
Dr. Ivan Voutchkov, 
UTC for Computational Engineering, AACE, Faculty of Engineering and the Environment

http://www.southampton.ac.uk/engineering/research/groups/CED/posters.page | email: iiv@soton.ac.uk

Computational Engineering & Design Group, University of Southampton, SO16 7QF, U.K.

Many engineering optimization and simulation analysis require large number of design trials that can be run in parallel. Various job management
solutions exist, however most of them require active communication between master and slave nodes. The master is always in control of slave nodes,
which is effective for dedicated clusters, but can be a significant inconvenience for utilisation of available desktop power. Often engineers have a
powerful machines in front of them (12+ cores) which are sitting idle 95% of the time.

The current job manager allows each team member to dynamically contribute their CPU resources to one or more job queues. They can start, stop or
adjust their contribution at will. If they decide to leave whilst executing a job, it will be taken automatically by another available contributor.

Aeronautics, Astronautics
and Computational
Engineering

Engineering and the
Environment

OPTIMAT v2: Job Manager

OPTIMATv2 has been developed under the Strategic Investment in Low-Carbon Engine Technology (SILOET) project, RD6, WP2.6, Task 2.6.3.1

Peter
jobRunner 8 \\sharedStorage\Thermal

Jack, Kate (thermal) and Paul (structural) need 
resources to solve their parallel problems

JackJob1.jcfg
executable = program.exe arguments

stdout = stdout.txt

stderr = stderr.txt

runtime = <minutes>

repeat_on_fail = <times to retry>

numcpus = <required cores for the task>

JackJob2.jcfg
executable = program.exe arguments

stdout = stdout.txt

stderr = stderr.txt

runtime = <minutes>

repeat_on_fail = <times to retry>

numcpus = <required cores for the task>

JackJob3.jcfg
executable = program1.exe arguments

stdout = stdout.txt

stderr = stderr.txt

runtime = 60 // minutes

repeat_on_fail = 3 // times to retry

numcpus = 1 // required cores

Jack Paul

PaulJob1.jcfg
executable = program.exe arguments

stdout = stdout.txt

stderr = stderr.txt

runtime = <minutes>

repeat_on_fail = <times to retry>

numcpus = <required cores for the task>

PaulJob2.jcfg
executable = program.exe arguments

stdout = stdout.txt

stderr = stderr.txt

runtime = <minutes>

repeat_on_fail = <times to retry>

numcpus = <required cores for the task>

PaulJob3.jcfg
executable = program2.exe arguments

stdout = stdout.txt

stderr = stderr.txt

runtime = 120 // minutes

repeat_on_fail = 3 // times to retry

numcpus = 4 // required cores

Team members with spare cores can volunteer to contribute resources to any QUEUE. They are in full control of how many cores 
to contribute and when exactly to start or end their contribution. Each member runs a ‘jobRunner’ command on their machine: 

jobRunner <numcpus> <QUEUE>

Kate

KateJob1.jcfg
executable = program.exe arguments

stdout = stdout.txt

stderr = stderr.txt

runtime = <minutes>

repeat_on_fail = <times to retry>

numcpus = <required cores for the task>

KateJob2.jcfg
executable = program.exe arguments

stdout = stdout.txt

stderr = stderr.txt

runtime = <minutes>

repeat_on_fail = <times to retry>

numcpus = <required cores for the task>

KateJob3.jcfg
executable = program1.exe arguments

stdout = stdout.txt

stderr = stderr.txt

runtime = 60 // minutes

repeat_on_fail = 3 // times to retry

numcpus = 4 // required cores

\\sharedStorage\Thermal

John
jobRunner 4 \\sharedStorage\Thermal

Mike
jobRunner 8 \\sharedStorage\Thermal
jobRunner 4 \\sharedStorage\Struct

David
jobRunner 2 \\sharedStorage\Struct

8 4 8 4 2

\\sharedStorage\Struct


