
Chapter 12

Charge Independence and Isospin

If we look at mirror nuclei (two nuclides related by interchanging the number of protons and
the number of neutrons) we find that their binding energies are almost the same.

In fact, the only term in the Semi-Empirical Mass formula that is not invariant under Z
↔ (A-Z) is the Coulomb term (as expected).
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Inside a nucleus these electromagnetic forces are much smaller than the strong inter-nucleon
forces (strong interactions) and so the masses are very nearly equal despite the extra Coulomb
energy for nuclei with more protons.

Not only are the binding energies similar - and therefore the ground state energies are
similar but the excited states are also similar.

As an example let us look at the mirror nuclei (Fig. 12.2) 7
3Li and 7

4Be, where we see that
for all the states the energies are very close, with the 7

4Be states being slightly higher because
it has one more proton than 7

3Li.

All this suggests that whereas the electromagnetic interactions clearly distinguish between
protons and neutrons the strong interactions, responsible for nuclear binding, are ‘charge
independent’.

Let us now look at a pair of mirror nuclei whose proton number and neutron number
differ by two, and also the nuclide between them. The example we take is 6

2He and 6
4Be,

which are mirror nuclei. Each of these has a closed shell of two protons and a closed shell of
two neutrons. The unclosed shell consists of two neutrons for 6

2He and two protons 6
4Be. the

nuclide ‘between’ is 6
3Li which has one proton and one neutron in the outer shell.

From the principle of charge independence of the strong interactions we might have
expected all three nuclides to display the same energy-level structure. We see that although
there are states in 6

3Li which are close to the states of the mirror nuclei 6
2He and 4

2Be, there
are also states in 6

3Li which have no equivalent in the two mirror nuclei.

We can understand this from the Pauli exclusion principle. In the case of 6
2He and 4

2Be
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Figure 12.1: Energy states for the mirror nuclei (Fig. 12.2) 7
3Li and 7

4Be.

which have either two protons or two neutrons in the outer shell, these cannot be in the same
state (with the same spin), whereas in the case of 6

3Li for which the nucleons in the outer
shell are not identical, this principle does not apply and there are extra states, in which the
neutron and proton are in the same state.

12.1 Isospin

We can express this is a more formal (mathematical), but useful way by introducing the
concept of “Isospin”.

If we have two electrons with z- component of their spin set to sz = +1

2
and sz = −1

2

(in units of ~) then we can distinguish them by applying a (non-uniform) magnetic field in
the z-direction - the electrons will move in opposite directions. But in the absence of this
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Figure 12.2: Energy states for 6
2He, 7

3Li and 6
4Be.

external field these two cannot be distinguished and we are used to thinking of these as two
states of the same particle.

Similarly, if we could ‘switch off’ electromagnetic interactions we would not be able to
distinguish between a proton and a neutron. As far as the strong interactions are concerned
these are just two states of the same particle (a nucleon).

We therefore think of an imagined space (called an ‘internal space’) in which the nucleon
has a property called “isospin”, which is mathematically analogous to spin. The proton and
neutron are now considered to be a nucleon with different values of the third component of
this isospin.

Since this third component can take two possible values, we assign I3 = +1

2
for the proton

and I3 = −1

2
for the neutron. The nucleon therefore has isospin I = 1

2
, in the same way that

the electron has spin s = 1

2
, with two possible values of the third component.

As far as the strong interactions are concerned this just represents two possible quantum
states of the same particle. If there were no electromagnetic interactions these particles
would be totally indistinguishable in all their properties - mass, spin etc.
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In the same way that angular momentum is conserved, isospin is conserved in any transi-
tion mediated by the strong interactions. This is an example of an approximate symmetry -
inside the nucleus the strong forces between nuclei do not distinguish between particles with
different third component of isospin and would lead to identical energy levels, but there are
electromagnetic interactions which break this symmetry and lead to small differences in the
energy levels of mirror nuclei.

The electromagnetic interactions couple to the electric charge, Q, of the particles and in
the case of nucleons this electric charge is related to the third component of isospin by

Q = I3 +
1

2

Other particles can also be classified as isospin multiplets. For example there are three
pions, π+

, π0, π−, which have almost the same mass and zero spin etc. There are three of
them with different charges but which behave in the same way under the influence of the
strong interactions. Therefore they form an isospin multiplet with I = 1 and three possible
third components, namely +1, 0 − 1. In the case of pions the electric charges are equal to
I3.

Particles which are members of an isospin multiplet have the same properties, with the
exception of their electric charge, i.e. they have the same spin and almost the same mass (the
small mass differences being due to the electromagnetic interactions which are not isospin
invariant. We will see later that particles can have other properties (call “strangeness”,
“charm” etc.) and members of an isospin multiplet will have the same values of these
proerties as well.

In the same way that two electrons can have a total spin S = 0 or S = 1, two nucleons
can have a total isospin I = 0 or I = 1, and (systems of n nucleons can have isospins up to
n/2). For two electrons we may write the total wavefunction as

Ψ12 = Ψ(r1, r2)χ(s1, s2),

where χ(s1, s2) is the spin part of the wavefunction. For S = 1 we have

χ(s1, s2) = (↑↑) , Sz = +1

χ(s1, s2) =
1√
2

(↑↓ + ↓↑) , Sz = 0

χ(s1, s2) = (↓↓) , Sz = −1

which is symmetric under interchange of the two spins, which means that by fermi statistics
the spatial part of the wavefunction must be antisymmetric under the interchange of the
positions of the electrons,

Ψ(r1, r2) = −Ψ(r2, r1),

or for the case of S = 0,

χ(s1, s2) =
1√
2

(↑↓ − ↓↑) ,
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which is antisymmetric under interchange of spins so it must be accompanied by a symmetric
spatial part of the wavefunction

Ψ(r1, r2) = +Ψ(r2, r1).

In the case of two nucleons we also have a total isospin part of the wavefunction, so the
complete wavefunction is

Ψ12 = Ψ(r1, r2)χS(s1, s2)χI(I1, I2),

where χI(I1, I2) is the isospin part of the wavefunction. For total isospin I = 1 we have

χI(I1, I2) = (p p) , I3 = +1

χI(I1, I2) =
1√
2

(p n + n p) , I3 = 0

χI(I1, I2) = (n, n) , I3 = −1,

which is symmetric under the interchange of the isospins of the two nucleons, so that (as in the
case of two electrons) it must be accompanied by a combined spatial and spin wavefunction
that must be antisymmetric under simultaneous interchange of the two positions and the
two spins. But we also have the I = 0 state

χI(I1, I2) =
1√
2

(p n − n p) ,

which is antisymmetric under the interchange of the two isospins and therefore when the
nucleons are combined in this isospin state they must be accompanied by a combined spa-
tial and spin wavefunction which is symmetric under simultaneous interchange of the two
positions and the two spins.

Returning to the three nuclei 6
2He and 6

4Be and 6
3Li, the closed shells of neutrons and

protons have a total isospin zero so we do not need to consider these in determining the
isospin of the nuclei. We note that 6

2He has two neutrons in the outer shell so its isospin
must be I = 1, with I3 = −1 whereas the 6

4Be has two protons in the outer shell so its
isospin must be I = 1, with I3 = +1 implying that for these two nucleons the remaining
part of the wavefunction (spatial and spin parts) must be antisymmetric under simultaneous
interchange of the two positions and the two spins. On the other hand, the nucleus 6

3Li has
one proton and one neutron in the outer shell and can therefore be either in an I = 1 state
like the other two nuclei or in an I = 0 state which is not possible for the other two. The
strong interactions will give rise to different energy levels depending on the total isospin of
the nulceons in the outer shell (in the same way that atomic energy levels depend on the total
angular momentum J). Thus we see that two of the states shown for 6

3Li can be identified
as I = 1 states and they approximately match states for the other two nuclei, but the others
are I = 0 states and have no counterpart in 6

2He or 6
4Be, and which have wavefunctions that

are symmetric under the simultaneous interchange of the positions and the spins of the two
nucleons in the outer shell.
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The fact that the ground states of 6
2He and 6

4Be have spin zero and the ground state
of 6

3Li has spin one, can be deduced from the isospin of these ground states. For ground
state wavefunctions the orbital angular momentum, l, is zero and since the symmetry of the
spatial part of the wavefunction is given by (−1)l, this means that the spatial part of the
wavefunction is symmetric under the interchange of the positions of the two nucleons in the
outer shell. Since we know that the overall wavefunction for the two nucleons in the outer
shell must be antisymmetric under interchange, because the nucleons are fermions, it follows
that the isospin part and the spin part of the wavefunction must have opposite symmetry.
Thus for the ground states of 6

2He and 6
4Be, which are in I=1 (symmetric) isospin states,

the spin part of the wavefunction must be antisymmetric and therefore the spins of the two
outer shell nucleons must combine to give spin S = 0, whereas for the ground state of 6

3Li
which is from the experiment known to be in an I=0 (antisymmetric) isospin state, the
spin part of the wavefunction must be symmetric and therefore the spins of the two outer
shell nucleons must combine to give spin S = 1.
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