Skip to main navigation Skip to main content
The University of Southampton

Supercomputer confirms theory of the universe

Published: 25 February 2008

Scientists have used a supercomputer to shed new light on one of the most important theories of physics, the Standard Model, which encapsulates understanding of all the material that makes up the universe. This 30-year-old theory explains all the known elementary particles and three of the four forces acting upon them - however, it excludes the force of gravity, which is its shortcoming.

Physicists have been trying to find the missing pieces in the jigsaw that would extend the Standard Model into a complete theory of all the forces of nature. However, the landmark findings by researchers at the Universities of Edinburgh and Southampton, and their partners in Japan and the US, confirm the Standard Model to even greater precision than before, deepening the puzzle.

The project's enormously complex calculations relate to the behaviour of tiny particles found in the nuclei of atoms, known as quarks. In order to carry out these calculations, the researchers first designed and built a supercomputer that was among the fastest in the world, capable of tens of trillions of calculations per second. The computations themselves have taken a further three years to complete.

Their result shows that the Standard Model's claim to be the best theory invented holds firm. It raises the stakes for the riddle to be solved by experiments at the Large Hadron Collider at CERN, which will switch on later this year. Physicists’ efforts to confront Standard Model predictions using the most powerful computers available with the most precise experiments offer no clues about what to expect.

Professor Chris Sachrajda of the University of Southampton’s School of Physics and Astronomy said: ‘Modern supercomputers and improved theoretical techniques are allowing us to explore the limits of the Standard Model to an unprecedented precision. The next stage will be to combine such computations with new experimental results expected from the Large Hadron Collider to unravel the next level of fundamental physics.’

Professor Richard Kenway of the University of Edinburgh's School of Physics added: ‘Although the Standard Model has been a fantastic success, there were one or two dark corners where experimental tests had been inconclusive, because vital calculations were not accurate enough. We shone a light on one of these, but to our enormous frustration, nothing was lurking there.’

The research, published in Physical Review Letters , was supported by the Science and Technology Facilities Council.

Privacy Settings