Southâmpton

Programme Specification

Mathematical Studies (2017-18)

This specification provides a concise summary of the main features of the programme and the learning outcomes that a typical student might reasonably be expected to achieve and demonstrate if $s /$ he takes full advantage of the learning opportunities that are provided.

Awarding Institution	University of Southampton
Teaching Institution	University of Southampton
Mode of Study	Full-time
Duration in years	3
Accreditation details	None
Final award	Bachelor of Science with Honours (BSc (Hons))
Name of award	Mathematical Studies
Interim Exit awards	Bachelor of Science (Ordinary)
	Certificate of Higher Education (CertHE)
	Level 6
FHEQ level of final award	G120 Higher Education (DipHE)
UCAS code	4711
Programme code	Mathematics, Statistics And Operational Research 2007
QAA Subject Benchmark or other	
external reference	Bernhard Koeck (bk2)
Programme Lead	

Programme Overview

Brief outline of the programme

The flexibility of this degree means that students are able to transfer onto the programme from other degrees. For example if you start on the Mathematics with Finance degree but decide after a year or so that you don't want to specialise in Finance quite so much then you will be able to transfer to Mathematical Studies and diversify your options. This degree may lead to possible exemption from some Core Technical professional actuarial examinations depending on option choices made.

Transfer to this programme is possible from a number of other programmes in the Mathematical Sciences academic unit.

Your contact hours will vary depending on your module/option choices. Full information about contact hours is provided in individual module profiles.

Learning and teaching

The Mathematical Sciences academic unit uses a wide variety of modern learning and teaching methods involving workshops and exercise classes and computer based learning that builds on what you learn in lectures.

Assessment

Assessment is varied enabling you to demonstrate your strengths and show what you have learnt. Students are provided with access to relevant software that they can use on their own personal computers to assist their studies.

Special Features of the programme

N/A

Please note: As a research-led University, we undertake a continuous review of our programmes to ensure quality enhancement and to manage our resources. As a result, this programme may be revised during a student's period of registration; however, any revision will be balanced against the requirement that the student should receive the educational service expected. Please read our Disclaimer to see why, when and how changes may be made to a student's programme

Programmes and major changes to programmes are approved through the University's programme validation process which is described in the University's Quality handbook.

Educational Aims of the Programme

The aims of the programme are to:

- Introduce you to the main basic areas of mathematics;
- Develop your understanding of abstract mathematical concepts;
- Offer you the opportunity to study advanced mathematical concepts and techniques;
- Develop your modelling and problem solving skills;
- Offer you the opportunity to construct an individual programme of study within a coherent framework; - Offer you the opportunity to study applications of mathematics in a variety of contexts which utilize mathematical and physical models;
. Develop your subject specific and transferable skills including an analytical approach to problem solving, logical argument and deductive reasoning, abstraction and generalisation, and written communication skills in mathematics;
- Provide some of the basic IT skills necessary for further study and employment, including word processing and use of the internet;
- Help you to develop key skills: personal organisation, teamwork, problem solving and analysis, finding and using information, and written and oral presentation.

Programme Learning Outcomes

On successful completion of this programme a student will have knowledge and understanding of:

A1. The fundamentals of calculus, linear algebra, and statistics;
A2. The fundamentals of ordinary differential equations and their applications;
A3. The principles of mathematical proof and some of the techniques of proof;
A4. The fundamental concepts of real analysis of functions of one variable;
A5. Subjects which you choose to study as part of your programme from outside mathematics.

Teaching and Learning Methods

Acquisition of knowledge and understanding of A1 through A5 is through structured exposition based on lectures, workshop and exercise classes, and private study, all of which are equally important. Increasing independence of learning is required as the programme progresses.

Throughout the programme you are encouraged to use additional recommended reading material for private study to consolidate the formal learning process, and to broaden and deepen your understanding.

Assessment Methods

Assessment is undertaken in the first year by a mixture of unseen examinations, regular marked coursework, class tests and computer-based work, together with a small component of project and laboratory work. This variety of assessment relates to A1 through A4, and also to some of the skills described below. This varied approach to assessment continues in the remainder of the programme, with the relative emphasis depending on the options chosen (A5).

Subject Specific Intellectual and Research Skills

On successful completion of this programme a student will be able to:

B1. Use mathematical problem-solving skills for certain types of problems and their variants in a variety of mathematical contexts;

B2. Undertake algebraic calculations accurately and with understanding;
B3. Use computer packages (for example, R) as vehicles for mathematical exploration and understanding;
B4. Understand and to construct mathematical proofs.

Teaching and Learning Methods

Problem-solving is at the heart of all mathematical activity, and so it is emphasised throughout the
learning and teaching experience, as is the need for accurate calculation and logical argument. The use of specific mathematical and computational packages is a part of the curriculum, and the skills acquired there are used in later modules as appropriate.

Assessment Methods

The various methods of assessment described involve problem-solving (B 1) in addition to the assessment of knowledge and understanding (B2 and B4). Fluency in computer packages (B3) is assessed by coursework.

Transferable and Generic Skills

On successful completion of this programme a student will be able to:

C1. Communicate mathematical ideas in written form;
C2. Undertake oral presentations;
C3. Demonstrate group-working skills
C4. Use email, spreadsheets and show basic word-processing skills;
C5. Use and obtain information from a variety of different sources including the internet, books and other printed material;

C6. Use the skills you have acquired (e.g. time-management, organisation, problem-solving, critical analysis, independent learning, etc.) for life-long learning.

Teaching and Learning Methods

The learning of transferable skills begins in the first year. The first year lecturers will set problems for which one of a range of computing packages, such as the statistics package R, will be useful, thereby developing transferable skills alongside subject specific skills. Other IT skills such as basic word processing are used alongside first year project work, particularly in statistics. Mathematics Workshops are offered during the first and second years, and extensive electronic resources on study skills are available through the Mathematics and University websites.

Further development of IT skills, written communication and general skills such as organisation and time-management is associated with optional second and third year modules which may have an element of coursework in their assessment. The second and third year project-based modules develop your portfolio of skills to include internet and library research, group working, and presentation skills.

Assessment Methods

Throughout the programme the clear communication of Mathematics is part of the assessment criteria, either explicitly or implicitly. For project work, and for those modules which involve coursework assignments, a proportion of the assessment is allocated to communication (C1, C2, and C4). Project work and coursework assessment also relate to C5, and where appropriate, C3. The skills referred to in C6 refer to problem-solving, an integral component of all mathematical work, and other learning skills

Programme Structure

The programme structure table is below:
Information about pre and co-requisites is included in individual module profiles.

Part I

Typical programme content

This is the most flexible degree programme we offer. In each of the three years you have the chance to broaden your interests by studying subjects from outside mathematics, from fields as diverse as Physics, Computing, Philosophy, Spanish, Music, English and many others. You therefore have a chance to develop a range of mathematical and other skills which will serve you well in a very wide variety of careers.

In addition to this, our Curriculum Innovation Programme offers our students the chance to take optional modules outside their core disciplines. This allows you to personalise your education, to develop new skills and knowledge for your future.

Programme details

The structure of the programme and the modules currently offered are set out below. Of the modules shown against each year of your programme, some are compulsory (ie enrolment is automatic) and others are option modules. Against each year, you are directed to which modules are compulsory and which are options. The option modules listed constitute an indicative list. There will always be choice but the options might vary between years. A complete list of option modules currently available on your programme can be found via the Student Record Self-Service system.

The programme comprises three parts, each corresponding to one year of full-time study. You will normally have to take 4 modules (30 ECTS/60 CATS) each semester (i.e. 8 modules (60 ECTS/120 CATS)) in each year of the programme. Each CATS point can be considered as the equivalent of approximately ten hours of study. All the modules offered in this programme (except the dissertation) are 7.5 ECTS/15 CATS modules. This means that each module comprises around 150 hours of study divided into contact time (e.g. lectures, seminars, workshops) and non-contact time when you will be engaged in directed study (preparation for classes) and independent study when you will be involved in producing assignments and preparing and taking examinations.

Students must do at least 16 MATHxxxx modules in three parts, and at least 4 MATH3xxx modules in part 3.

Part I Compulsory

Code	Module Title	ECTS	Type
MATH1024	Introduction to Probability and Statistics	7.5	Compulsory

MATH1049	Linear Algebra II	7.5	Compulsory	
MATH1060	Multivariable Calculus	7.5	Compulsory	
MATH1058	Operational Research I and Mathematical Computing	7.5	Compulsory	

Part I Core

Code	Module Title	ECTS	Type
MATH1059	Calculus	7.5	Core
MATH1048	Linear Algebra I	7.5	Core

Part I Optional

The option modules shown below constitute an indicative list; there will always be choice but the options might vary between years. A full list of option modules and rules will be available to you via the Student Record Self-Service system once you enrol at the University.

Code	Module Title	ECTS	Type
MATH1057	Dynamics and Relativity	7.5	Optional
ECON1001	Foundations of Microeconomics	7.5	Optional
MATH1001	Number Theory	7.5	Optional
ECON1002	Principles of Macroeconomics	7.5	Optional

Part II

Part II Compulsory

Code	Module Title	ECTS	Type
MATH2039	Analysis	7.5	Compulsory
MATH2038	Partial Differential Equations	7.5	Compulsory

Part II Optional

Students must select 2 modules, comprising one of the following groups. Each group contains a pair of modules that must be selected together.

MATH2010 Statistical Methods I
MATH2011 Statistical Distribution Theory
or
MATH2003 Group Theory
MATH2049 Geometry and Topology
or
MATH2008 Introduction to Applied Mathematics
MATH2044 Application of Vector Calculus
Plus
additional option modules from the below list.

The option modules shown below constitute an indicative list; there will always be choice but the options might vary between years. A full list of option modules and rules will be available to you via the Student Record Self-Service system once you enrol at the University.

Code	Module Title	ECTS	Type
MATH2045	Vector Calculus and Complex Variable	7.5	Optional
MATH2044	Applications of Vector Calculus	7.5	Optional
MATH2040	Financial Mathematics	7.5	Optional
MATH2049	Geometry and Topology	7.5	Optional
MATH2003	Group Theory	7.5	Optional
MATH2008	Introduction to Applied Mathematics	7.5	Optional
MATH2013	Introduction to Operational Research	7.5	Optional
MATH2011	Statistical Distribution Theory	7.5	Optional
MATH2010	Statistical Methods I		

Part III Core

Code	Module Title	ECTS	Type
MATH3032	Communicating and Researching Mathematics	7.5	Core

Part III Optional

Code	Module Title	ECTS	Type
MATH3063	Actuarial Mathematics I	7.5	Optional
MATH3023	Communicating and Teaching Mathematics	7.5	Optional
MATH3084	Integral Transform Methods	7.5	Optional
MATH3052	Mathematical Biology	7.5	Optional
MATH3016	Optimization		
MATH3006	Relativity, Blackholes and Cosmology	7.5	Optional

Progression Requirements

The programme will follow the University's regulations for Progression, Determination and Classification of Results: Undergraduate and Integrated Masters Programmes or the University's regulations for Progression, Determination and Classification of Results: Standalone Masters Programmes as set out in the General Academic Regulations in the University Calendar: http://www.calendar.soton.ac.uk/sectionIV/sectIV-index.htmI

Support for student learning

There are facilities and services to support your learning some of which are accessible to students across the University and some of which will be geared more particularly to students in your particular Faculty or discipline area.

The University provides:

- library resources, including e-books, on-line journals and databases, which are comprehensive and up-todate; together with assistance from Library staff to enable you to make the best use of these resources
- high speed access to online electronic learning resources on the Internet from dedicated PC Workstations onsite and from your own devices; laptops, smartphones and tablet PCs via the Eduroam wireless network. There is a wide range of application software available from the Student Public Workstations.
- computer accounts which will connect you to a number of learning technologies for example, the Blackboard virtual learning environment (which facilitates online learning and access to specific learning resources)
- standard ICT tools such as Email, secure filestore and calendars.
- access to key information through the MySouthampton Student Mobile Portal which delivers timetables, Module information, Locations, Tutor details, Library account, bus timetables etc. while you are on the move.
- IT support through a comprehensive website, telephone and online ticketed support and a dedicated helpdesk in the Hartley Library.
- Enabling Services offering support services and resources via a triage model to access crisis management, mental health support and counselling. Support includes daily Drop In at Highfield campus at 13.00 15.00 (Monday, Wednesday and Friday out of term-time) or via on-line chat on weekdays from 14.00 16.00. Arrangements can also be made for meetings via Skype.
- assessment and support (including specialist IT support) facilities if you have a disability, long term health problem or Specific Learning Difficulty (e.g. dyslexia).
- the Student Services Centre (SSC) to assist you with a range of general enquiries including financial matters, accommodation, exams, graduation, student visas, ID cards
- Career and Employability services, advising on job search, applications, interviews, paid work, volunteering and internship opportunities and getting the most out of your extra-curricular activities alongside your degree programme when writing your CV
- Other support that includes health services (GPs), chaplaincy (for all faiths) and 'out of hours' support for students in Halls and in the local community, (18.00-08.00)
- A Centre for Language Study, providing assistance in the development of English language and study skills for non-native speakers.

The Students' Union provides

- an academic student representation system, consisting of Course Representatives, Academic Presidents, Faculty Officers and the Vice-President Education; SUSU provides training and support for all these representatives, whose role is to represent students' views to the University.
- opportunities for extracurricular activities and volunteering
- an Advice Centre offering free and confidential advice including support if you need to make an academic appeal
- \quad Support for student peer-to-peer groups, such as Nightline.

Associated with your programme you will be able to access:

- Module co-ordinators support. Module co-ordinators will be available at designated times during the week to discuss issues related to the particular modules you are studying at the time. This will be in addition to class contact time.

Academic/personal tutor. As soon as you register on this programme, you will be allocated a personal tutor. S/he is a member of the academic team and will be available to discuss general academic issues related to the programme as well as offer advice and support on any personal issues which may affect your studies.

Module handbooks/outlines. These will be available at the start of each module (often in online format). The handbook includes the aims and learning outcomes of the module, the methods of assessment, relevant background material to the module and a session-by-session breakdown of the module together with appropriate reading lists.

Within the Faculty, administrative support is provided by your Student Office which deals with student records and related issues and with queries related to your specific degree programme.

Methods for evaluating the quality of teaching and learning

You will have the opportunity to have your say on the quality of the programme in the following ways:

- Completing student surveys for each module of the programme
. Acting as a student representative on various committees, e.g. Staff Student Liaison Committees, Faculty Programmes Committee OR providing comments to your student representative to feedback on your behalf.

Serving as a student representative on Faculty Scrutiny Groups for programme validation

- Taking part in programme validation meetings by joining a panel of students to meet with the Faculty Scrutiny Group

The ways in which the quality of your programme is checked, both inside and outside the University, are:

- Regular module and programme reports which are monitored by the Faculty
- Programme validation, normally every five years.
- External examiners, who produce an annual report
- A national Research Excellence Framework (our research activity contributes directly to the quality of your learning experience)
- Institutional Review by the Quality Assurance Agency

Further details on the University's quality assurance processes are given in the Quality Handbook.

Criteria for admission

The University's Admissions Policy applies equally to all programmes of study. The following are the typical entry criteria to be used for selecting candidates for admission. The University's approved equivalencies for the requirements listed below will also be acceptable.

Alternative Qualifications
Cambridge Pre-U
Our normal requirements are for D3D3M1 in the three principle subjects including D3 in Mathematics.
In addition we welcome applications from candidates offering other suitable qualifications with an appropriate mathematical content.

Qualification	Grades	Subjects required	Subjects not accepted	EPQ Alternative offer (if applicable)	Contextual Alternative offer (if applicable)
International Baccalaureate	36 points, 18 at higher level, including 6 in higher level mathematics.				
A Level	AAA (or AAB with Further Mathematics)	including grade A in A-level Mathematics			

Recognition of Prior Learning (RPL)

The University has a Recognition of Prior Learning Policy
Students are accepted under the University's recognition of prior learning policy; however, each case will be reviewed on an individual basis.

English Language Proficiency

The table below sets out the English proficiency requirements for this programme in terms of the IELTS test. We accept a range of other English proficiency tests including TOEFL and Cambridge Advanced/Proficiency. For full details of the recognised tests and the equivalent requirements in those tests please see www.southampton.ac.uk/admissions-language.

Overall	Reading	Writing	Speaking	Listening
6.5	5.5	5.5	5.5	5.5

Career Opportunities

Employability is embedded into modules from the first year onwards and right from the first lecture. We explain the degree skills which are taught throughout the modules and offer a number of optional employability modules.

We place great importance on the development of graduate skills vital for future employment by adding transferrable skills into learning and teaching.

Our degrees are a passport to vocational and non-vocational careers alike, with recent graduates employed in roles ranging from actuaries and statisticians to crime analysts and medical researchers.

External Examiner(s) for the programme

Name:	Peter Duck - University of Manchester
Name:	John Parker - University of Durham
Name:	Lawrence Pettit - Queen Mary College University of London
Name:	Dolores Romero Morales - Copenhagen Business School

Students must not contact External Examiner(s) directly, and external examiners have been advised to refer any such communications back to the University. Students should raise any general queries about the assessment and examination process for the programme with their Course Representative, for consideration through Staff: Student Liaison Committee in the first instance, and Student representatives on Staff: Student Liaison Committees will have the opportunity to consider external examiners' reports as part of the University's quality assurance process

External examiners do not have a direct role in determining results for individual students, and students wishing to discuss their own performance in assessment should contact their Personal Academic Tutor in the first instance.

Please note: This specification provides a concise summary of the main features of the programme and the learning outcomes that a typical student might reasonably be expected to achieve and demonstrate if s / he takes full advantage of the learning opportunities that are provided. More detailed information can be found in the programme handbook.

Appendix 1:

Students are responsible for meeting the cost of essential textbooks, and of producing such essays, assignments, laboratory reports and dissertations as are required to fulfil the academic requirements for each programme of study. In addition to this, students registered for this programme also have to pay for:

Additional Costs

Type	Details
Software Licenses	The software required for the programme is available on all public workstations on campus, and accessible from your own computer via VPN.
Stationery	You will be expected to provide your own day-to-day stationery items, e.g. pens, pencils, notebooks, etc.). Any specialist stationery items will be specified under the Additional Costs tab of the relevant module profile.
Textbooks	Where a module specifies core texts these should generally be available on the reserve list in the library. However due to demand, students may prefer to buy their own copies. These can be purchased from any source. Some modules suggest reading texts as optional background reading. The library may hold copies of such texts, or alternatively you may wish to purchase your own copies. Although not essential reading, you may benefit from the additional reading materials for the module.
Approved Calculators	Candidates may use calculators in the examination room only as specified by the University and as permitted by the rubric of individual examination papers. The University approved models are Casio FX-570 and Casio FX-85GT Plus. These may be purchased from any source and no longer need to carry the University logo.
Printing and Photocopying Costs	In the majority of cases, coursework such as essays; projects; dissertations is likely to be submitted on line. However, there are some items where it is not possible to submit on line and students will be asked to provide a printed copy. A list of the University printing costs can be found here: http://www.southampton.ac.uk/isolutions/students/printing-for- students.page. For students undertaking modules with a high mathematical content, some assessed work will be submitted in handwritten hard copy format. Students are advised that they will need to bear the costs of the required stationery.

In some cases you'll be able to choose modules (which may have different costs associated with that module) which will change the overall cost of a programme to you. Details of such costs will be listed in the Module Profile. Please also ensure you read the section on additional costs in the University's Fees, Charges and Expenses Regulations in the University Calendar available at www.calendar.soton.ac.uk.

