Skip to main navigationSkip to main content
The University of Southampton

Ultrasonic cleaning of salad could reduce instances of food poisoning

Published: 2 March 2021
Salad Leaves

A new study has shown that gentle streams of water carrying sound and microscopic air bubbles can clean bacteria from salad leaves more effectively than current washing methods used by suppliers and consumers. As well as reducing food poisoning, the findings could reduce food waste and have implications for the growing threat of anti-microbial resistance.

A diet containing uncooked salad, fruit and vegetables is key to reducing a range of conditions, including cardiovascular diseases, Type II diabetes and certain types of cancer.

However, salad and leafy green vegetables may be contaminated with harmful bacteria during growing, harvesting, preparation and retail leading to outbreaks of food poisoning which may be fatal in vulnerable groups.

Because there is no cooking process to reduce the microbial load in fresh salads, washing is vital by the supplier and the consumer.

Washing with soap, detergent bleach or other disinfectants is not recommended and the crevices in the leaf surface means washing with plain water may leave an infectious dose on the leaf. Even if chemicals are used, they may not penetrate the crevices.

In this new study, published in the journal Ultrasound in Medicine and Biology, scientists used acoustic water streams to clean spinach leaves directly sourced from the field crop, then compared the results with leaves rinsed in plain water at the same velocity.

Professor Timothy Leighton of the University of Southampton, who invented the technology and led this research, explains: “Our streams of water carry microscopic bubbles and acoustic waves down to the leaf. There the sound field sets up echoes at the surface of the leaves, and within the leaf crevices, that attract the bubbles towards the leaf and into the crevices. The sound field also causes the walls of the bubbles to ripple very quickly, turning them into microscopic ‘scrubbing’ machines. The rippling bubble wall causes strong currents to move in the water around the bubble, and sweep the microbes off the leaf. The bacteria, biofilms, and the bubbles themselves, are then rinsed off the leaf, leaving it clean and free of residues.”

The results showed that the microbial load on samples cleaned with the acoustic streams for 2 min was significantly lower six days after cleaning than on those treated without adding sound and the micro-bubbles. The acoustic cleaning also caused no further damage to the leaves and demonstrated the potential to extend food shelf life, which has important economic and sustainability implications.

Improving how food providers clean fresh produce could have a major role to play in combating the threat of anti-microbial resistance. In 2018 and 2019, there were fatal outbreaks of different strains of E. coli on romaine lettuce in the USA and Canada and samples from humans infected showed strains that are resistant to antibiotics. 

University of Southampton PhD student Weng Yee (Beverly) Chong, who was part of the research team added: “I am very grateful to Vitacress and EPSRC for funding my PhD. I came from an engineering background, and took Professor Leighton’s classes, but he told me that I could be a trans-disciplinary PhD student, and become a microbiologist whilst increasingmy engineering skills. I am also very grateful to Sloan Water Technology Ltd.:   They opened up their laboratories for use by students like me, so that I can keep working on my experiments. It is an exciting environment to work in because they are doing so much inventive work to combat the pandemic and infections as a whole.”

Previously as part of her PhD Beverly has studied how the technology could reduce the infection risk to horses and other livestock through hay cleaning.

The work was sponsored by Vitacress, whose Group Technical Director Helen Brierley said: “Ensuring food safety for our products is an essential requirement. At Vitacress, we wash our produce in natural spring water, and this type of ground-breaking new technology helps to enhance our process whilst ensuring our commitment to protect the environment is maintained. We are always interested in new developments and are excited to see the results of this research.”

Other co-authors of the paper are Dr Tom Secker, Dr Craig Dolder and Professor Bill Keevil.


The research project was a collaboration between Sloan Water Technology LimitedVitacress and the University of Southampton, a collaboration formed and supported by Global-NAMRIP (the Global Network for Antimicrobial Resistance and Infection Prevention).

It has been published in Ultrasound in Medicine and Biology with doi: 10.1016/j.ultrasmedbio.2021.01.026.

Privacy Settings