On Multiobjective

Optimization

Dr. Ivan Voutchkov,

CEDC, School of Engineering Sciences
Department of Mechanical Engineering

University of Southampton, Highfield, Southampton SO17 1B]

tel: 023 80 597662
e-mail; iiv@soton.ac.uk

Why multiobjective
optimization?

In the world of real engineering
design, often there are multiple tar-
gets which manufacturers are trying
to achieve. For instance in the aero-
space industry, a general problem is
to minimize weigh, cost and fuel con-
sumption while keeping perform-
ance and safety at maximum. Each of
those targets might be easy to achieve
individually. An airplane made of
balsa wood would be very light and
will have low fuel consumption,
however it will not be structurally
strong enough to perform at high
speeds or carry useful payload. Also
such an airplane would not be safe,
i.e., robust to various weather and
operational conditions. On the other
hand, a solid body and a very power-
ful engine will make the aircraft
structurally sound and able to fly at
high speeds, but its cost and fuel con-
sumption will increase enormously.
So engineers are continuously solv-
ing the problem of making trade-offs
and producing designs that will satis-
fy as many requirements as possible,
while industry, commercial and eco-
logical standards are getting ever
tighter.

Multiobjective optimization
(MO) is a tool to aid engineers
choose the best design in a
world where many targets
need to be satisfied. Unlike
conventional optimization,
MO will not produce a single
solution, but rather a set of
solutions, most commonly
referred to as Pareto front (PF). By
definition it will contain only non-
dominated solutions. It is up to the
engineer to select a final design by
examining this front.

Where is the
challenge?

The aim is to produce a well spread
out set of optimal designs, with as
few function evaluations as possible.
There are number of methods pub-
lished and widely used to do this —
MOGA, SPEA, PAES, VEGA,
NSGA?2, etc. Some are better than oth-
ers - generally the most preferred in
the literature are NSGA2 (Deb) and
SPEA2 (Zitzler), because they are
found to achieve good results for
most problems. The first one is based
on genetic algorithms and the second
one is based on an evolutionary algo-
rithm, both of which are known to
need many function evaluations. In
real engineering problems the cost of
evaluating a design is probably the
biggest obstacle that prevents exten-

FE model
OPTIMISATION

Optimal value

Could be very expensive
(time, computer resourses)

Figure 1 — Using surrogate models for optimization

sive optimization proce-
dures. In the multiobjec-
tive world, the cost is mul-
tiplied, because there are
multiple expensive results
to obtain. Evaluating
directly a finite element
model can take several
days, which makes it impossible to
try hundreds or thousands designs.

In the single objective world,
approaches using surrogate models
are fairly well established and have
proven to successfully deal with the
problem of computational expense
(see Figure 1). Since its introduction,
more and more companies have
adopted optimization and some are
making steps to incorporate this
approach in their design cycle as a
standard. The reason for this is that
instead of using the expensive finite

e FE model
‘ Surrogate
model

5000 iterations using NSGA
~30 minutes for all iterations

OPTIMISATION

Optimal result
Optimal value

element models, they are
substituted with a much
cheaper but still accurate
replica. This makes opti-
mization not only useful,
but usable and affordable.

s

Objective functions

19—00-00—00-0-00000—0-¢¢

without surrogates

05\‘ with surrogates

This article may be found at

http:/ /www.soton.ac.uk/~cedc/posters.html

- Figure 2
il Problem 1: Achieved in 40 evaluations.
- Green — Pareto front with surrogates.
Red — solution without surrogates.

1

algorithm and the OptionsMatlab
interface to the optimization package

OPTIONS ', it was possible to create
a routine that significantly reduces
the number of function evaluations,
needed to achieve a high quality
Pareto optimal front. The idea has
been successtully tested on a number
of benchmark test functions, and is
currently being applied to real engi-
neering problems. Figure 2 is a strik-
ing comparison, demonstrating the
idea.

The problem has two objective func-
tions and two design variables. The

Figure 3
Problem 2: Achieved in 100 evaluations.
Green — Pareto front with surrogates.
Red — solution without surrogates.

'0-. .
L Ot L
04 06 08 1 12 14 16 18
Objective

The key idea that makes
surrogate models efficient is that they
should become more accurate in the
region of interest, rather than equally
accurate over the entire design space,
as an FE representation will tend to
do. This is achieved by adding to the
surrogate knowledge base only at
points of interest. The procedure is
referred to as surrogate update.

Multiobjective
optimization using
surrogates

Recently, at Southampton University,
there has been some progress, using
the same idea in the multiobjective
world. Using an improved NSGA2

thick green set of diamond symbols
represents the Pareto Optimal
Solution obtained after 40 full func-
tion evaluations using the surrogate
technique. This front contains 4500
design points (only 50 are shown)
and is identical to the true solution.
For the purpose of comparison the
red markers represent the solution
found with the same number of func-
tion evaluations, without using sur-
rogate models. To obtain 900 solu-
tions on the true Pareto front, the lat-
ter approach needs 2500 function
evaluations. The difference is even
more significant if more variables are

added — see Table 1.

local Pareto front

Figure 4 — Escaping from local solutions during the
update stage

Number of variables pi 5 10
without surrogates 2500 5000 10000
with surrogates 40 40 60

Table 1 — Full function evaluations for Problem 1 — Figure 2

Problem 2 has two variables and two
objective functions. However it has a
feature called a ‘deceptive Pareto
front’. The comparison is similar to
the previous example. If surrogate
models are not used 2500 function
evaluations were needed to get to the
same results as with 100 evaluations
using surrogates. A technique that
will help the algorithm escape from
the local Pareto front is used.

As shown in Figure 1, surrogates
need updates. In the MO world, a
conventional update scheme will
choose let’s say 20 evenly distributed
points on the Pareto front. The select-
ed points will then be calculated
using the expensive FE code, the data
will be added to the existing set, the
surrogates will be retrained and a GA
search will be run for a large number
of iterations on the surrogates. When
the surrogate knowledge base
becomes too large, it is filtered, leav-
ing only designs close to the Pareto
front. What seems to be a good strat-
egy may fail if the data on which the
surrogate is build is filtered down to
a local optimum location. One way to
prevent this is to include random
runs along with those chosen from
the pareto front. Another way is to
run a second NSGA2 at each update
directly on the objective function,
ensuring wider spread of update
points. Experiments show that the
second solution is better than the first
one.

It is worth mentioning, that all tools
used for this research allow parallel
grid computations. The approach
described above makes the best of the
multiprocessor environment by run-
ning all updates simultaneously.

University
of Southampton

