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The same number of function evaluations takes just under two weeks if 30-off 1 GHz CPUs are used 
in parallel. Instead of receiving results for one set of thicknesses we get results for 30 sets in 25 
minutes. Genetic algorithms are very convenient for parallel computations of this sort. The entire 
population can be run at once, therefore if its size is set as a multiple of the available processor units 
one can perform the analysis very efficiently. 
 With the use of surrogate models one does not need to carry out all the 20000 evaluations 
needed by direct search. Guided by advanced surrogate update strategies it is possible to obtain good 
convergence in just over 1600 evaluations, which take approximately 26 hours on a 30 processor 
computing cluster. 
 An interesting comparison is shown in Figure 3, where runs of differing lengths are compared: on 
the left is a short run with just 200 set of solves and on the right a longer one with over 1600. In the 
right hand plot one can see that the region close to the most robust design is very narrow. The left 
hand plot shows that the pointed and narrow region was not discovered when fewer evaluations were 
performed. Both figures represent the same information but lead to completely different conclusions, 
this highlights the importance of affording sufficient depth to any search.

Visualization
 Figure 4 and 5 are an attempt to show 4 objectives on two dimensional plots. The idea of using 
glyphs instead of axes is not new. On these graphs one can see that size of the circle and colour 
indicate the remaining two objectives (good designs are at the blue end of the colour scale and have 
small circles). These plots may appear chaotic at first sight, however they become a very powerful tool 
once the designer is trained to interpet them. It is easy to see all 4 objectives simultaneously and one 
can then choose the best design. Our investigation showed that the point designated with a brown 
diamond symbol has a good overall performance.

Summary
 This paper demonstrates that by appropriate combination of the latest computer science ad-
vances, efficient surrogate techniques and properly updated models it is feasible to obtain valuable 
information in a relatively short time. At current prices a 30 CPU computer cluster can be purchased 
for around $15000, this is a tiny fraction of the benefits that such an investment can provide. 
Multiobjective optimization is no longer a thing to avoid, it is affordable and gives valuable insights. 
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Figure 1 – Robust design

Figure 2 – Simplified Jet Engine model

Figure 3 – Pareto front achieved using a low number of function evaluations (200) (left);
A simplified version of Figure 8 – 1629 function evaluations (right)

Robustness
 Until recently it was normal in engineering design to simply use the most important 
design goal as a single objective during optimization. Robustness is intrinsically multiobjective 
in nature, as the optimal robust solution includes two goals - robustness and optimality. 
Robustness is measured using the variability of the performance characteristics, i.e. (stress 
levels, fuel consumption, weight etc) with regards to external variation of some design 
measures i.e. (thickness, structural load, temperature, shape, etc). (see Figure 1). Current 
project aimed to pave a way of procedures and method that can be used to find a light-weight, 
fuel efficient, engine structure that is least sensitive towards external load conditions.

The model
 The WEM structure shown in Figure 2, is modelled in MSC NASTRAN and the casing 
thicknesses within each super element are defined by a thickness value in the corresponding 
PSHELL cards. This allows automatic variation of the thicknesses by the optimization 
algorithm. For each set of 15 thicknesses 200 load variations were performed on the model 
using multiple right hand side computations in order to minimise the computation time. 
These 200 runs are a predefined set of loads, selected using a Latin Hypercube algorithm, 
and allow the variance of the reaction forces to be estimated. The following quantities are 
defined as objective functions:

 Objective 1 - Minimum {Standard Deviation of the internal reaction forces over   
    the 200 load variations STDEVFMPX} - minimization  of  this  
    function would  produce  the most robust design;
 Objective 2 - Minimum {Mean value of the internal reaction forces over 200    
    load variations, MEANFMPX} - minimization of this function will    
    produce a design with least reaction forces;
 Objective 3 -  Minimum {Mass} - This will produce the lightest design;
 Objective 4 - Minimum {Mean value of the specific fuel consumption, SFC} - this   
    will give us the most economical engine.

Affordability
 With advances of multiobjective algorithms the aim now is to produce a set of designs 
which in each case are better than the rest for at least one criterion. Such a set is called 
a Pareto front. Engineers and designers then sit together and compare different requirements 
and select the best trade-off. This allows several design goals to be considered 
simultaneously and actively searched, aiming to obtain as many designs as possible which 
are evenly distributed and widely spread around the objective space. In real engineering 
problems the cost of evaluating a design is probably the biggest obstacle that prevents 
extensive use of optimization procedures. In the multiobjective world the cost is multiplied 
because there are multiple expensive results to obtain. The research being presented, 
has managed to utilize state of the art scientific, computational and visualization methods that 
makes this process affordable for a busy, standard setting environment such as the Whole 
Engine Model (WEM) division at Rolls Royce PLC, Derby, UK. Well known multiobjective 
algorithm NSGA2 has been combined intrinsically with surrogate technology and novel 
updates generation approach. It has been shown that this solution can bring computation 
times from 6 months to 24 hours.

 

Parallel computations
 Those having experience with multiobjective computations may conclude that using 
15 design variables and 4 objectives is a relatively complex and tough challenge. 
Computationally the above task can be very expensive. Each new set of thicknesses takes 
20 - 25 minutes to analyze on a 1 GHz CPU. This includes pre and post processing, as well as 
the finite element solving run. It is known that strategies based on genetic algorithms generally 
require a large number of function evaluations. For a problem of this dimension it is realistic 
to say that a minimum of 20000 evaluations would be needed to obtain a good Pareto front. 
This corresponds to over a year´s worth of computations on a single processor. It is for this 
reason that large multiobjective real life optimization has been avoided until recently. 
 

Figure 4 – Robustness measures – Mean(FMPX) vs. St.Dev(FMPX) Figure 5 – Performance measures – Mean(SFC) vs MASS


