Abstract

Here we revisit the Ferguson spline formulation,
known since the 1960s, and we propose it as a means
of airfoil parameterization, it being ideally suited to
implementation in commercial Computer Aided
Design (CAD) engines. The development providing
the impetus: off-the-shelf CAD tools are taking a
widening role in the design process even at its
lowest, conceptual levels. We argue that, since
similarly constructed splines lie at the heart of
modern CAD modeling, the most natural way to
describe, say, a wing geometry is via Ferguson-style
cubic splines. Further, we show that in the interest
of parameterization parsimony, adequate airfoil
shape control can be achieved without knots (other
than those on the leading and the trailing edge), at
least at the conceptual level of any design process.

1. Ferguson’s Parametric Splines
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2. Aerofoil description

Using Ferguson's splines, the number of aerofoil
design variables can be reduced to six (assuming a
sharp trailing edge) while still maintaininga
sufficiently broad coverage of the design space. We
achieve this by not using any knots, other than the
endpoints. The geometry is illustrated in Fig.3. The
tangent of the upper surface r'(u) in A (at the
leading edge) is denoted by T*upper and its tangent in
B by TPupper. The same logic is used for the
nomenclature of the lower surface.

3. Drag Versus Structural Design
Drivers - a Design Study

In Fig.4 we demonstrate the flexibility of the airfoil
parameterization scheme proposed here, as well as
the coverage of the design space, by conducting such
atrade study. We construct a Pareto front involving
two objectives. For a range of airfoils we calculate
their maximum depth, that is, the maximum
distance between their upper and lower surface.
This is an important consideration in single main
spar designs. We also compute the drag (cd) for each

airfoil, using VGK, a two-dimensional ow solver,
which couples finite difference solutions of the
inviscid ow about the airfoil with solutions for the
displacement effects of the boundary layer and wake.
The inviscid component is the solution of the full
potential equations for steady, compressible flow.
The viscous dragis estimated from the momentum
thickness of the wake far downstream of the

aerofoil.
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Fig.1 Ferguson splineand its boundary conditions.

We seek a parametric curve r(u) withu e [0;1],
connecting two points r(0) =Aand r(o) = B. We
impose two tangents on the curve: dr=dufu=o = TA
and dr=dulu=1 = TB, as shown in Fig. 1. We define the
curve as the polynomial

r(u) ;i auue [o,1]. &)
We find thé fo?.lr vectors required to define the curve
by setting the endpoint conditions:
A=a, @
B=a,+a,+a,+a;
Ta=2,
Tp=a,+2a,+3a;
Re-arranging in terms of the vectors:
a,=A ®
a,=T,
Ta=2,
Tp=a,+2a,+3a,
Substituting back into Equation (1) we obtain:

r(u) =AQ-3u>+2:3) + BGu? - 23) + Tp (w22 +3) + T (- > +43) (4)

or in matrix form:
1 o o o||A )
o o B
r(u)=[1u uw ]
3 2 -1 [Ty
2 -2 1 1 Tg

r(u) is, essentially, a Hermitian interpolant and the
bracketed factors in equation (4) can be viewed as its
basis functions. Fig.2 conveys an intuitive
understanding of their effect on the shape of the
interpolant.

Hemmitian basis functions

Fig.2 The four basis functions of equation (4) shown alongside
their respective multipliers.
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Fig.3 Theairfoil parameterization scheme based on two
Ferguson splines. The parametric curves r!(u) and r'(u)
describe the upper and lower surfaces respectively.

The shape of the airfoil is thus defined by the
orientation and the magnitude of the tangent
vectors. TAuper and TPiower will always be pointing
vertically downwards and upwards respectively,
with their magnitude defining the tension in the
spline, thus controlling the *bluntness’ of the
leading edge. 0., which might be called the camber
angle, defines the orientation of TPiower, while the
boattail angle 0, determines the orientation of
TPupper . The magnitudes (tangent tensions) of these
vectors determine the shape of the middle section of
the airfoil.
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Fig.4 Justover130,000 airfoil designs generated according to a space-filling sampling plan. The black circles highlight
non-dominated (Pareto-optimal) solutions of the airfoil thickness versus drag at ¢, = 0.35 trade-offs; some of these airfoils are
also depicted, positioned with their trailing edges on the corresponding point. The colours represent maximum camber.

Conclusions
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] Using a pair of simple Ferguson splines to represent
- airfoils, while not a universally applicable scheme

/] (less well suited to detail design, particularly of
transonic applications), is a parsimonious way of
describing airfoils, which, as shown in Fig.5, comes
with the bonus of being natural and easy to
implement in a CAD-based design system.
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Flg 5 The Catia construction of the uppersurface ofanaerofoil based on
Ferguson splinesisathree-click process.
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