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Figure 2 shows the convergence trends of percentage error in standard deviation for a model 
elasticity problem (shown in the inset) as the number of basis vectors is increased using SRBMs and 
SSFEM. The computational cost incurred by SRBMs and the SSFEM for this problem is shown in 
Figure 3. It can be noted from these trends that SRBMs can be more accurate than the SSFEM, while 
incurring significantly lower computational cost.

 
 

 

Fig. 2 Percentage error in standard deviation of displacement as a function of approximation order. 

Fig 3. Comparison of computational cost as a function of approximation order.

Application to Gas Turbine Blades

In general, stochastic analysis (using SRBM) of any physical system involves two main steps: 
(1) identifying the random variables governing the phenomenon (uncertainty identification and 
modelling) and (2) propagating these uncertainties through the governing equations to obtain the 
statistics of the outputs of interest (uncertainty propagation). Figure 4 outlines the steps involved in 
quantifying the variability in the performance of a turbine blade in the presence of uncertainty. These 
blades operate at temperatures which are well above their melting points. Hence the blades are 
designed with a hollow core through which relatively cool air is channelled through to the surface via 
the cooling holes. Due to manufacturing uncertainties, the core positions change from blade-to-blade 
and from batch-to-batch resulting in uncertain geometry of the blades. This may result in uncertain 
cooling across the blades which in turn affects the life and maintenance costs of these components. 
Other sources of uncertainties include spatial variability in material properties and boundary condi-
tions. Given a numerical solution of the set of SPDEs governing the performance of this system, it 
becomes possible to compute various measures of response variability in the post-processing phase. 
 

 
 

Fig 3. Estimating structural cost using components

Fig 4. Steps involved in stochastic analysis of the performance of a gas turbine blade.

SRBMs have been successfully applied to study heat transfer in a two-dimensional profile of the tur-
bine blade shown in Figure 4. The material property (thermal conductivity) is considered uncertain in 
this case and modelled by a Gaussian random field. The spatial distributions of the first two statistical 
moments of the temperature are shown in Figure 5.  

Fig 5. Spatial distribution of mean and standard deviation of temperature. 

Ongoing Work

A novel and efficient method to quantify the impact of geometrical uncertainties arising from 
deviations in the position of the cores (uncertainty in boundary definition) is currently under devel-
opment. Efforts are also currently underway to tackle the theoretical and computational challenges 
that arise when dealing with large-scale nonlinear systems.

Introduction

Computational modelling of engineering systems and natural phenomena often 
involve uncertainties arising out of lack of information (e.g. operating conditions, 
boundary conditions, etc.) and intrinsic variability (e.g. boundary definition, material 
properties, etc.). The idealized (nominal) values of uncertain parameters are often 
selected for numerical simulations as a result of which the correlation between the 
numerical results and reality remains unclear. With tremendous growth in computing 
power and availability of sophisticated numerical techniques in recent times, the 
prognoses of the numerical simulations are no longer limited by discretization errors 
involved in solving the governing equations but by input uncertainties. Hence reliable 
prognoses of the numerical simulations can be obtained by quantifying input 
uncertainties and propagating it to the response. If a probabilistic modelling framework 
is adopted for uncertainty quantification, then the system can be modelled by a set of 
Stochastic PDEs (SPDEs) and uncertainty propagation can be carried out by 
numerically solving the SPDEs. 

Existing Methods

A brief overview of commonly used approaches for solving SPDEs is shown in Figure 
1. In theory, simulation techniques such as the Monte Carlo method can be applied to 
approximate the output statistics to an arbitrary degree of accuracy, provided 
sufficient number of samples are used. Unfortunately, the computational cost incurred 
by direct simulation techniques can be prohibitive for high-fidelity models. Over the 
last decade, the Spectral Stochastic Finite Element Method (SSFEM) which employs 
Polynomial Chaos (PC) expansions has emerged as the method of choice for solving a 
wide class of SPDEs. However, the computational cost incurred by the SSFEM 
becomes prohibitive for large-scale problems with many random variables. This has 
motivated the development of advanced stochastic solvers that can cope with 
large-scale systems such as those encountered in engineering practice.

 

Fig. 1. Overview of methods for stochastic analysis.

Stochastic Reduced Basis Methods

Recently, Stochastic Reduced Basis Methods or SRBMs were developed (at the 
University of Southampton) for solving linear stochastic system(s) of equations ob-
tained by fully discretizing SPDEs. The central idea underpinning this approach is to 
employ a set of basis vectors spanning a preconditioned stochastic Krylov subspace to 
approximate the response. Numerical studies on a range of problems have 
demonstrated that SRBMs perform better than existing methods both in terms of 
execution times and accuracy. In particular, the computational cost incurred by SRBMs 
can be orders of magnitude lower than direct Monte Carlo simulation and the SSFEM. 


