
Introduction 
 The need for dimension reduction in design optimization arises in design problems dealing with very
 high dimensions, which increase the computational burden of the design process because the sample
 space required for the design search varies exponentially with the dimensions. This work describes the
 application of a latent variable method called Generative Topographic Mapping (GTM) in dimension
 reduction of a data set by transformation into a low-dimensional latent space. The attraction it
 presents is that design variables are not removed, but only transformed and hence there is no risk of
 missing out on information relating to all the variables. The method is demonstrated on a 2D Branin
 function and applied to a problem in wing design. Apart from dimension reduction in optimization, we
 also used the tool to provide an efficient parametrization scheme for airfoils, the results of which are
 also discussed. 

Methodology 
 The method of GTM tries to model the probability density of the data in high dimensional D-space,        
 T  ={t1,…, tN} in terms of a grid of latent variables x ={x1,…,xK} with lower dimension L by training a L
 dimensional manifold which is embedded in the D-space. The parameters of the GTM are determined
 during training through the maximization of the log-likelihood of the model usually using a E-M
 algorithm, see figure 3. A detailed derivation and explanation of the method is available in Bishop et.al
 [1]. Our GTM-based optimization algorithm is shown above, see figure 1. This method follows a
 response-surface based approach, starting with an experimental design (DOE) and the trained GTM
 being used as the surrogate. GTM uses Bayesian inference for the training and hence we combine
 statistical analysis of data along with optimization methods. The low dimensional latent space is
 searched for the best point which is updated to the training data set before retraining the GTM. The
 iterations are continued till there is no further improvement in design. This follows the two-stage
 response surface based optimization approach. Here the DOE was also conducted for different samples
 and the optimum obtained averaged. 

Methodology 
•  Lastly, we applied GTM to study the characteristics of parameters in airfoil design. The NACA 4-digit
 representation of airfoils is well-established and depends on two main parameters - thickness to chord
 ratio and camber. By considering a different, and intentionally `clumsy', representation of an airfoil
 using co-ordinate points at various cross-sections of NACA airfoils, we can generate numerous
 variables governing the shape design. We then train a 2D GTM to reduce this high dimensional data to
 just two latent variables and hope that these latent space variables resemble camber and thickness to
 chord ratio. In that case, we can then apply GTM to more complex designs with high dimensions, for
 which we do not have prior information regarding the variables, to obtain meaningful representation of
 its objective function in terms of fewer variables and then conduct an optimization in the reduced
 dimension. For the experiment, NACA airfoil designations NACA 0006 to NACA 4430 are considered
 and having generated the co-ordinates from these airfoils, the lift drag (Cl/Cd) ratio is calculated using
 a full-potential VGK solver[2]. The parameters Reynolds number Re=1e7, Mach number M=0.12, initial
 angle of attack a0=0 and a target Cl=0.8 are considered. A data set of 105 airfoils is used to train a 2D
 GTM with 4 E-M cycles and K=15*15 latent grid points. The assumption that the latent space would
 represent the two most important variables in an airfoil, namely thickness to chord ratio and camber,
 did not perform as well as hoped. However the airfoils generated from 1D GTM show a variety of
 different thickness and camber and hence a 1D GTM could span the design space of airfoil shapes
 reasonably effectively, see figure 4. Though we could not attribute the two variables, camber and
 thickness-to-chord ratio to any one latent variable, we may have derived a geometric paramaterization
 scheme for airfoil shapes since a 1-dimensional GTM could represent a wide range of airfoils with
 different cambers and thicknesses. 

•  The method is applied to an aircraft wing design problem having 11 independent variables with the
 objective function of minimizing the wing drag D/q. The drag estimation tool is TADPOLE [4]. A 3D
 latent space could effectively model the 11D design space. The total computation time is 2 minutes as
 against a GA run of 20 population size for 500 generations which took 2 minutes and gave a optimum
 of 2.4! See table 1. 

•  Application to 100 dimension. 

•  Robust update methods. 

•  Application to constrained optimization problems. 
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Fig. 1. GTM based design search workflow 

 Fig. 2. GTM on the Branin function – points on one
 dimensional latent space (below) are confined to a
 manifold lying in two dimensional data space (right). 
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Method Optimum D/q No. of function evaluations 

Genetic Algorithm 2.4 10000 

3D GTM 2.71 114 

Kriging 2.44 114 

3D GTM with 
exploration update 2.49 119 

Table 1.Comparison of different methods for TADPOLE wing design [4] 

 Fig. 4. Thickness and camber plots for different latent points for 1D GTM.
 A wide range of airfoils are regenerated by 1D GTM as shown  

 Fig. 3. GTM training
 cycles of 2D Branin
 function 
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