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Abstract

Optimization problems, where the set of conditions
are sought which relate to an optimum scenario, are
encountered in most branches of science. In this
work we consider the class of optimization problems
where there are a number of ways of obtaining
values of the quantity to be optimized (the
“objective function”). Data from fast (but less
trustworthy) and slow (but more accurate)
calculations or measurements can be correlated to
learn more about the objective function. We present
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Imagine that our expensive to compute data are
calculated by the function fe(x)=(6x-2)’sin(12x-4),
%€ [0,1],and a cheaper estimate of this data is given
by fe(x)=Afe+B(x-0.5)-C. We sample the design space
extensively using the cheap function at Xc={o, 0.1,
0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9, 1}, but only run the
expensive function at four of these points, Xe=
§0,0.4,0.6,1}.

Fig. 1shows the functions feand fewith A= 0.5, B=
10,and C =-5. A kriging prediction through ye gives a
poor approximation to the deliberately deceptive
function, but the co-kriging prediction lies very
close to fe, being better than both the standard
kriging model and the cheap data. Despite the

An aerospace example

The benefits of co-kriging, and in particular
regressing co-kriging, are demonstrated through the
optimization of a generic transonic civil aircraft
wing. Our cheap analysis is in the form of an
empirical drag estimation code, Tadpole. This
returns a drag value based on curve fits to previously
analysed wings in ~ 0.6 s. Our ‘expensive’ code is the
linearised potential method VSaero with viscous
coupling (~2 min per drag evaluation). We aim to
minimise drag/dynamic pressure (D/q) for a fixed lift

sweep A, and inboard taper ratio (Tin). The Tadpole
and VSaero design landscapes are shown using
hierarchical axis plots in Fig.3 and Fig.4. Each tile of
the plots shows D=q for S € [150,250]m*and AR [6,
12] for afixed A and Tin. A and Tin vary from tile to
tile with the value at the lower left corner of the tile
representing the value for the entire tile. The blank
portions of Fig. 4 are where VSaero has failed to
return aresult for unusual geometries which lead to
extreme flow regimes. We start with an initial
sampling plan for Xc of 100 points with a subset of ne
=20 points from which to build the initial co-kriging
model. Xc and Xe are shown in Fig. 3. Despite the
apparent sparseness of the Xe data, a good initial
co-kriging prediction of the VSaero landscape is
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Fig.3 Tadpole calculated D/q with atypical sampling plan. Xc (Tadpole evaluations) are shown as dots and
are circled at locations of Xe (VSaero evaluations). Red circles indicate failed VSaero simulations.

considerable differences between feand fc, a simple obtained, with a correlation coefficient of 0.96 when ‘ I i % 5
relationship has been found between the expensive compared to the 11*x 3* VSaero data-set. We follow g E -! d d B B &.
and cheap data and the estimated error reduces an iterative process of updating the co-kriging 0.7 | i
almost to zero at Xc (see Fig.2). model with new VSaero and Tadpole data at points || E E J 5 i
which maximize the expectation of improvement 0.67 B N T e
20 and re-tuning hyper-parameters until the optimum 4.5
— is found.
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and with fewer failed simulations. The initial £ 058
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prediction of the kriging model is almost as accurate o
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as the co-kriging model (see correlation and RMSE 3
. . = 455
in Table 1), but the greater coverage of data in the B
co-kriging model leads to better selection of 2 3.3
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successful update points in promising regions, as = 0.52
seen in Fig. 4, which shows the distribution of
. ; o o update evaluations for a typical search. Moreover, 0.49
Fig.1 Aonevariable co-kriging example. The kriging L. . .
approximation using four expensive data points (ye) has the co-kriging updates are concentrated in regions
beensignificantly improved using extensive sampling of good designs, while the kriging updates are more 0.46 3
from the cheap function (yc). . . . d
widespread because, as there is a sparsity of data,
X107 there is high error and therefore high expectations 043
of improvement in many areas (i.e. there is an ’ l
emphasis on exploration over exploitation). ‘
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4 (oLl ljesults demonstra'te BRI T Rl el Fig.4 VSaero calculated D/q with co-kriging (dots) and kriging (crosses) updates from a typical search
multiple levels of fidelity can enhancethe accuracy (the search which yielded values closest to the mean results in Table 1).
of a surrogate model of the highest level of analysis.
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This correlated model can be used to find optimal initial model best D/q (m?) function evaluations
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Fig.2 Estimated errorinthe co-kriging predictioninfigure 1.
The simple relationship between the data results in low
error estimates at Xcas wellas Xe.

method which allows for varying levels of noise
filtering across multi-fidelity analyses and
converges towards the global optimum using
expected improvement maximization.

Table 1 Performance comparison for the four variable transonic wing problem (averaged over five searches).
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