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 Application of tensor-product adaptive sparse quadrature to 
uncertainty quantification 

Sparse quadrature & uncertainty quantification 

The calculation of the statistical moments is related to the evaluation of multiple integrals. I.e. assuming a 

function of d variables varying independently in                                                                     , the mean and 

the variance are given by 

 

 

 

 

 

 

 

where p is the distribution function. 

 

Uncertainty quantification using numerical quadrature and tensor-product adaptivity 

It is apparent that the calculation of the statistical moments is related to the evaluation of general 

multidimensional integrals. In numerical quadrature the calculation of a general integral reads: 

 

 

 

where         is the weight function,    is the number of quadrature points,                        are their abscissas 

and                 are their weights. All the above depend on the choice of the quadrature rule for the given 

weight function, the desired level of accuracy and the type of multidimensional quadrature, i.e. if it is full or 

sparse quadrature. In the first case the final grid and the weights are the tensor product of the points and the 

weights of the one dimensional rule. This leads to a high number of quadrature points. Sparse quadrature is 

based on Smolyak’s algorithm where the final grid is produced by the superposition of various tensor products 

of parts of the one dimensional quadrature rule. For given polynomial accuracy, using sparse quadrature 

requires significantly less points than in full quadrature (see e.g. Makrodimopoulos et. al.; 2011).  

Moreover, for moderate dimension (e.g. 15) and reasonable polynomial accuracy (e.g. 5-7) the resulting 

number of points can be around 500, much less than the number of evaluations needed when we apply Monte-

Carlo (around 3,000-5,000). The question is whether the number of function evaluations can be reduced even 

further. As some variables contribute less than others, we can take into account the special features of the 

examined function. Indeed Gerstner and Griebel (2003) have shown that for nested quadrature rules (e.g. 

Clenshaw-Curtis and Gauss-Patterson), we can select only the tensor products which are more likely to 

contribute. Very briefly they suggested to start with the lowest level of accuracy (usually this is level zero), 

evaluate the function at the current quadrature points and then add only the points of the new tensor products 

which are the “children” of the tensor product with the highest contribution to the calculation of the integral. 

This tensor product will be called “parent”. The function is evaluated at the new points and the integral is 

recalculated. The procedure is repeated and stops when the contribution of all children becomes negligible. 

As the definition of “negligible” is rather  vague here we considered that the ratio of the summation of the 

absolute values of the contribution of all children to the current absolute value of the integral should be less 

than 10
-3

. Further criteria are also employed for nearly zero integrals. Moreover, as uncertainty quantification 

consists of the calculation of two different integrals, the whole process was adapted as shown in Fig. 1. Our 

code was implemented in MATLAB. As a test we considered the plane strain structure of Fig. 2 where the 

uncertainty parameters are the positions of the two holes with                        . The four uncertainty 

parameters are distributed uniformly and the maximum von Mises stress is the quantity of interest. Fig. 3 

shows the advantage of using sparse quadrature in relation to Monte-Carlo and Fig. 4 shows that we can gain 

further benefits by using the aforementioned tensor-product adaptive sparse quadrature procedure. We see 

that with only 177 evaluations we get results comparable to those obtained by level 4 (769 function 

evaluations). 
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Fig. 1 Pseudocode for the application of tensor-product adaptive sparse quadrature 

to uncertainty quantification. 

H=4.0 

L=6.0 

p=10KPa 

1.5 3.0 1.5 

1.25 

1.25 

1.50 

Fig. 2 Numerical application: plane strain structure with two holes. The position of 

the holes (x,y coordinates) are the parameters of the problem. 

Fig. 3 Comparison of Monte-Carlo (MC) with sparse quadrature (Gauss-Patterson quadrature rule),  

for various levels (L) of accuracy. Sparse quadrature converges faster to the exact result. 

Fig. 4 Application of tensor-product adaptive sparse quadrature (ASQ) using Gauss-Patterson rule. The 

advantages in relation to the standard one are more clear in the calculation of the standard deviation. 

1. set purpose = ‘mean’ 
2. get the grid for level = 0 
3. calculate I,J 
4. set criteria = false 
5. while criteria=false 
6.     if purpose=‘mean’ 
7.        find ICmax(I) 
8.     end 
9.     if purpose = ‘variance 
10.       find ICmax(J) 
11.    end 
12.    generate the children of Icmax 
13.    check the acceptance of the new children 
14.    update the grid and the weights 
15.    update I, J, Ichildren, Jchildren 
16.    if purpose = ‘mean’ & convergence(I) = true 
17.       set purpose = ‘variance’ 
18.    end 
19.    if purpose = ‘variance’ & if convergence(J) = true 
20.       criteria = true 
21.    end 
22. end 
23. mean = I 
24. variance = J – (mean^2) 
 
SOME DEFINITIONS - EXPLANATIONS 

 

By I,J we mean 

 
ICmax(I)  = tensor product with the highest contribution to the integral I 
Ichildren = the sum of the absolute values of the contributions of the 

children tensor products to the integral I 
The convergence of I depends on its current value and the value of 

Ichildren(I) 
ICmax(J),Jchildren are defined analogously for the integral J 


