, and noting that the 

volume of the sphere containing all plane waves is,
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we see that the number of plane waves in the basis set is,
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• Thus, we see that the basis size depends only on the volume of the box and the kinetic 
energy cutoff.



Discretisation of k-Space

• Each electron occupies a state of definite k, and the infinite number of electrons in a 
solid gives rise to an infinite number of k-points.

• But, at each k-point only a finite number of the available energy levels will be occupied.

• So, we only need to consider a finite number of electrons at an infinite number of k-
points…

• Also, electron wavefunctions will be very similar for values of k that are sufficiently close, 
and we may represent the wavefunctions over a region of reciprocal space by 
considering the wavefunction at a single k-point.



• Net effect while also taking into account Bloch’s theorem:
• Infinite crystal → 1BZ
• Infinite number of electrons → finite number of electrons (only those in the 1BZ)
• Infinite number of k-points → finite number of k-points chosen to appropriately 

sample the 1BZ

• Then, integrated functions may be written as sums, e.g.
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Pseudopotentials
• Valence electrons are the most sensitive to changes in chemical bonding environment, while the core 

electrons (located near the Coulomb singularity) will be relatively immune to such changes (we say they are 
chemically inert).

• For example, consider the Kohn-Sham electron wavefunctions of an isolated Si atom…

• 1s, 2s and 2p are core states (black 
curves), while the 3s and 3p are 
valence states (purple curves).

• From the electronic densities, core 
electrons are tightly bound to the 
Si nucleus, while the valence 
electrons tend to localise further 
away.

• Also, core densities are negligible 
where the valence densities are 
large (and vice versa)

!"# $ = &'()"# & *#+ ,$



• So, if the core is to be held frozen, there is not much point in describing the Kohn-Sham wavefunctions of 
these states.

• Then, we want to remove entirely the core electrons.

• This substantially reduces computational cost:
• E.g. in the case on tungsten, only 6 valence electrons are described of the 74 total.

• But which wavefunctions are ‘core’ and which are ‘valence’ states?
• Rule of thumb is that the ‘valence’ is the outermost shell of the free atom in the periodic table 

(tungsten 6s25d4)
• Note, however, in some cases one may need to consider more electronic states in the ‘valence’ 

electrons.
• E.g. in bismuth, the 6s26p3 and the ‘semi-core’ 5d10 should be considered equally.

• So, in practice, distinction between core and valence wavefunctions is not strict
• If in doubt, consult the spatial distribution of the atomic wavefunctions as in the plots on the previous 

slide for Si.
• It is possible, also, that the energy changes in bonding mean that more electrons should be considered 

than originally presumed. So it may be worthwhile studying spectroscopic data and/or computed MO 
diagrams (see the idea of transferability later).



• Near the nucleus the valence electronic wavefunctions must change 
sign in order to be orthogonal to the core states.

• E.g. here, the 2s state has a node in the region where the 1s state is 
localised, and the 3s state has two nodes so that the overlap integrals 
with the 1s and 2s states vanish.

• So, the core states cannot simply be ignored since the valence 
electrons must exhibit the correct nodal behaviour near the nucleus.

• Also, even if correct oscillating features in the wavefunctions were 
obtained, these would be very difficult to describe using a real-space 
grid or a planewaves basis.

• To illustrate, here is how the nodal structure of the 3s state of Si would 
appear if the function was sampled only at a small number of evenly 
spaced points (large basis set so computationally expensive).



• Here, the description of the oscillations is very poor, reducing accuracy and numerical 
stability.

• Using a finer real-space grid or a higher kinetic energy cutoff would result in time-
consuming calculations.

• Try removing the nodal structure altogether…
• That is, to replace the oscillating part of a valence wavefunction by a smooth and 

nodeless curve…



• To do this:

1. Calculate the Kohn-sham ‘all-electron wavefunction.’

2. Decide on a radial cutoff, !"; that is, the radius which sets the boundary of the region 
where the wavefunction is to be modified.

3. At ! < !" (the pseudisation region), replace the all-electron wavefunction by a smooth and 
nodeless function (e.g. a simple polynomial).

4. This new function is chosen so as to yield the same electron density as the all-electron 
function for 0 < ! < !", and to have the same value at ! = !".

• Then we get the ‘pseudo-wavefunction’
• Now, how do we obtain this smooth pseudo-wavefunction by solving the KS 

equations?...



• The pseudopotential method is based on the strategy that a modified nuclear 
potential is constructed, which obeys the conditions:

1. Outside the pseudisation region, the modified potential coincides with the 
original KS potential (from an all-electron calculation).

2. When ! < !#, the potential is modified in such a way that the solution of the 
KS equation yields the pseudo-wavefunction.

• As a simplified example, consider the Si 3s wavefunction, which we will denote 
$%&'( ) (spherical coordinate system):

$%&'( ) = 1
! ,%&

'( ! -.. /)



1. Find !"#$%:

−12
)*
)+* !"#

$% + + -$% + !"#$% + = /"#!"#$% +

2. Find pseuopotential (pseudo-wavefunction known by smoothing !"#$% at + < +1):

−12
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)+* !"#

23 + + -"#23 + !"#23 + = /"#!"#23 +

⟹ -"#23 = /"# +
1

2!"#23
)*!"#23
)+*

• Using this pseudopotential gives a pseudo-wavefunction which is smoothed at + < +1 and gives 
the same KS eigenvalue as in the original all-electron wavefunction.

• Note that for + > +1, we have !"#23 = !"#$% and -"#23 = -"#$%

Total potential felt 
by KS electrons

Solution of the radial 
KS equation



• Usually, in actual calculations, more than just the 3s state must be considered since these 
will also be involved in bonding.

• That is, the pseudopotential must be transferable.
• Achieved by removing by removing the electronic contributions from !" and !#$, 

which are specific to particular electronic configurations, while keeping the modified 
nuclear potential.

• This gives the ionic pseudopotential…

• Note, %& is the number of valence electrons and 
not the nuclear charge.

• Now, the singularity at ' = 0 is removed and 
the potential resembles that of a potential well 
in the pseudisation region.

!*+ ' = −%&' ' > '$



Norm-Conservation
• To begin, let’s list the requirements for a “good” ab initio pseudopotential:

1. All-electron and pseudo-wavefunctions eigenvalues agree for the chosen atomic reference 
configuration.

2. All-electron and pseudo-wavefunctions agree beyond a chosen core radius, !".

3. The logarithmic derivatives of the all-electron and pseudo-wavefunctions agree at !".

4. The integrated charge inside !" for each wavefunction agrees (norm-conservation).

5. The first energy derivative of the logarithmic derivatives of the all-electron and pseudo-
wavefunction agree at !".



• Points 1 and 2 have already been considered.
• Point 3 follows since the wavefunction !" # and its radial derivative !"$ # are continuous at #% for any 

smooth potential.
• The dimensionless logarithmic derivative is defined by:

&" # ≡ # ⁄)"$ # )" # = # dd# ln )" #

• For # < #% the pseudopotential and pseudo-wavefunction differ from their all-electron counterparts.

• However, point 4 requires that the integrated charge,
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is the same for )"56 as for the all-electron radial orbital )"78 for a valence state in the core region.

• This conservation of /" ensures that the total charge in the core region is correct, and the 
normalized pseudo-wavefunction equals the true orbital at # > #%.

• Applied to a molecule or solid, these conditions ensure that the normalized pseudo-wavefunction and 
potential are correct in the region # > #%, where bonding occurs.



5. The first energy derivative of the logarithmic derivatives of the all-electron and pseudo-

wavefunction agree at !".

• This is the crucial point which greatly increases the transferability of the pseudopotential

• This reproduces the changes in eigenvalue to linear first-order

• It was shown by Hamann et al. (1979)5 that point 4 (norm-conservation) implies point 5.

• The final relation is,

2$ !%&' !
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• So, if %&45 has the same magnitude as %&67 at !" and obeys norm-conservation, then the first 

energy derivative of the logarithmic derivative is the same for the pseudo- and all-electron 

wavefunction.

5. D. R. Hamann, M. Schülter, and C. Chiang, “Norm-conserving pseudopotentials,” Phys. Rev. Lett. 43:1494–1497, 1979.



So?...
• So, we know from scattering theory that an incoming plane wave with wave vector ! to be scattered from a 

spherically symmetric potential (within a radius "# and centred at the origin) may be decomposed into partial 
waves with the identity:

exp '! ( ) = 4,-
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• These spherical waves are then elastically scattered by the potential, introducing a phase-shift :., related to 
;. " by:
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• Then, if the pseudopotential is norm-conserving and !"#$ = !"&' at ( = (),

• The first energy derivative of the log derivative is the same for both 
wavefunctions,

• The norm-conserving pseudopotential has the same scattering phase shifts 
as the all-electron atom to linear order in energy around the chosen 
energy *",

• And, therefore, !"#$ has the same scattering properties as !"&'.



And finally…
• Define the reduced phase-shift !" by,

#" = %"& + !"

• The scattering amplitude is dependent on exp 2,#" , so the factors of & in #" have no effect
• %" fixed by requiring !" to be in the interval 0 ≤ !" ≤ &
• %" counts the number of radial nodes in /" 0 (equal to the number of core states with angular 

momentum 1)
• The pseudopotential is then defined as the potential whose complete phase shifts are the reduced 

phase shifts, so the radial pseudo-wavefunction has no nodes and, thus, the potential has no core 
states.
• The scattering effect of this potential is the same as for the original potential.

• Note again the energy-dependence of the phase-shifts.
• Necessary to match the phase-shifts to first-order in the energy over a range of energies (good 

transferability)
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Kleinman-Bylander
representation 
(see later talks)

Configuration no. used to plot 
log. derivatives (0 means 
reference state)

Radius, min 
energy, max 
energy

Thank you.




