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 Development of co-Kriging based design optimisation   
 methodology for a lean burn combustor 

Introduction 

Combustor model and reactive flow-field  

Figure 1. Computational domain of the combustor 
(All dimensions in mm) 

Figure 1 shows the computational domain of the combustor with cooling holes near the outlet. The 
combustor consists of a profiled backward-facing step acting as the flame holder. A premixed lean 
propane/air mixture at equivalence ratio of 0.86 enters the combustor through the inlet at 13.3 m/s 
inlet-velocity and at atmospheric pressure. The cooling air enters through the cooling holes near the 
exit at 300 K. The cooling air enters at a 90 degrees angle to the reacting mixture flow inside the 
combustor. 

Figure 2 shows the position of the flame surface inside the chamber obtained using steady RANS and 
mesh 5. As the Reynolds number of the flow is in the turbulent regime, the mixture burns only in the 
location where the turbulent flame speed ST is able to sustain the inlet mixture velocity , i.e. the region 
behind the step. Therefore the chamber behind the step is separated into unburnt and burnt mixture 
regions by an interface, where combustion has started but not yet fully established. Above this 
surface, (C=0), the fuel and oxidizer mixture is mixed but unburnt, and below this surface (C= 1), the 
mixture is completely burnt.  

Kriging based design optimisation 

Figure 3 shows the desired exit temperature profile to be 
achieved by optimisation of the flame stabilizer step. The 
objective is to design the flame-stabilizer step whose exit 
temperature profile matches closely to the given target exit 
temperature profile. Root mean square deviation value is 
calculated for this purpose, between the observed temperature 
profile and the target temperature profile. The flame stabilizer 
step is constructed and parameterized using a cubic spline as 
shown in Figure 4. Points A, B and C are connected by a spline 
curve of which control point A and C are fixed. Y and θ are the 
two variables and the baseline design spline is defined at Y = 
17.5mm and θ = 90 degrees. 

 Figure 6. Kriging based optimisation 

Figure 5 shows the optimisation history obtained using a Kriging based optimisation strategy (c.f. Figure 
6) for both low and high fidelity models, over three different DoE samples. Starting with an initial set of 6 
Latin Hypercube DoE points, the resulting objective function values are used to construct a Kriging meta-
model. This model is then searched using genetic algorithm (GA) and then again using dynamic hill 
climbing (DHC) algorithm to find a series of three update points, each found using best predicted 
criterion, Kriging prediction error criterion and expected improvement criterion. These 3 CFD evaluations 
are carried out in each update cycle and the evaluated designs are then added to the existing database of 
results updating the Kriging model. As seen in Figure 5, the low-fidelity model under-predicts the 
objective function value as it is inaccurate.  

Figure 9. Co-Kriging strategy 

A numerical study of turbulent 
reactive processes behind a 
profiled backward-facing step in a 
two-dimensional test combustion 
chamber is presented. The test 
combustor modeled for the study is 
the one used by Keller et al., 1982 
and Ganji et al., 1980 in an 
experimental study of mechanisms 
of instabilities in turbulent 
combustion leading to flashback.  

For determining the effect of mesh size on the solution for the configuration 
shown in Figure 1, five meshes of increasing cell counts are constructed 
using GAMBIT 2.3. Table 1 lists the cell count on each mesh used and its 
run-time to convergence. A reactive steady RANS simulation of the domain 
(c.f. Figure 1) is run for all the five meshes and the temperature profiles at 
the exit plane are plotted.  

Figure 2. Position of the flame front behind the flame stabilizer step (steady RANS) 

Figure 3 shows the temperature profiles captured by different 
meshes at the exit plane of the combustor. Grid independence is 
closely approached by mesh 3, especially near the walls and 
within the burnt and unburnt zone of the combustor. However, 
near the flame front, the solution is not completely grid 
independent as higher number of cells are required to capture the 
flame front which also increases convergence run-time 
significantly. Hence from an engineering point of view and for the 
purpose of design optimisation, the profile captured by mesh 3 is 
selected as a feasible high-fidelity solution. For co-Kriging, profile 
captured by mesh 1 is used as the low-fidelity solution.  

Figure 3. Temperature profiles at exit plane 

Objective function and geometry parameterisation 

Computational fluid dynamics (CFD) simulations are often used in the gas turbine industry to predict and 
visualize the reacting flow dynamics, combustion environment and emissions performance of a 
combustor at the design stage and to assess new concepts. The combustor’s reacting flow-field is in 
general turbulent and embraces many complex fluid dynamic phenomena. Hence, the CFD simulation of 
a real gas turbine combustor is computationally very expensive. Given the complexity in obtaining 
accurate flow predictions and due to the expensive nature of simulations, conventional techniques for 
CFD based combustor design optimisation are often ruled out, primarily due to the limits on available 
computing resources and time. Surrogate-based design optimisation techniques (including Kriging meta-
models) have been used previously to accelerate the design optimisation process by reducing the total 
number of expensive CFD analysis that would be necessary in direct search methods. In this study, we 
develop a computationally efficient co-Kriging based design optimisation strategy suitable for the design 
of a lean burn combustor using two levels of model analysis. This approach provides a means to achieve 
high-fidelity design optimisation at reduced cost by using a more accurate high-fidelity model in 
combination with a less accurate lower fidelity model (that is significantly less expensive to evaluate), 
both models being defined over the same design space.  

Flame-stabilizer 
step design 

Figure 4.  

Co-Kriging based design optimisation 

(1) Low-fidelity model (2) High-fidelity model 

(3) Zoomed image of (1) (4) Zoomed image of (2) 

 Figure 5. Optimisation history over a fixed computational budget 
 of DoE + 15 update cycles 

The effect of different starting initial samples is 
also clearly seen in Figure 5, which generates 
different convergence histories leading to different 
optimums within the fixed computational budget. 
Figure 7 shows the optimum design obtained using 
high fidelity model over three DoE samples. 

Figure 8. Optimisation history for co-Kriging and high fidelity model 
over three DoE samples 

 Figure 7. Optimum design using high  
fidelity model over three DoE samples 

Future Work 
The above developed co-Kriging optimisation system would be further explored using different 
number of initial samples and ratio of update points CFD runs and it is hoped that the optimum high 
fidelity design would be found in significantly less time as less number of high-fidelity function calls 
are required.The developed co-Kriging optimisation strategy would then be applied to an unsteady 
reactive CFD setup and the results would also be compared against the traditional Kriging based 
optimisation strategy. Finally, the fully developed and tested co-Kriging optimisation system would 
be applied to Rolls-Royce 3D lean burn injector optimisation problem. 

Figure 8 shows the optimisation history for co-Kriging model obtained using a co-Kriging based 
optimisation strategy (c.f. Figure 9) along with high-fidelity model optimisation history over three 
different DoE samples. Initially, out of 6 DoE points, high fidelity  CFD runs are carried out on 3 points 
and low-fidelity  CFD runs are carried out  on all 6 points. The resulting objective function values are 
used to construct a co-Kriging model, which is then searched to find three update points per cycle, each 
using best prediction, prediction error and expected improvement criteria. Out of these three update 
points, high-fidelity CFD runs are carried out on two update (best predicted and prediction error) points, 
whereas low-fidelity CFD runs is carried out on all three update points. This ratio of 3:2 update points 
CFD runs is utilized through out the 15 update cycles budget. 
 

As seen in Figure 8, over three different DoE’s, the mean of high-fidelity model optimisation history is 
lower than that of co-Kriging model, whereas the variance of the high-fidelity model is higher than that 
of co-Kriging model.    
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