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The impact of design choices on the engine life-cycle cost and its final performance is 
not uniformly distributed over the whole design cycle. Instead, a significant proportion 
of the most critical design decisions is made at the very early design stages, which 
directly results in a large fraction of the engine attributes being frozen by the end of the 
preliminary design phase (See Figure 1). This combined with the fact that at the same 
stage in the design cycle, design knowledge is very limited, means that the most 
important design decisions must be made in the presence of uncertainty. 

In the aero-engine development programmes, a wide range of methods and data is 
used to support architectural decisions made at the preliminary design stage. In order 
to ensure that the best decisions are made, the modelling uncertainty associated with 
the tools used to support them need to be properly identified, captured and eliminated 
if possible. 

In the preliminary work on the project, a variety of uncertainty quantification 
frameworks were researched and applied to a relatively straightforward spreadsheet-
based engine sizing model, developed specifically for the aforementioned trials. 

In the first Monte-Carlo based framework [2], epistemic uncertainty (uncertainty due to 
lack of knowledge) was represented with simple intervals, whereas aleatory uncertainty 
(uncertainty due to randomness) was represented with probability density functions. 
Both types of model parameter uncertainties were propagated through the model, 
giving uncertainty in the model output, which was represented with probability boxes. 
Results of the uncertainty assessment were then used to update the engine design 
space (See Figure 2). This allowed choosing an engine design point, which position was 
based on well-founded analysis rather than heuristics. 
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Figure 1: The variation of product life-cycle cost, design knowledge and design freedom with project age [1]  

Figure 2: Diagram showing updated design space and updated design point position. 

Figure 4: Kernel Density Plots showing change in 
TWCR prediction accuracy 

Figure 3: Bayesian Network representing engine sizing model. 

Figure 5: Kernel Density Plots showing change in 
TWTO prediction accuracy 

𝑇𝑆𝑆
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 − minimum thrust to weight ratio at take-off condition (TWTO) 

𝑇𝑆𝑆
𝑊𝑇𝑇 𝐶𝐶

 − minimum thrust to weight ratio at cruise condition (TWCR) 

𝑊𝑇𝑇
𝑆

 − wing loading 

𝐶𝐿𝐿𝐿𝐿 − maximum lift coefficient 

𝑘𝑇𝑇 − take-off speed to stall speed ratio 

𝐶𝐷𝐷 − coefficient of drag at zero lift 

𝐾1 − lift-drag polar equation coefficient 

𝛽 − instantaneous weight fraction 

𝑇𝑆𝑆𝑆 − air temperature (reference altitude) 

𝑃𝑆𝑆𝑆 − air pressure (reference altitude) 

𝜌𝑆𝑆𝑆 − air density(reference altitude) 

𝑇𝐶𝐶 − air temperature (cruise altitude) 

𝑃𝐶𝐶 − air pressure (cruise altitude) 

𝜌𝐶𝐶 − air density(cruise altitude) 𝑞 − dynamic pressure at cruise conditions 

𝐿1 − temperature lapse rate 

In the second, Bayesian based approach, relationships between uncertain quantities 
were represented with a Bayesian Network (See Figure 3). It was  demonstrated that 
increasing the amount of experimental data used for uncertainty assessment allows 
improving the accuracy of model predictions (See Figure 4 and 5). It was therefore 
shown that due to their ability to incorporate all-level experimental data into the 
analysis, Bayesian Networks could form a solid basis for uncertainty quantification 
framework development. 

 

 

Future work on the project will involve translating customer requirements into the real 
capabilities of the prospective design decision support tools. This will be followed by 
design and development of such tools and research into the most efficient strategies 
for their use. 
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