
Chapter 9

Gamma Decay

As we have seen γ-decay is often observed in conjunction with α- or β-decay when the
daughter nucleus is formed in an excited state and then makes one or more transitions to its
ground state, emitting a photon whose energy is equal to the energy difference between the
initial and final nuclear state. These energy differences are usually of order 100 KeV so the
photon is well in the γ-ray region of the electromagnetic spectrum.

The lifetime of excited nuclear states is usually of the order of 10−13 − 10−12 s., so the
lifetime is far too short to be measured.

The decay rate (inverse of the mean lifetime) depends on the energy of the photon emitted
and the ‘type’ of radiation.

As in the case of Atomic Physics the transition amplitude is proportional to the matrix
element of the electric field between the initial and final wavefunctions of the nucleon that
makes the transition. This electric field has a space dependence that may be written

E = E0e
ik·r,

where k is the wavevector of the emitted photon. For photons of energy 100 KeV and a

nucleus of radius a few fm, k · r is much less than 1 (kr = pkr

~
= Er cos θ

c~
≃ 105ev×1fm

1.973×108ev×1fm
≃

10−3) and it is sufficient to expand this exponential to first order.

The transition amplitude is therefore proportional to

A ∝

∫

Ψ∗

f (r)k · rΨi(r)d
3r,

where Ψi and Ψf are the initial and final wavefunctions of the proton that makes the tran-
sition. This is called “electric dipole” transition (there is no “electric monopole” transition
from the first term in the expansion of the exponential because Ψf (r) and Ψi(r) are orthog-
onal wavefunctions).

The rate for such transition is well approximated by the formula

λ = 105E3

γA
2/3,
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where Eγ is the energy of the photon in KeV. The factor of A2/3 is understood from the
fact that the transition amplitude is proportional to the nuclear radius, which is in turn
proportional to A1/3 (the transition rate is proportional to the square of the amplitude). For
photons with energy of order 100 KeV and A of order 100 this gives 2.5 × 1012 s−1.

However, for the above electric dipole matrix element to be non-zero we require certain
conditions on the spin and parity of the initial and final states. As in Atomic Physics, the
photon carries away one unit of angular momentum, so that the initial and final nuclear
spins have to obey the selection rule

∆I = 0, ±1 (I = 0 → I = 0 forbidden)

Furthermore since r is odd under parity reversal, we require the initial and final sates to be
of opposite parity, which means that the orbital angular momentum changes by one unit.

If the parity of the initial and final states are the same then the transition is still allowed,
but this means that the photon carries away the angular momentum by flipping the spin
of the nucleon that makes the transition. For this to happen the magnetic moment of the
nucleon interacts with the magnetic field component of the electromagnetic wave associated
with the emitted photon. This is called a “magnetic dipole transition” amplitude, and for
such a process the transition amplitude is suppressed relative to the amplitude for a typical
electric dipole transition by about a factor of

~c

mpR

which is about 0.1 for a nucleus of radius a few fm. (and therefore .01 suppression of the
decay rate).

Transitions between nuclear states in which the photon is required to carry off more than
one unit of angular momentum are permitted. This is because the photon can acquire orbital
angular momentum relative to the recoiling nucleus. Thus the total angular momentum
change, L in a nuclear transition can take the values

|Ii − If | ≤ L ≤ |Ii + If |,

where Ii and If are the initial and final nuclear spins. However there is a price to pay in
terms of transition rates. For each increase in L there is a suppression in the transition
amplitude of kR, because these higher multipole transitions arise from higher orders in the
expansion of exp(ik · r). For a nucleus of radius a few fm and a photon energy of 100 KeV
is a factor of 10−3 ( so a factor of 10−6 in the rate). There is a further suppression factor for
higher values of L. A transition will proceed by the lowest allowed value of L.

This is also subject to selection rules for th parity difference between initial and final
states, namely

∆P = (−1)L,

for electric transitions (written E{L}) with angular momentum L, and and

∆P = (−1)L−1,
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for the (even further suppressed) magnetic transitions.

Thus from the initial and final nuclear spins and parities we can determine the “multi-
polarity” of the transition and whether it is electric or magnetic.

Here are some examples

2+ → 1−, E1,

2+ → 1+, M1,

3+ → 1−, M2,

3+ → 1+, E2.

Most electromagnetic transitions from an excited state to the ground state have a lifetime
which is too short to be measured ( less than 1 µs). However, in the Shell Model the energy
levels sometimes arrange themselves such that there is a very high spin excited state next
to a low spin ground state or vice versa. Such a transition is only permitted by a high
multipolarity transition and therefore proceeds very slowly. The excited states then live long
enough for their lifetime to be measured and can even be as long a several years. An example
is the nuclide 137

56 Ba (barium) which has an excited state with spin and parity 11

2

−

next to

a ground state of 3

2

+
. The transition is M4 and the excited state has a mean lifetime of

around 200 s. These metastable excited states are called “isomers” and there are regions of
the Periodic Table known as “islands of isomers” where such metastable excited states are
quite common.

9.1 The Mössbauer Effect

In Atomic Physics, it is possible to excite atoms into their excited states by bombarding
them with photons with the resonant frequencies, i.e. with energies equal to the energies
between the ground state and the excited states.

In nuclei this is not usually possible. The reason for this is to with the small nuclear
recoil. The energy of the emitted photon, Eγ is not exactly equal to the excitation energy
E0. The photon carries momentum Eγ/c and so the recoiling nucleus must have equal and
opposite momentum . Consequently it acquires a recoil kinetic energy of

T =
E2

γ

2MNc2
,

where MN is the nuclear mass. The de-excitation energy E0 is the sum of the photon energy
plus this kinetic energy

E0 = Eγ +
E2

γ

2MNc2
,
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which has approximate solution

Eγ = E0

(

1 −
E0

2MNc2

)

For a photon of energy 100 KeV and a nucleus with A=100, this recoil energy is about 0.05
eV. Furthermore if we now use the emitted photon to bombard a similar nuclide with the
hope of exciting it, we find that the target nucleus also recoils so that the energy that it can
absorb in its own rest frame, E ′

0 is given by

E ′

0 = Eγ

(

1 −
E0

2MNc2

)

≈ E0

(

1 −
E0

MNc2

)

,

so that E ′

0 falls short of E0 by about 0.1 eV (in the above example).

This may not seem much for a photon of energy 100 KeV, but the problem is that even
for fast decaying excited states with lifetimes, τ , of about 10−12 s., the line-width is given by

Γ =
~

τ
≈ 10−3 eV,

so the difference between the excitation energy E0 and the energy E0 that the recoiling
nucleus can absorb is much larger larger than the width of the photon, thereby making the
absorption impossible.

The way out of this was discovered by Mössbauer. If the source and target nuclei are
both fixed in a crystal lattice then the recoil momentum can be taken up by the entire crystal
(who mass is many orders of magnitude larger than that of the nucleus) and the recoil energy
is negligible.

This is called the Mössbauer effect and it provides an extremely accurate method for
measuring the widths of nuclear transitions.

The source and target are both fixed to a crystal and if the source is stationary the
intensity of γ−rays reaching the detector is small because most of them are absorbed by the
target.
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If the source is moving by as little as a few cm per second there is an increase in the
intensity of γ-rays reaching the detector, because the Doppler effect of the γ-rays from the
source causes the incident photons to be just off-resonance. Line widths can be measured
this way to an accuracy of 10−5 eV. If the source is moved with velocity v then using the
Doppler shift the difference ∆λ between the wavelength of the emitted photon (in the rest
frame of th emitter) and the wavelength of the absorbed photon is

∆λ

λ
=

v

c
,

(we are able to use the non-relativitic Doppler effect for such small velocities). In terms of
photon energies we may write this as

∆E

E
=

v

c
.

Now if for this velocity the absorption has fallen to approximately one half of the peak
absorption (for v = 0) then this value of ∆E corresponds to the half width, 1

2
Γ of the

spectral line. Thus we end up with an expression for the line-width for a photon of energy
E

Γ = 2E
v1/2

c
,

where v1/2 is the velocity for which the absorption falls to one-half of its peak value.
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