
Chapter 6

Radioactivity

Some nuclides have a far higher binding energy than some of its neighbours. When this is
the case it is often energetically favourable for a nuclide with a low binding energy (“parent
nucleus”) to decay into one with a higher binding energy (“daughter nucleus”), giving off
either an α-particle, which is the a 4

2He (helium) nucleus (α-decay) or an electron (positron)
and another very low mass particle called a “antineutrino” (“neutrino”). This is called “β-
decay”. The difference in the binding energies is equal to the kinetic energy of the decay
products

A further source of radioactivity arises when a nucleus in a metastable excited state
(“isomer”) decays directly or indirectly to its ground state emitting one or more high energy
photons (γ-rays).

6.1 Decay Rates

The probability of a parent nucleus decaying in one second is called the “decay constant”,
(or “decay rate”) λ. If we have N(t) nuclei then the number of ‘expected’ decays per second
is λN(t). The number of parent nuclei decreases by this amount and so we have

dN(t)

dt
= −λN(t). (6.1.1)

This differential equation has a simple solution - the number of parent nuclei decays expo-
nentially -

N(t) = N0e
−λt,

where N0 is the initial number of parent nuclei at time t = 0.

The time taken for the number of parent nuclei to fall to 1/e of its initial value is called
the “mean lifetime”, τ of the radioactive nucleus, and we can see from eq.(6.1.1) that

τ =
1

λ
.
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Quite often one talks about the “half-life”, τ 1

2

of a radioactive nucleus, which is the time

taken for the number of parent nuclei to fall to one-half of its initial value. From eq.(6.1.1)
we can also see that

τ 1

2

=
ln 2

λ
= ln 2 τ.

6.2 Random Decay

It was stated above that the “expected” number of decays per second would be λN(t). This
does not mean that there will always be precisely this number of decays per second.

Radioactive decay is a random process with a probability λ that any one nucleus will
decay in one second.

The laws of random distributions tell us that if the expected number of events in a given
period of time is ∆N , then the ‘error’ on this number is

√
∆N . More precisely there is a

68% probability that the number of events will be in the range

∆N −
√
∆N → ∆N +

√
∆N.

This means that if we want to measure the decay constant (lifetime, half-life) to within
an accuracy of ǫ, we need to collect at least 1/ǫ2 decays.

For example, suppose we have a sample with 1012 radioactive nuclei with a mean lifetime
of about 1010 seconds and we want to measure this lifetime then in 1 second we predict that
there will be (with 68% certainty) between

1012

1010
−

√

1012

1010
= 100− 10 = 90 and

1012

1010
+

√

1012

1010
= 100 + 10 = 110,

decays per second. So if we want to determine the lifetime to better than 1% we need to
observe the decays for 100 secs, for which we expect to have between 9900 and 10100 decays.

One decay per second is a unit of radioactivity known as the Bequerel (Bq) after the
person who discovered radioactivity. Radioactivity is more often measured in Curies where
one Curie is 3.7 × 1010 decays per second. This is the number of decays per second of one
gram of 226

88 Ra (radium).

What is the half-life of 226
88 Ra?

Neglecting the binding energy the mass of Ra nucleus is

MRa = 88mp + (226− 88)mn = 3.77× 10−25 kg

The number of nuclei in one gram is

N0 =
10−3

3.77× 10−25
= 2.67× 1021.
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Therefore of the number of decays per second is 3.7 × 1010 for 2.67 × 1021 nuclei of Ra, we
have for the decay constant

λ =
3.7× 1010

2.67× 1021
= 1.39× 10−11 s−1,

which gives us a half-life of

τ 1

2

=
ln 2

λ
=

0.693

1.39× 10−11
= 5× 1010 s (1620 yr)

6.3 Carbon Dating

Living organisms absorb the isotope of carbon 14
6 C, which is created in the atmosphere by

cosmic ray activity. The production of 14
6 C from cosmic ray bombardment exactly cancels the

rate at which thatbisotope decays so that the global concentration of 14
6 C remians constant.

A sample of carbon taken from a living organism will have a concentration of one part in
1.3×1012, and it is being continually rejuvenated, by exchanging carbon with the environment
(either by photosynthesis or by eating plants which have undergone photosynthesis or by
eating other animals that have eaten such plants.)

On the other hand a sample of carbon from a dead object cannot exchange its carbon
with the environment and therefore cannot rejuvenate its concentration of 14

6 C.

14
6 C decays radioactively into 14

7 N (nitrogen), via β-decay with a half-life of 5730 years.

Thus by measuring the concentration of the isotope 14
6 C in a fossil sample using techniques

of mass spectroscopy, the age of the fossil can be determined.

6.4 Multi-modal Decays

A radioactive nucleus can sometimes decay into more than one channel, each of which has
its own decay constant.

An example of this is 212
83 Bi (bismuth) which can either decay as

212
83 Bi → 208

81 Ti + α

or
212
83 Bi → 212

84 Po + e− + ν̄

with a total mean lifetime of 536 secs. Ratio of 208
81 Ti (titanium) to 212

84 Po (polonium) from
these decays is 9:16 What are the decay constants λ1 and λ2 for each of these decay modes?
The rate of change of the number of parent nuclei is given by

dN(t)

dt
= −λ1N(t) − λ2N(t),
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with solution
N(t) = N0e

−(λ1+λ2)t.

From the total lifetime we have

λ1 + λ2 =
1

536
= 1.86× 10−3 s−1

The ratio of the number of decay products is equal to the ratio of the decay constants, i.e.

λ1

λ2
=

9

16

This gives us
λ1 = 6.8× 10−4 s−1.

λ2 = 11.8× 10−3 s−1.

6.5 Decay Chains

It is possible that a parent nucleus decays, with decay constant λ1 into a daughter nucleus,
which is itself radioactive and decays (either into a stable nuclide or into another radioactive
nuclide) with decay constant λ2. An example of this is

210
83 Bi

β
→ 210

84 Po
α
→ 206

82 Pb

The mean lifetime for the first stage of decay is 7.2 days and the mean lifetime for the second
stage is 200 days.

If at time t we have N1(t) nuclei of the parent nuclide and N2(t) nuclei of the daughter
nuclide, then for N1(t) we simply have

dN1(t)

dt
= −λ1N1(t) (6.5.2)

and therefore,
N1(t) = N1(0)e

−λ1t, (6.5.3)

whereas for N2 there is a production mechanism which contributes a rate of increase of N2

equal to the rate of decrease of N1. In addition there is a contribution to the rate of decrease
of N2 from its decay process, so we have

dN2(t)

dt
= λ1N1(t)− λ2N2(t) (6.5.4)

Inserting the solution of eq.(6.5.2) into eq.(6.5.4) gives

dN2(t)

dt
= λ1N1(0)e

−λ1t − λ2N2(t).
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This is an inhomogeneous differential equation whose solution with N2(0) = 0 is given by

N2(t) = N1(0)
λ1

(λ2 − λ1)

(

e−λ1t − e−λ2t
)

t

N2

N1
......

What is happening is that initially as the parent decays the quantity of the daughter
nuclide grows faster than it decays. But after some time the available quantity of the parent
nuclide is depleted so the production rate decreases and the decay rate of the daughter
nuclide begins to dominate so that the quantity of the daughter nuclide also decreases.

Some heavy nuclides have a very long decay chain, decaying at each stage to another
unstable nuclide before eventually reaching a stable nulcide. An example of this is 238

92 U,
which decays in no fewer than 14 stages - eight by α-decay and six by β-decay before
reaching a stable isotope of Pb. The lifetimes for the individual stages vary from around
10−4 s. to 109 years.
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))

In such cases, if the first parent is very long-lived, so that the number of parent nuclei
does not decrease much, it is possible to reach what is known as “secular equilibrium”, in
which the quantities of various daughter nuclei remains unchanged. This happens when the
numbers of nuclei in the chain NA, NB NC · · · are in the ratio

λANA = λBNB, etc.,

where λA, λB · · · are the decay rates for these nuclides. What is happening here is that the
rate of production of daughter B, is the rate of decay of A, which is λANA and this is equal
to λB NB, the rate of decay of B, so the quantity of B nuclei remains unchanged.

6.6 Induced Radioactivity

It is possible to convert a nuclide which is not radioactive into a radioactive one by bombard-
ing it with neutrons or other particles. The stable nuclide (sometimes) absorbs the projectile
in order to become an unstable, radioactive nucleus.

For example bombarding 23
11Na (sodium) with neutrons can convert the nuclide to 24

11Na,
which is radioactive and decays via β-decay to 24

12Mg (magnesium).
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In this case if we assume that the rate at which the radioactive nuclide (with decay
constant λ) is being generated is R, then the number of such nuclei is given by the differential
equation

dN(t)

dt
= R − λN

If at time t = 0 the number of these nuclei is zero (i.e. we start the bombardment at t = 0)
then the solution to this differential equation is

N(t) =
R

λ

(

1− e−λt
)

This starts at zeros and then grows so that asymptotically

R = λN,

which is the equilibrium state in which the production rate R is equal to the decay rate λN .
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