Integration of Matlab based search engines into iSIGHT and Model Center

Tony Scurr School of Engineering Sciences University of Southampton Southampton SO17 1BJ Tel: 02380-592713 Email: A.D.Scurr@soton.ac.uk

Matlab based NSGA2/RSM Plug-

Uses a modified form of the NSGA2 multiobjective algorithm to map out a global optimal Pareto-front of the problem.

input via the Options GUI.

- 2. For multi-objective optimisation problems:-
- a Matlab based plug-in that runs the NSGA2 multi-objective algorithm to build a global Pareto-optimal front solution to the optimisation problem using direct evaluation of the objective functions and constraints
- a Matlab based plug-in that runs the NSGA2_RSM multi-objective algorithm to build a global Pareto-optimal front solution where any combination of objective functions and constraints can be approximated by one of the Options RSM methods.

Options Method Selection (Scheduling) GUI:

🐐 Options Method Sele	ction								_ [×ا
Method Type			Metho	d Name						
Single point			Method 1		Method 2	Method 3	3 Meth	od 4 I	Method 5	
OPTIVAR 1			Single	point						*
OPTIVAR 2			ADRANS		DAVID	FLETCH	JO	PDS	PDS	
USER		_	SEEK		SIMPLX APPROX		RANDOM			
NAg			OPTUN	v11 (OPTUM2					
climbing			E04UC	F						
incr learning		-	bit	0	lynamic hill					-
		-	,							_
Optimise Moc	te: MINIMISE 💌 Max I	ters: 50	00	Max RSM Ite	ers: 5 P	arameters	Debug	Output.		
Method Type	Method Name	Num	ber	Direction	Max Iters	RSM ObjFtn	RSM Const	RSM Update	DOE metho	d
RSM (Objective Ftn.)	RSM (EIF)		2.8	-	1 100	4.3	0	1)	0 🔺
RSM (Constraints)	Kriging		2.8	-	1 100	0	4.1)	0
Global	GA		4	-	1 500	0	0	1	0	0
climbing	dynamic hill		2.5	-	1 500	0	0	1)	0
			0	-	1 100	0	0	1)	0
			0	-	1 100	0	0		0	0
			0		1 100	0	0	1)	0 🖵
1					1	1	1			

Matlab based Options Plug-in:

This article may be found at http://www.soton.ac.uk/~cedc/posters.html

HYPERLINK

"http://www.geodise.org/documentation/Options Matlab/html/optimisationHistory.htm" optimisationHistory: optimisationHistory plots a trace of the objective function over the search history. optimisationHistory provides a convenient way to view the search history over a number of searches by combining this information in a single plot.

The OptionsNSGA2 Matlab Plug-in

The presence of multiple objectives in a problem gives rise to a set of optimal solutions. The NSGA2 algorithm seeks to find this Paretooptimal solution set. The OptionsNSGA2 Plug-in contains the original NSGA2 multi-objective algorithm modified by Ivan Voutchkov and written in Matlab. It is callable through the MC Matlab plug-in.

Rationale:

Matlab/OptionsMatlab have become the vehicles for new DSO algorithm development in the Southampton UTP.

To be able to deliver these algorithms to BAE Systems & Rolls-Royce easily and quickly for incorporating in iSIGHT & Model Center (MC) we have used the Matlab plug-in facilities available in these tools. Matlab code can also be compiled into C code both for efficiency and obviating the need for a Matlab license on the user system.

iSIGHT Plug-ins:

Two sets of plug-ins have been developed for iSIGHT:

- I. For single objective optimisation problems:-
- a GUI driven plug-in that incorporates Options methods directly into the iSIGHT set of optimisers.
- a Matlab based plug-in that uses OptionsMatlab to run an optimiser schedule input via the Options GUI.
- 2. For multi-objective optimisation problems:-
- a Matlab based plug-in that runs the NSGA2 multi-objective algorithm to build a global Pareto-optimal front solution to the optimisation problem.

Action	n Order	Action Viewer				
↑↓ + ×	% fb fb B	☞ ■ Ӿ ╚ ╚ 🛛 🔍 ※ ※				
Initialize Execute	Description	 % Use Random, FromParetoFront, second NSGA2 layer and MeanSquare dError updates Kngg2_UPDMOD-[1 2 3 4 5]; We need 10 updates using each of the above strategies Kngg2_UPDSIZE=[10 10 10 10 10]; Maximum number of points to be held in the training pool. The best in % terms of rank will remain Kngg2_UPDSIZE=[10 10 10 10; % Perform J Update Iterations Kngg2_UPDATEITERATIONS=5; % Filter out I values that are greater than or equal to 1e9 Kngg2_RAM_K_BEPEATING_08JECTIVES=1; % The name of the file containing the training HISTORY Kngg2_HISTORY_FILE = "BeamMatlab_RSM_HISTORY"; % Use Kriging for both objectives 				
ATLAB Workspace #: 1	T.	🔄 Run MATLAB hidden 🔤 Close MATLAB after executio				

Matlab Plug-in script: showing settings for NSGA2 algorithm parameters. In the NSGA2_RSM version, any combination of objective function and/or constraints can be approximated (rather than evaluated directly by the analysis code) using Options RSM techniques (including various forms of kriging)

The OptionsMatlab Plug-in enables the Options optimisation suite to be called from a Matlab script running in the Model Center (MC) Matlab Plug-in component. The aim being eventually to provide compiled code for all the Matlab scripts so that the OptionsMatlab Plug-in can be run without a Matlab license. Although the OptionsMatlab plug-in references the version of Options contained in the OptionsMatlabMX.dll library in the OptionsMatlab directory, it is also integrated back into the MC Options Plug-in. This means that the model files and setup/optimisation schedule GUI s available in the Options Plug-in can be used to setup a model for the OptionsMatlab plug-in. DOE data, if present, is picked up from the model data object or is generated by calling OptionsMatlab with a particular DOE method and number of DOE points required.

Options Matlab supplies a number of utility functions to plot the output of an optimisation. These functions take the output of an optimisation and plot it in a number of ways. In all cases, additional parameters can be used to produce different forms of plots (see HYPERLINK "http://argos.escience.soton.ac.uk/blogs/OptionsMatlab/" http://argos.e-

science.soton.ac.uk/blogs/OptionsMatlab/ for further details).

HYPERLINK "http://www.geod

"http://www.geodise.org/documentation/Options Matlab/html/optimisationTerrain.htm" optimisationTerrain: This function plots surfaces produced by interpolation between the points at which the objective function was evaluated. The optimisation terrain may be represented as a mesh, surface or contour plot. The points which do not meet the optimisation constraints will be cropped from the surface.

The OptionsNSGA2_RSM Matlab Plug-in

The OptionsNSGA2_RSM algorithm is a development of the OptionsNSGA2 algorithm and is a combination of the multi-objective search algorithm NSGA2 and a collection of RSM techniques available in Options. Written in Matlab, by setting parameters in this function, a range of objective function and constraint response surface models can be built and then searched multi-objectively by the NSGA2 algorithm.

• a Matlab based plug-in that runs the NSGA2_RSM multi-objective algorithm to build a global Pareto-optimal front solution where any combination of objective functions and constraints can be approximated by one of the Options RSM methods.

Basic Options iSIGHT Plug-In GUI:

optionsgui					_ [×					
OPTIONS Optimiser Method Selection											
Max. Iterations:	500 Optim	nisation mode: Minin	ode: Minimise 🛁 Method: CLIMB dynamic_hill								
Ν	/lethod Type	Method 1	Method 2	Method 3	Method 4						
		E04UCF									
	bit	dynamic_hil	1								
	incr_learnir	g									
	num_recipe	s									
Desig	Random	LP(tau)	CCD(LPtau)	Full_Fact.	∇						
\triangleleft						\geq					
Select DOE/RSM method Run											
500 Minimise GL	MCN4 Kriging				2						

Run control parameters: Maximum iterations: 500 Optimisation mode: Minimise Last method selected: dynamic hill climbing Optimisation, DOE and RSM methods available for selection (45+ DOE, RSM and optimisation algorithms).

Run schedule selected:

Build Kriging model of Objective Function and main constraint. Minimise Kriging predictor on objective function using GA followed by local search.

CDwing

NSGA2 progress monitor showing progress in building up the Pareto-front shown on the right. The Options and OptionsMatlab plug-ins are implemented using the iSIGHT Techgen utility. No proper API is provided for the Matlab plugin, only a facility for mapping iSIGHT variables to Matlab variables. This has meant developing a way of communicating between the Matlab plugin and iSIGHT on a client/server basis. This has been achieved for SunOS/Linux versions by using a shared memory scheme and a set of semaphores. The semaphores control both access and passing of data via the shared memory and the order in which the Matlab plug-in (OptionsMatlab client code) and the iSIGHT (server simcode) trigger each other s operations. A Windows version is also being developed.

Options Plug-In for ModelCenter:

Two sets of plug-ins have been developed for ModelCenter:

- I. For single objective optimisation problems:-
- a GUI driven plug-in that incorporates Options methods directly into the Model Center set of optimisers.
- a Matlab based plug-in that uses
 OptionsMatlab to run an optimiser schedule

HYPERLINK

"http://www.geodise.org/documentation/Options Matlab/html/optimisationTrace.htm" optimisationTrace: This function plots points at which the objective function was evaluated. The objective function points may be plotted in colour or black and white. The points may also be joined to represent the sequence of function evaluations.

Resultant Pareto-front for the above OptionsNSGA2_RSM script on the wing-body

University of Southampton