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Black Hole in AdSsxS% = 4d N=4 SYM on S3
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D-brane bound state and Gauge Theory

4 \ 12 X 22
XM =
X 11 X3
\ \/ 13
X33
(X4t Xoi ... Xl

location of I-th D-brane

XMl open strings connecting I-th and J-th D-branes.
large value — a lot of strings are excited

(Witten, 1994)



e

diagonal elements = particles (D-branes)
off-diagonal elements = open strings

(Witten, 1994)

black hole = bound state of D-branes and strings
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Nen D-branes form the bound state

U(NgH) is deconfined — ‘partial deconfinement’

Can explain E ~ N2T-7 for 4d SYM, N2T-8 for ABJM

(String Theory — 10d) (M-Theory — 11d)



Why can negative specific heat appear?

N/2
R
l

T~E/N2 T'~E’/[2x(N/2)?]

T'>T if E'>E/2

(more analyses later)



Ant trail/black hole correspondence
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Lesson #2: Take “coincidences” seriously.

Example 1: The massless states of type IIA superstring
theory correspond to the massless states of 11d super-
gravity on a circle. This was known for more than a

decade before it was taken seriously.

Example 2: It was well known that the Lorentzian con-
formal group in d dimensions is the same as the Anti de

Sitter isometry group in d + 1 dimensions many years
before AdS/CFT duality was proposed.




Lesson #2: Take “coincidences” seriously.

~ Ant ‘trail’ is called 175!l in Japanese.
© ‘Matrix’ is called 175! in Japanese.

© Gauge/gravity duality says BH is matrix.

black hole = ant trail?



Black hole = D-brane bound by open strings

NeH D-branes Q?;;

Ant trail = ants bound by pheromone



Black hole = D-brane bound by open strings

NeH open strings
try to capture

NeH D-branes the other D-brane

Ant trail = ants bound by pheromone

pheromone strength = p x Nirail

p: pheromone from each ant
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DANIEL CRAIG

JAMES BOND

hot ~ strong pheromone

T~p

Lesson #2: Take “coincidences” seriously.



Black hole = D-brane bound by open strings

NeH open strings
try to capture

NeH D-branes the other D-brane

JAMESBOND

high T ~ each mode is excited more

~ stronger pheromone from each ant
Ant trail = ants bound by pheromone

pheromone strength = p x Nirail

p: pheromone from each ant
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The ant equation

Phase transition between disordered and ordered
foraging in Pharaoh’s ants
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= (ants beginning to forage at feeder) — (ants losing pheromone trail)

S N trail

— o+ Nrai N_Nrai T .
(@ D) OV = Norat) = SN

stringy term

Natural large-N limit: o ~ No,p ~ NO, s~ N1
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= (ants beginning to forage at feeder) — (ants losing pheromone trail)

SNtrail
S + Ntrail

— (Ck +pNtrail)<N _ Ntrail) -
stringy term
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Ntrail/ N

Unstable trail
i ~ “small BH”
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02" \ - . Unstable trail
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Ntrail/ N

0.4
k \ stronger and stronger pheromone
\ attract more and more ants

weaker and weaker pheromone N\ -
attract less and less ants l ~ _
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p~T



1.0

0.8 -
Nivait/N 06 larger p — smaller
tralil :
Ntrail IS enough for
0.4 \ large pxNrail

smaller p — larger
Nirail is needed for /’

large pxNtrail \
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E Nen = N

Tz/

NBH=O /T1

Nen D-branes form the bound state

U(Ngn) is deconfined — ‘partial deconfinement’
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Testing the partial deconfinement

Cotler-MH-Ishiki-Watanabe, in preparation



* ‘Polyakov loop’ is a useful order parameter.
N
1
-y e

e Phase distribution:

confined phase deconfined phase
P=0 P20
=l Il —TT T —TT T

‘partially’ deconfined ‘completely’ deconfined



e Matrix model
e 4d YM
e 2d SYM



dimensional
reduction

(1+3)-d N=4 SYM on S3 — (1+0)-d matrix model

& keep only bosonic part:

1 1 1 1 o i
L = NTr <§DtXI2+Z[XI7XJ]2? Xzz— gZXa?_Z Z lueijquij
i=1 a=4 i.5,k=1
P P . P
: Tz
IE T Ti=T2 T T T
large M small p
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Let’s start with this.



Pconfine (9) T1

VN

—T1T [

Pdeconfine (‘9)

M N-M 1

pconﬁne(e) + ﬁpdeconﬁne(e) —

N

27

M

+ — Pdeconfine (9)

N



\' / Gross-Witten-Wadia transition separates

To completely and partially deconfined phases.
pconﬁne(e) T T
o (T <T)
(0) = %(1—{—%(3089) (Ty < T < Ty)

N—-M M N-M 1 M

p(@) — N pconfine(g) + ﬁpdeconﬁne<9) — N o + dieconﬁne(ﬁ)

M 2
N k



Pdeconfine (‘9)

T+

not tested yet 1'< T T2 < T1
(Th < T < Ty)

(T > 1T, 10| < 2arcsin\/k/2)

It does hold.



e Matrix model
e 4d YM
e 2d SYM
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p(6) = (1 — COS 0)
2T K (Aharony et al 2003)
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T2

T+ T Ti=T2 T T T

These two can also appear depending on the detail of the theory

In all known cases, the same holds

o(0) = — (1 2 cos 9)

:27'(' K

N—-M M N-M 1 M

/0(0) — pconﬁne(e) + Wpdeconﬁne((g) — N o + dieconﬁne(ﬁ)




Pure YM on R3

AN

>
T
| e # P=1/2
'IS / This value has been obtained

for SU(3), SU(@4), ..., SU(6)
by lattice Monte Carlo simulation

T+ T



e Matrix model
e 4d YM
e 2d SYM



holography T-dual
DO-branes

1
2d SYM on S on dual S

Spatial ‘Polyakov line’ phase| ¢ ——lp |Location of DO-brane

‘confined’ partially ‘deconfined’ completely ‘deconfined’
A A A
—TT Il —T1 Il —TT Il
uniform black string non-uniform black string black hole




deconfining,

center broken 1st order

(black hole)
deconfining,
2nd order ¢ center symmetric
S R (black string)
L »

deconfining,
center broken
(non-uniform black string)



deconfining,

center broken 1st order

(black hole)
deconfining,
2nd order ¢ center symmetric
rereneenens e (black string)
e\ »

deconfining,
center broken
(non-uniform black string)
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deconfining,

center broken 1st order

(black hole)
deconfining,
2nd order ,* center symmetric
R (black string)

deconfining,
center broken
(non-uniform black string)
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10d Schwarzschild from 4d SYM
via

Partial Deconfinement

M.H., Maltz, 2016



Heuristic Gauge Theory Derivation (1)

e Jake radius of S3to be 1.

e At strong coupling, the interaction term .
(N/A)*Tr[X,X0]2 is dominant. A=gym2N

 Eigenvalues of Y = A-1/4X are O(1)
because the interaction is simply N*Tr[ Y, YJ]2.

 Hence eigenvalues of X are O(A14).



Heuristic Gauge Theory Derivation (2)

,
NBHI XBH

\

* When bunch size shrinks to Nsx<N, 't Hooft coupling
effectively becomes AsnH=gvym?NsH A=gym2N

* Hence eigenvalues of Xgn are O(AsH/4) = O(gym2Nen1/4).

* EgH~NgH2(NBH/N) 14 SgH~NpH2

* T~ (Npn/N)-1/4




Heuristic Gauge Theory Derivation (3)

EsH~NgH2(NBH/N)-1/4, SgH~NpH2

T~ (Ngn/N)-1/4

Esu~N2(Npn/N)74~1/(Gn,10TBH)

SeH~N2(Npn/N)2~1/(GN,10TBHE)

The same logic applied to M-theory region of ABJM

gives 11d Schwarzschild, E~1/Gn11T8.

NBHI

/.\

\

10d Schwarzschild!

/



AdSs5xS°
T E~T4

Hagedorn

E < Emir

/ 3

How about this?

4 )

TBH:THagedom’\’1
Just perturbative SYM.

gymeNBH << 1

En~Smin~NpgH?2

when gymeNeH << 1

\— _J




AdSs5xS°
T E~T4

Hagedorn

E~T-7 '

Our argument is not good enough ﬁ
to capture this jump.

E < Emir

= 'Large’ Matrices
= ‘Small’ Matrices




A>>T

AdSsxSo

Hagedorn

E~T

F~T4

(see also Aharony et al 2003)

A< <

Hagedorn

E~T4




Finite density QCD
for
Hawking Evaporation®



Conjectured QCD phase diagram
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Conjectured QCD phase diagram
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* ‘Evaporating black hole’ should be there.

disclaimer: ‘Gravity dual’ can be very stringy.

* What would be the experimental signal?

* ‘Applied holography’ should be a good tool.



Conclusion ~="_.

* Ants are smart. They know many things about
black hole.

Lesson #2: Take ‘“coincidences” seriously.

e ‘Partial deconfinement’ and ‘Schwarzschild Black
Hole™ are rather generic in gauge theories.

* ‘Hawking evaporation’ in the heavy ion collision?
* |tis important to study gauge theory, in order to

understand quantum gravity. More should come,
stay tuned.



packups



Lesson #1: If a theory developed for purpose
A turns out to be better suited for purpose B,

modify your goal accordingly.

The original goal of string theory was a theory of
hadrons, but it turned out to work better as a theory
of quantum gravity and unification. The massless parti-
cles should be identified as gauge particles and a graviton

rather than vector mesons and a Pomeron.

When Yang and Mills formulated gauge theory in
1954, they identified SU(2) gauge fields with p mesons.
15 years later theorists developing dual models (the orig-

inal name of string theory) made the same “mistake”.

In 1974 we proposed to change the goal of string the-
ory. It took another decade for the advantages of this
interpretation to be widely appreciated. Perhaps there

1s a lesson in that, as well.




Lesson #3: When working on hard problems
explore generalizations with additional param-

eters.

This lesson seems to be widely appreciated. There are

many examples in the literature.

A couple of well-known examples are the 2 back-
ground for N' = 2 gauge theories and the Zj orbifold

generalization of AdSy x ST, which plays an important
role in ABJM theory:.




