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   Multi-fidelity strategies for combustor design using 
   co-Kriging of spatio-temporal combustion dynamics 

Introduction 

Combustor model and reactive flow-field  

Figure 1. Computational domain of the combustor 

(All dimensions in mm) 

Kriging and Co-Kriging based design optimisation strategies 

A numerical study of turbulent reactive 

processes and NOx production behind 

a profiled backward-facing step in a 

two-dimensional test combustion 

chamber is presented. The test 

combustor modelled for the study is 

the one used by Keller et al., 1982 and 

Ganji et al., 1980 in an experimental 

study of mechanisms of instabilities in 

turbulent combustion leading to 

flashback. 

Figure 2. Temperature flow-field (left) and NOx production (right)  

behind the flame stabilizer step (steady RANS) 

Figure 2 (left) shows the position of the flame surface inside the chamber obtained using steady RANS. As the 

Reynolds number of the flow is in the turbulent regime, the mixture burns only in the location where the 

turbulent flame speed ST is able to sustain the inlet mixture velocity , i.e. the region behind the step. 

Therefore the chamber behind the step is separated into unburnt and burnt mixture regions by an interface, 

where combustion has started but not yet fully established. Above this surface, (C=0), the fuel and oxidizer 

mixture is mixed but unburnt, and below this surface (C= 1), the mixture is completely burnt. Figure 2 (right) 

shows the corresponding thermal NOx production behind the step. Thermal NOx formation rate is primarily a 

function of temperature and is produced only in the regions where the temperature is in excess of 1800 K  

The objective of meeting stricter NOx emission requirements has been leading the development of aero-

engine combustors over many years. Moreover, this need to reach very low emission limits is changing 

several aspects of combustor fluid dynamics with lean burn combustion systems considered as the principal 

solution for this problem. Computational fluid dynamics (CFD) simulations are often used in the gas turbine 

industry to predict and visualize the reacting flow dynamics and emission performance of combustors at the 

design stage and to assess new concepts. The combustor’s reacting flow-field is in general turbulent and 

embraces many complex fluid dynamic phenomena. Hence, the CFD simulation of a gas turbine combustor is 

computationally very expensive. Due to the expensive nature of simulations, conventional techniques for CFD 

based combustor design optimisation are often ruled out, primarily due to the limits on available computing 

resources and time. Surrogate-based design optimisation techniques (including Kriging meta-models) have 

been used previously to accelerate the design optimisation process by reducing the total number of 

expensive CFD analyses. In this study, we develop and assess the performance of a multi-fidelity design 

strategy using co-Kriging surrogate modelling technique suitable for the design of a lean burn combustor 

using two levels of model analysis. Strategies with various combinations of low and high fidelity models are 

assessed.  
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Figure 3 (left)  shows the images of the high frequency humming cycle captured using URANS. Burnt and 

unburnt mixture regions in the flow-field downstream of the step are clearly seen in Figure 3. The pulsation 

creates organized structures behind the step. This process is sustained in a meta-stable mode over a long 

period of time. Figure 3 (right) shows the formation of thermal NOx behind the flame stablizer step during 

the humming cycle. Thermal NOx concentration is observed to be higher in high temperature regions during 

the humming cycle and also appears to be en-trained by the vortices shedding behind the step. 

Figure 3. Humming instability cycle (left) and corresponding NOx variation (right)  

during the cycle (URANS @ Δt = 1e-05s)  
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 Figure 4. Kriging (left) and Co-Kriging (right) design strategies 

 Figure 5. NOx variation within design space 

(a) Steady RANS as lo-fi model (b) URANS @ Δt = 5e-05s as lo-fi model 

(c) URANS @ Δt = 2e-05s as lo-fi model (d) URANS @ Δt = 1e-04s on coarse mesh as lo-fi model 

Figure 4 (left) shows a  

traditional Kriging response 

surface model based design 

strategy with N Design of 

Experiments (DoE) points and 

M update points per update 

cycle. Figure 4 (right) shows a 

shows a co-Kriging response 

surface model based design 

strategy with C (cheap) and E 

(expensive) DoE points and M 

(cheap) and P (expensive) 

update points per update cycle, 

where C > E
 
and M > P.  An 

Expected improvement and 

best predicted point strategies 

are used to generate the 

update points in the design 

iterations. Both strategies are 

applied to optimize the flame 

stabilizer step design of the 

test combustor (c.f. Fig. 1) for 

minimum time-averaged NOx 

emission at the outlet using 

URANS analysis.  

Figure 6. Optimisation histories of Kriging strategy and various co-Kriging strategies employing 

different low-fidelity (lo-fi) models in combination with fixed high fidelity model of URANS @ Δt = 1e-05s 

Figure 5 shows the NOx variation with the design space of 

two variables (Y and Theta) using a Kriging RSM of 100 

CFD runs (10x10 regular grid data points). It shows a 

valley of low NOx value design configurations which 

becomes the area of attention when applying the 

strategies outlined in Figure 4. Starting from a 4 point 

optimal Latin Hypercube DoE, with a fixed computational 

budget of  only 10 high fidelity CFD runs (URANS @ 1e-

05s) or equivalent low-fidelity runs, both design strategies 

(c.f. Figure 4) are applied to find the best design 

configuration. Figure 6 shows the optimisation histories of 

Kriging strategy and various multi-fidelity co-Kriging 

strategies, within fixed computational budget, on nine 

different DoE samples. 

Each design optimisation process is carried out on nine different DoE samples, with all nine optimisation 

histories plotted along with the respective mean. Different initial DoE’s lead to different histories as 

information available at different locations in the design space causes different RSM convergence behaviour. 

However, from Figure 6, it is observed from the mean performances of both strategies in (a), (b), (c) and (d), 

that the multi-fidelity co-Kriging design strategy is competitive against the high-fidelity Kriging design 

strategy, with Kriging strategy generally performing better overall by the end of the fixed computational 

budget. However, it is also evident from the mean performance of strategy CoSUS (Figure 6(a)) and strategy 

CoSTUS (Figure 6(d)), that a good design is found early on in the design process, after the initial information 

obtained from the DoE runs. 

Abbreviations:  

RANS : Reynolds-Averaged Navier Stokes 

URANS : Unsteady Reynolds-Averages Navier Stokes 

RSM : Response Surface Model 

CoSUS : Co-Kriging using Steady and Unsteady RANS Simulations on the same spatial grid 

CoTUS : Co-Kriging using different Time-steps of Unsteady RANS Simulations on the same spatial grid 

CoSTUS : Co-Kriging using Spatio-Temporal Unsteady RANS Simulations (coarse and fine, spatial and temporal grids) 


