
Bilevel Programs with Non-compact Lower-level Optimality Conditions Set
The project focuses on the formulation and solution of bilevel programming problems where the second level problem does not necessarily admit a (compact) set of optimality conditions. Among different applications of this growing area of research, we mention network routing problems with fairness constraints (for which a compact reformulation is possible) and leader-follower Stackelberg games (for which the lack of optimality conditions calls for specialized algorithms). From a methodological perspective, we are also interested in bilevel programming aspects of cutting plane generation. The attention is on bound-optimal cutting planes, a cutting plane paradigm which entails the solution of a bilevel cut generating problem with a linear program at the second level, and on the generation of rank inequalities for the maximum stable set problem, with extension to the generation of template-free inequalities for general integer programs.