NON-RELATIVISTIC CLASSICAL MECHANICS REVISION NOTES: ## 1 Momentum and Kinetic Energy A particle of mass m and velocity \mathbf{v} (vector quantity) has momentum (vector quantity), \mathbf{p} $$\mathbf{p} = m\mathbf{v},$$ and kinetic energy T, $$T = \frac{1}{2}mv^2 = \frac{p^2}{2m}$$ #### 2 Newton's Second law of Motion: The force \mathbf{F} (vector quantity) acting on a system of particles is equal to the rate of change of momentum $$\mathbf{F} = \frac{d\mathbf{p}}{dt}$$ ## 3 Angular Momentum A particle with momentum \mathbf{p} at a point \mathbf{r} relative to some origin, has angular momentum \mathbf{L} (vector quantity) given by $$\mathbf{L} = \mathbf{r} \times \mathbf{p},$$ about that origin. The moment of inertia of a system of particles with masses m_i and coordinates \mathbf{r}_i about an axis in the direction $\hat{\mathbf{n}}$ is given by $${\cal I} \; = \; \sum_i m_i |\hat{f n} imes {f r}|^2$$ A particle with mass m moving in a plane at a point described by plane polar coordinates (r, θ) has angular momentum (normal to the plane) given by $$L = mr\dot{\theta}^2$$. **Rotational Energy:** The energy of rotation of a rigid body with moment of inertia \mathcal{I} about an axis passing through the centre-of-mass of the body, and angular momentum (vector quantity) \mathbf{L} about a point on that axis, is given by $$T_{rot} = \frac{L^2}{2\mathcal{I}}$$ ### 4 Laboratory and Centre-of-Mass Frames: #### Laboratory Frame: Particle of mass m_1 with velocity v_1 collides with a particle of mass m_2 at rest. Total magnitude of momentum, $p^{LAB} = m_1 v_1$ Total kinetic energy, $$T^{LAB} = \frac{1}{2} m_1 v_1^2$$ #### Centre-of-Mass Frame: Target is moving with velocity $-v_2$ such that the total incident momentum is zero. In this frame particle 1 has velocity $v_1 - v_2$, so that setting the total momentum to zero gives $$m_1(v_1 - v_2) + m_2(-v_2) = 0,$$ or $$v_2 = \frac{m_1}{m_1 + m_2} v_1$$ Total kinetic energy in this frame is $$T^{C.M.} = \frac{1}{2} m_1 (v_1 - v_2)^2 + \frac{1}{2} m_2 v_2^2 = \frac{1}{2} v_1^2 \left(\frac{m_1 m_2^2}{(m_1 + m_2)^2} + \frac{m_2 m_1^2}{(m_1 + m_2)^2} \right) = \frac{1}{2} m_1 v_1^2 \frac{m_2}{(m_1 + m_2)^2}$$ In the limit $m_2 \gg m_1$ the kinetic energies become equal in both frames.