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Motivation   
 

Survey practice:  

• Aim for short call sequences and success in gaining response 

• Aim to avoid unsuccessful and/or long call sequences since these are 
resource intensive 
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Motivation: Sequence Analysis   

For interviewer 
11002071 



Main Research Question 
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 • Can we predict final call sequence length and final outcome early on 
in the data collection process? 

• In other words:  

– Can we predict say after the third call if a household is going to 
respond or not ? 

– How many calls is it going to take to get the outcome? 

 

 This would help survey agencies to make a more informed decision 
of who to continue to follow up  

 Particularly useful for longitudinal surveys 

 

 

 



Further Research Questions 
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 • Ability of ‘classical’ nonresponse models without call data to predict 
nonresponse is often limited (R2 values well below 10%) 

• How predictive are the models proposed here including call record 
data? 

• Does their ability to predict improve once more call record data are 
available (e.g. for later calls; or for later waves in a longitudinal 
study)? 

• How can predictors best be incorporated into the models (summary 
measures or individual outcomes)? 

• How can these models best be used in adaptive and responsive 
survey designs?  

 

 

 



A Note:  
 

• Previously developed: discrete time event history analysis to model 
response outcome at next call 

• Analysis here provides a simple example of how to use call record 
data 

• Applicable to call record data from CAPI or CATI 

• For analysis of both cross-sectional and longitudinal surveys 
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Data 
 
 



Data  
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 • UK Understanding Society Survey 

• Large-scale longitudinal study 

• Call data from Wave 1 only  (Jan 2009- March 2011) 

• Face-to-face interviews of all adult household members 

• Minimum of 6 calls made to a household per survey guidance 

• Analysis sample: 25,358  households within 734 interviewers 

     Note: for the purpose of this analysis need to compare models 
     on the same data (same cases). Therefore, analysis restricted to 
     cases with at least 4 calls (not necessary in survey practice) 
 

 

 

 

 



Analysis Methods 
 
 



Dependent Variables and Models  
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 Dependent Variable Categorisation Model 

a. Length Short  (1-6 calls) vs long (7+) Binary logistic 

b. Outcome Successful (at least one 

interview) vs unsuccessful  

Binary logistic 

c. Length x outcome 4 categories: 

Short successful 

Short unsuccessful 

Long successful  

Long unsuccessful 

Multinomial  

logistic 



Modelling strategy and explanatory variables 
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Model Explanatory Variables 

0.) Before data collection     
     (Before call 1) 

Geographical information only 

Plus interviewer observation variables 

1.) After call 1 Plus call data from first call (outcome; day and 

time), time of next call) 

2.) After call 3 Plus call data from second and third call 

(outcomes, day and time, time between calls), 

time of next call, time between call 3 and 4.  



Assessment of Models 

• Focus on ability of models to predict length and outcome 

• To compare different models, to assess quality of model 
prediction and model fit  

– Pseudo-R2 statistic (proportion of variation in the 
dependent variable that is explained by the model)  

• Concept from epidemiology to assess accuracy of models 
(Plewis et al 2012):   

– discrimination (sensitivity and specificity)  

– prediction (positive and negative predicted value) 
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• To assess both concepts: classification table is useful 

• Say nonresponse  𝑦 = 1, predicted value 𝜋  , then 𝑦 = 1 if 𝜋 > 𝑐 

• Discrimination: 

 sensitivity: 𝑃(𝑦 = 1|𝑦 = 1)  

 specificity: 𝑃 𝑦 = 0 𝑦 = 0  

• Prediction:  

Positive predicted value: 𝑃 𝑦 = 1 𝑦 = 1  

Negative predicted value: 𝑃 𝑦 = 0 𝑦 = 0  

 

 

  

 

Assessment of Models 



Results 
 
 



Results 
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Model  Length Outcome Length x 

Outcome 
pseudo 

R2 

Classificat. 

Table 

pseudo  

R2 

Classificat. 

Table 

pseudo 

R2 

Classificat. 

Table 

Before call 1:  

geography 

3% 56% 1% 54% 3% 36% 



Results 
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Model  Length Outcome Length x 

Outcome 
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Model  Length Outcome Length x 

Outcome 
pseudo 

R2 

Classificat. 

Table 

pseudo  

R2 

Classificat. 
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R2 

Classificat. 
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3% 56% 1% 54% 3% 36% 
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+ call 1 data 

8% 60% 8% 60% 12% 40% 

After call 3:   

+ call 1-3 data 

11% 61% 11% 62% 19% 43% 
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Model  Length Outcome Length x 

Outcome 
pseudo 

R2 

Classificat. 

Table 

pseudo  

R2 

Classificat. 
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R2 

Classificat. 
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3% 56% 1% 54% 3% 36% 

+ IO 6% 59% 6% 58% 9% 39% 

After call 1:   

+ call 1 data 

8% 60% 8% 60% 12% 40% 

After call 3:   

+ call 1-3 data 

11% 61% 11% 62% 19% 43% 

+ call 3 outcome 25% 69% 27% 68% 36% 51% 

+ calls 1-3 outcome 26% 70% 30% 70% 37% 52% 
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Model  Length Outcome Length x 

Outcome 
pseudo 

R2 

Classificat. 

Table 

pseudo  

R2 

Classificat. 

Table 

pseudo 

R2 

Classificat. 

Table 

Before call 1:  

geography 

3% 56% 1% 54% 3% 36% 

+ IO 6% 59% 6% 58% 9% 39% 

After call 1:   

+ call 1 data 

8% 60% 8% 60% 12% 40% 

After call 3:   

+ call 1-3 data 

11% 61% 11% 62% 19% 43% 

+ call 3 outcome 25% 69% 27% 68% 36% 51% 

+ calls 1-3 outcome 26% 70% 30% 70% 37% 52% 

+ 4 sums of outcome 22% 69% 30% 69% 33% 50% 

+ call 4 data (without  

 outcome) 

27% 71% 32% 70% 40% 50% 



Results: Sensitivity 

21 

Model  Short 

Unsuccessful 

(n=4962) 

Short 

Successful 

(n=7391) 

Long 

Unsuccessful 

(n=8603) 

Long 

Successful 

(n=4402) 

1 0.0% 43.2% 69.6% 0.0% 

2 6.5% 52.8% 65.9% 0.1% 

3 20.4% 49.8% 64.2% 0.1% 

4 31.1% 51.6% 63.9% 0.4% 

5 44.3% 50.2% 79.5% 5.2% 

6 45.1% 51.0% 79.5% 5.6% 

7 42.2% 54.4% 75.3% 3.9% 

8 50.7% 52.5% 78.2% 6.8% 

Of the long unsuccessful about 80% estimated correctly 

𝑃(𝑦  = 𝑘|𝑦 = 𝑘) (𝑘 = 1,2,3,4) 



Results: Positive predicted value  
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  Short 

Unsuccessful 

(n=4962) 

Short 

Successful 

(n=7391) 

Long 

Unsuccessful 

(n=8603) 

Long 

Successful 

(n=4402) 

Predicted Short 

Unsuccessful 

58.7% 13.1% 22.1% 6.1% 

Short 

Successful 

11.2% 63.6% 12.8% 12.4% 

Long 

Unsuccessful 

13.4% 19.6% 45.7% 21.3% 

Long 

Successful 

7.4% 28.3% 25.2% 39.1% 

Of the cases predicted to be long unsuccessful 50%  are indeed l.u. 

𝑃(𝑦 = 𝑘|𝑦 = 𝑘) (𝑘 = 1,2,3,4) 



Results: Predicted Values (multinomial) 
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Results: Predicted Values (multinomial) 
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Summary of results (call data) 

• Adding more and more call data increases prediction in 
comparison to no call data (pseudo-R2 from 6% to around 30%) 

• Adding outcome of previous call(s) significantly improves 
prediction (pseudo-R2 from 11% to around 40%) 

• Variables better entered as raw outcomes rather than as summary 
measures 

• Time of calls and time between calls are all significant variables 
but their impact on prediction limited; day of the week not 
significant in models 
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Summary of results (2) 

• Modelling length and final outcome jointly improves 
prediction  

• Interviewer observation variables all significant; including 
them increases prediction, but in absolute terms 
improvement small 

• Basic geographic information not very predictive; using call 
record data greatly improves predictive power 
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Conclusions 

• Novel is to model sequence length and to model length and outcome 
jointly 

• Potentially a simple idea using standard methodology  

• Can be implemented into survey practice quite easily  

• Survey managers may wish to weigh up between the probability of a 
successful outcome versus sequence length; other dependent 
variables possible too 
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Further work  

• Use models for prediction at the next wave:  

– take estimated coefficients based on wave 1 data and use them 
to predict length and final call outcome for wave 2 data  

– assess how predicted length and outcome compare to the true 
outcomes from wave 2 

• Use the same strategy on wave 2 call data for prediction at wave 3, 
using also prior information from wave 1 (survey data and call record 
data).  
 

• Monitor nonresponse bias across calls (quality of the (non-) 
respondents) (work with Correa and Smith); prioritization of cases 
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Thank you! 
 
g.durrant@southampton.ac.uk 
 
 
(working paper available) 
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A remark  

• Cannot establish causal links but merely associations 
between the response and the explanatory variables since 
observational data and not experimental data 

• However, not a limitation since aims to models for 
prediction and for comparison of different models (analysis 
does not need to establish causal links) 

 

30 

 


