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Chapter 1

Introduction

1.1 Module Profile

1.1.1 Teaching and learning Methods

This course provides an introduction to nuclear and particle physics. There are approxi-
mately 16 lectures for each section supplemented by directed reading. Lectures delivered
using mainly white board/blackboard and with a slight admixture of computer presentation
for selected topics. There will be five problem sheets with respective five sessions devoted
to the respective problem solutions. Model solutions will be provided after the problem
sheets are due to be handed in. The problem sheets also contain non-assessed supplemen-
tary questions usually of a descriptive nature designed for deepper understanding of the
material.

1.1.2 Learning Outcomes

This course provides a working knowledge of nuclear structure, nuclear decay and certain
models for estimating nuclear masses and other properties of nuclei. Alo students will become
familiar with the basics of elementary particle physics and particle accelerators. They will
have an understanding of building blocks of matter and their interactions via different forces
of Nature.

Students will learn about Nuclear Scattering, various properties of Nuclei, the Liquid
Drop Model and the Shell Model, radioactive decay, fission and fusion. By the end of the
course, the students should be able to classify elementary particles into hadrons and lep-
tons, and understand how hadrons are constructed from quarks. They will also learn about
flavour quantum numbers such as isospin, stangeness, etc. and understand which interac-
tions conserve which quantum numbers. They will study the carriers of the fundamental
interactions and have a qualitative understanding of QCD as well as the mechanisms of
weak and electromagnetic interactions.
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1.1.3 Syllabuses

Nuclei
1.Rutherford scattering (classical treatment)
2.and nuclear diffraction.
3.Nuclear properties.
4.Binding energies and Liquid Drop Model.
5.Magic Numbers and the Shell Model.
6.Radioactive decay
7.Fission and fusion
8.Isospin

Particles
1.Accelerators
2.Forces of Nature (strong, weak and electromagnetic interactions and their force carriers)
3.Particle classification
4.The constituent quark model
5.Weak Interactions (W and Z bosons)
6.Electromagnetic interactions
7.Quantum Chromodynamics (interactions of quarks and gluons)
8.Charge conjugation and parity

1.1.4 Non-contact Hours

Students are expected to devote a minimum of 6 hours per week of private study to back-
ground reading and problem solving.

1.1.5 Assessment Methods

Assessment is done by written examination at the end of the course. The exam will have
a compulsory section A covering the whole course, with 4 - 6 questions and a section B on
Nuclei where answers to 1 question out of 2 will be required, and a section C on Particles
where answers also to 1 question out of 2 will be required. Each section carries 1/3 of the
total marks for the exam paper and you should aim to spend about 40 mins on each.

The problem sheets will contribute 10% to the final mark and only 3 out 5 problems
(1st,3rd and the 5th) will be marked. It is important to stress that the history of this course
clearly shows that only those students who have been attempting to solve all problems from
the very beginning were the most successful. The completed solutions should be handed
in before the deadline indicated on the problem sheet. The problem sheets also contain
non-assessed questions which are of a qualitative nature or pure bookwork. The student
should work through all of these and ensure that he/she would be able to answer them
under examination conditions.
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1.1.6 Recommended Books

1. R.A.Dunlap - An Introduction to the Physics of Nuclei and Particles, Thomson, 2004 ( -
main text)
2.W S C Williams - Nuclear and Particle Physics, Oxford University Press, 1991.
3.D Perkins - Introduction to High Energy Physics, Addison-Wesley, 4th edition.
4.Francis Halzen, Alan D. Martin - Quarks and Leptons: An Introductory Course in Modern
Particle Physics, John Wiley, 1984

1.1.7 Other Course Information

The course website
http://www.hep.phys.soton.ac.uk/~belyaev/webpage/physics_phys3002.html contains
course notes and problem sheets (solutions will be uploaded after their due date) and the
selected past exam papers. It also contains revision notes on topics from previous courses,
familiarity with which will be assumed during the lectures.

Please note, that all course notes are acessible at the website and not ment to be printed
for you.
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1.2 History of Particle Physics

Since long ago people were trying to understand the Nature and its fundamental building
blocks. We know several ‘theories’ which came from the ancient philosophers. More than
two thousand years ago Empedocles (490-430 B.C.) suggested that all matter is made up
of four elements: water, earth, air and fire. On the other hand, Democritus developed a
theory that the universe consists of empty space and an (almost) infinite number of invisible
particles which differ from each other in form, position and arrangement. He called them
atoms(indivisible in Greek).

Since that time our understanding of fundamental building blocks of Nature has evolved
into powerful science called Particle Physics. The main difference between Particle Physics
and ancient philosophy is that Particle Physics, as a science, verifies its theoretical predictions
by experiment. Theory and Experiment are vital interacting components of Particle Physics
and because of these components Particle Physics can be called science. That is exactly the
way how Standard Model (SM), which describes our present understanding of fundamental
particles and their interactions, has been established. In this course we will briefly discuss
the SM elementary particles and their interactions summarized in Fig. 1.1. The last particle

Figure 1.1: A summary of elementary particles of the Standard Model and their interactions.

in the SM, Higgs boson, responsible for the mass generation of other partcles, was discovered
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on the 4th of July 2012 which was announced by both, ATLAS and CMS collaborations at
the Large Hadrom COllider (LHC). This was truly historical event. There could be more
particles and theories beyond the SM: presently there are many new promising models beyond
the SM which will be tested experimentally in the nearest future.

Particle Physics as a science has started in the very end of the 19th century. In Table 1.1
a timeline of Particle Physics is presented in a very brief way. More detailed history can be
found, for example, at http://en.wikipedia.org/wiki/Timeline_of_particle_physics
or at http://web.ihep.su/dbserv/compas/contents.html in much more detail.

1885 Eugene Goldstein discovered a positively charged sub-atomic particle
1897 J. J. Thomson discovered the electron
1909 Robert Millikan measured the charge and mass of the electron
1911 Ernest Rutherford discovered the nucleus of an atom
1913 Neils Bohr introduced his atomic theory
1919 Ernest Rutherford discovered the proton
1920s Modern atomic theory developed by Heisenberg, de Broglie and

Shroedinger
1932 James Chadwick discovered the Neutron
1964 Up, Down and Strange quarks were discovered
1974 Burton Richter and Samuel Ting discovered the J/ψ particle, demon-

strating the existence of Charm quark
1977 Upsilon particle discovered at Fermilab, demonstrating the existence of

the bottom quark
1995 Top quark discovered at Fermilab
2000 Tau neutrino proved distinct from other neutrinos at Fermilab
2012 Discovery of the Higgs Boson at the LHC

Table 1.1: A very brief timeline of particle physics

One of the most important milestones in the early history of Particle Physics is the ex-
periment of Ernest Rutherford in 1911 which has proved an existence of the atomic structure
with an atomic nucleus. We start this course describing this experiment and physics behind
it in Chapter 2. Since that time many exciting discoveries has been made. However, one
should stress that the principle behind the Rutherford experiment is one of the main ones
being used in the modern collider physics. Rutherford has used the short length of the
de Broglie wave of the electrons to probe the internal atomic structure. From well-known
formula

λ =
hc

E
, (1.1)

where λ stands for the wave-length, h is the Plank constant and E is the energy, one can
see that the de Broglie wave length of the particle is inversely proportional to its energy.
One can use this fact and resolve the structure of the tested object if the wave length if the
tester particle is comparable or smaller than the size of the object. So, when the energy
of the tester particle is large enough, it will interact with the the object at the respective
scale. On the contrary, if the energy of the tester particle is too low, then, due to its large
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Figure 1.2: Timeline of the scale accessible in Particle Physics

de Broglie wave-length it will just bend around the object under study and no its internal
structure will be resolved. The principle behind the Eq.(1.1) which in general relates the
scale and the energy, is one of the main foundations of particle physics. Present collider
experiments which reached now TeV energy scale (1012 electron volt) probe the scale as
low as 10−19 meters! The timeline of the scale evolution of the distance scale accessible in
Particle Physics is presented in Fig. 1.2.

On the other hand, another well known formula

E = mc2 (1.2)

relating the energy and the mass tells us that High Energy gives us possibility to produce
new heavy particles. This opens another way to explore new theories beyond the SM. The
Large Hadron Collider (LHC) is now colliding protons with the highest energy in the world
and one can expect that time lime of Particle Physics discoveries will be continued soon.
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Chapter 2

Rutherford Scattering

Let us start from the one of the first steps which was done towards understanding the deepest
structure of matter. In 1911, Rutherford discovered the nucleus by analysing the data of
Geiger and Marsden on the scattering of α-particles against a very thin foil of gold.

The data were explained by making the following assumptions.

• The atom contains a nucleus of charge Ze, where Z is the atomic number of the atom
(i.e. the number of electrons in the neutral atom),

• The nucleus can be treated as a point particle,

• The nucleus is sufficently massive compared with the mass of the incident α-particle
that the nuclear recoil may be neglected,

• That the laws of classical mechanics and electromagnetism can be applied and that no
other forces are present,

• That the collision is elastic.

If the collision between the incident particle whose kinetic energy is T and electric charge
ze (z = 2 for an α-particle), and the nucleus were head on,

13



D

α

the distance of closest approach D is obtained by equating the initial kinetic energy to
the Coulomb energy at closest approach, i.e.

T =
z Z e2

4πǫ0D
,

or

D =
z Z e2

4πǫ0T

at which point the α-particle would reverse direction, i.e. the scattering angle θ would
equal π.

On the other hand, if the line of incidence of the α-particle is a distance b, from the
nucleus (b is called the “impact parameter”), then the scattering angle will be smaller.

2.1 Relation between scattering angle and an impact

parameter

The relation between b and θ is given by

tan

(

θ

2

)

=
D

2b
(2.1.1)

This relation is derived using Newton’s Second Law of Motion, Coulomb’s law for the force
between the α-particle and and nucleus, and conservation of angular momentum. The deriva-
tion is given in this section. Here we note that θ = π when b = 0 as stated above and that
as b increases the α-particle ‘glances’ the nucleus so that the scattering angle decreases.
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The initial and final momenta, p1, p2 are equal in magnitude (p) (recall, that, elastic
scattering is assumed), so that together with the momentum change q they form an isosceles
triangle with angle θ between the initial and final momenta, as shown above.

Using the sine rule we have

q

p
=

sin θ

sin
(

1
2
(π − θ)

) = 2 sin

(

θ

2

)

. (2.1.2)

The direction of the vector q is along the line joining the nucleus to the point of closest
approach of the α-particle.

We assume that the nucleus is much heavier than the α-particle so we can neglect its
recoil. We also neglect any relativistic effects.

The position of the α-particle is given in terms of two-dimensional polar coordinates r, ψ
with the nucleus as the origin and ψ = 0 chosen to be the point of closest approach.

By Newton’s second law, the rate of change of momentum in the direction of q is the
component of the force acting on the α-particle due to the electric charge of the nucleus. By
Coulomb’s law the magnitude of the force is

F =
zZe2

4πǫ0r2
,

where Z e is the electric charge of the nucleus, and z e is the electric charge of the incident
particle ( for an α-particle z = 2). Using T = zZe2

4πǫ0D
expression relating kinetic energy and

the closest approach for head-on collision, one finds

F =
TD

r2
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. The component of this force in the direction of q is

Fq(t) =
TD

r2
cosψ(t)

and, therefore, the change of momentum (Fq(t) =
dq
dt
) is given by

q =

∫

zZe2

4πǫ0r2
cosψ dt. (2.1.3)

We can replace integration over time by integration over the angle ψ using

dt =
dψ

ψ̇
,

where ψ̇ can be obtained form conservation of angular momentum,

L = mαr
2ψ̇.

The initial angular momentum is given by

L = bp,

so we have

ψ̇ =
b p

mα r2
,

so that eq.(2.1.3) becomes

q =

∫

TDmα r
2

r2 b p
cosψ dψ =

∫

Dp

2b
cosψ dψ, (2.1.4)

where kinetic energy of α-particle T = p2/(2mα) related its momenta and its mass was
substituted at the last step. Note that r2 has cancelled.

From the diagram we see that the limits on ψ are

ψ = ±1

2
(π − θ),

so that we get

q =
Dp

2b
2sin

(

1

2
(π − θ)

)

Now using eq.(2.1.2) we get

2p sin

(

θ

2

)

=
Dp

2b
2sin

(

1

2
(π − θ)

)

from where it follows that

tan(θ/2) =
D

2b
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2.2 Flux and cross-section

The “flux”, F of incident particles is defined as the number of incident particles arriving per
unit area per second at the target.

The number of particles, dN(b), with impact parameter between b and b+ db is this flux
multiplied by the area between two concentric circles of radius b and b+ db

b

db

dN(b) = F 2πb db (2.2.5)

Differentiating eq.(2.1.1) gives us

db = − D

4 sin2(θ/2)
dθ (2.2.6)

which allows us to write an expression for the number of α-particles scattered through an
angle between θ and θ + dθ after substitution Eq.(2.2.6) and Eq.(2.1.1) into Eq.(2.2.5):

dN(θ) = Fπ
D2

4

cos(θ/2)

sin3(θ/2)
dθ. (2.2.7)

(the minus sign has been dropped as it merely indicates that as b increases, the scattering
angle θ decreases - N(θ) must be positive).

The “differential cross-section”, dσ/dθ, with respect to the scattering angle is the number
of scatterings between θ and θ + dθ per unit flux, per unit range of angle, i.e.

dσ

dθ
=
dN(θ)

Fdθ
= π

D2

4

cos(θ/2)

sin3(θ/2)
.

It is more usual to quote the differential cross-section with respect to a given solid angle
Ω, which is related to the scattering angle θ and the azimuthal angle φ by

dΩ = sin θdθdφ = 2 sin

(

θ

2

)

cos

(

θ

2

)

dθdφ.
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The relation between the number of events, the flux, differential solid angle dΩ and differ-
ential cross section is given by

dN

dΩ
= F

dσ

dΩ

. in analogy to the relation for differential angle dθ.

The integrastion over the azimuthal angle just gives a factor of 2π so we may write

dσ

dθ
= 2π

d2σ

dθdφ

so that
d2σ

dθdφ
=

D2

8

cos(θ/2)

sin3(θ/2)
.

and substitute dθdφ by dΩ (using the above relation) to obtain

dσ

dΩ
=

D2

8

cos(θ/2)

sin3(θ/2)

1

2 sin(θ/2) cos(θ/2)
=

D2

16 sin4(θ/2)
.

Differential cross-sections have the dimension of an area. These are usually quoted in
terms of “barns”. I barn is defined to be 10−28m2, so that, for example, 1 millibarn (mb) is
an area of 10−31m2.

The unit of length that is often used in nuclear physics is the “fermi” (fm) which is
defined to be 10−15 m and energies are usually quoted in electron volts (Kev, MeV, or GeV).
A cross-section of 1 fm2 corresponds ot 10 mb. For the purposes of numerical calculations,
it is worth noting that

~ c = 197.3MeV fm,

so that
e2

4πǫ0
= α ~ c =

1

137
× 197.3MeV fm

For example, the distance of closest approach is therefore given by

D =
197.3

137

zZ

T
fm,

where the kinetic energy T is given in MeV.

2.3 Results and interpretation of the Rutherford ex-

periment

Although the differential cross-section falls rapidly with the scattering angle, the cross-section
at large angles is still much larger than would have been obtained from Thomson’s ‘current
cake’ model of the atom in which electrons are embedded in a ‘dough’ of positive charge -
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so that as the α-particle moves through the atom it suffers a large number of small-angle
scatterings in random directions.

We notice that the differential cross-section diverges as the scattering angle goes to zero.
However we note from eq.(2.1.1) that small angle scattering implies a large impact parameter.
The distance of the incident particle from any nucleus can only grow to about half of the
distance between the nuclei in the gold foil. In fact, the total number of particles scattered
into a given solid angle is the differential cross-section multiplied by the flux, multiplied by
the number of nuclei in the foil - or more precisely in the part of the foil that is ‘illuminated’
by the incident α-particles. We assume that the foil is sufficiently thin so that multiple
scatterings are very unlikely and we can make the approximation that all the nuclei lie in
a single plane. The mass of a nucleus with atomic mass number A is given to a very good
approximation by Amp, total number of nuclei per unit area of foil is given by

ρδ
1

Amp

where ρ is the density, δ is the thickness of the foil, A is the atomic mass. This means that
the fraction of α particles scattered into a small interval of solid angle dΩ is given by

δn

n
= ρδ

1

Amp

dσ

dΩ
dΩ (2.3.8)

Solid angle is defined such that an area element dA at a distance r from the scattering
centre subtends a solid angle

dΩ =
dA

r2
,

so that if we place a detector with an acceptance area dA at a distance r from the foil and at
an angle θ to the direction of the incident α-particles then the fraction of incident α-particles
enter the detector is given by replacing dΩ by dA/r2 in eq.(2.3.8)

This theoretical result compares very well with the data taken by Geiger and Marsden.
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Chapter 3

Nuclear Size and Shape

The unit of nuclear length is called the “fermi”, (fm)

1 fm = 10−15 m.

There are deviations from the Rutherford scattering formula when the energy of the
incident α-particle becomes too large, so that the distance of closest approach is of order a
few fermi’s.

The reason for this is that the Rutherford scattering formula was derived assuming that
the nucleus was a point particle. In reality it has a finite size with a radius R of order
10−15 m.

The nucleus therefore has a charge distribution, ρ(r). In terms of quantum mechanics
we have

ρ(r) = Ze|Ψ(r)|2,

where Z is the atomic number and is equal to the number of protons in the nucleus, and Ψ
is the wave-function for one of these protons. (|Ψ(r)|2 is therefore the probability density
for one proton). Nuclear ‘radius’ is not really a very precise term - it is the extent over
which the electric charge distribution of the proton, and therefore its wavefunction, is not
too small, although in principle the wave-function extends throughout all space.

It is difficult to produce α-particles with sufficient energy to probe the charge distribution
of the nucleus, so we use high energy electrons instead.

For electrons the projectile charge z is replaced by 1 in the Rutherford scattering for-
mula. There is one further change which is due to the fact that these electrons are moving
relativistically with a velocity v close to c. This correction was first calculated by Mott and
we have

dσ

dΩ |Mott
=

dσ

dΩ |Rutherford

(

1− v2

c2
sin2

(

θ

2

))

We account for the charge distribution of the nucleus by writing the differential cross-
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section as

dσ

dΩ
=

dσ

dΩ |Mott
|F (q2)|2. (3.0.1)

The correction factor F (q2) is called the “electric form-factor” and q is the momentum
transfered by the electron in the scattering and its magnitude is related to the scattering
angle by (see previous chapter)

q = 2 p sin

(

θ

2

)

,

where p is the momentum of the incident electron.

To understand the structure of the electric form-factor we need to recall that the electron
has a de Broglie wavelength λ = h/p, and when this wavelength is of the order of the nuclear
‘radius’ we get a diffraction pattern.

As a simple example suppose that the nucleus were a solid sphere of radius R with an
infinite potential inside the sphere and zero potential outside, so that the electron cannot
penetrate the sphere.

θ

The wave that passes over the nucleus travels a distance 2R sin θ further than the wave
that passes below the nucleus. If this difference is equal to λ/2, 3λ/2 · · · then we get
destructive interference. At these angles the differential cross-section vanishes.

The real case is a little more complicated than that. A proper quantum mechanical treat-
ment (which is exactly analogous to diffraction in optics) shows that the electric form-factor
is actually the Fourier transform of the charge distribution. For a spherically symmetric
charge distribution this leads to

F (q2) =
4 π ~

Z e q

∫

r ρ(r) sin
(qr

~

)

dr. (3.0.2)
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θ

r

Qualitatively, the reason for this is that the part of the wavefront that passes through the
nucleus at a distance r from the centre and is scattered through an angle θ travels a further
distance than the part of the wave that passes through the centre, by an amount proportional
to r and therefore suffers a phase change (relative to the part of the wave passing through
the centre). This phase change also depends on the scattering angle θ and is equal to qr/~.
This means that different parts of the wavefront suffer a different phase change (just as in
optical diffraction) - these different amplitudes are summed to get the total amplitude at
some scattering angle θ and this gives rise to the diffraction pattern. The contribution to the
amplitude from the part of the wavefront which passes at a distance r from the centre of the
nucleus is proportional to the charge density, ρ(r), at r. The total scattering amplitude is
therefore the sum of the amplitudes from all these different parts, which is what the integral
in eq.(3.0.2) means.

Thus we see that a study of the diffractive scattering of electrons from a nucleus can give
us information about the charge distribution inside the nucleus.

For example, if we assume that the charge distribution is a constant for r < a and zero
outside

ρ(r) =
3Ze

4πR3
, r < R

= 0 r > R,

the integral in the Fourier transform eq.(3.0.2) can be done analytically via integrating by
parts to give

F (q2) = 3

(

~

qR

)3(

sin(qR/~)− qR

~
cos(qR/~)

)

.

Feeding this back into eq.(3.0.1) for the diffractive differential cross-section we get
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This is not quite what is observed in experiment which is more like this example of
scattering of electrons of energy 1.04 GeV against a Ca nucleus

We see that although there are oscillations in the differential cross-section, it never ac-
tually vanishes. The reason for the discrepancy is that the square-well model for the charge
distribution is unrealistic. The charge distribution rapidly becomes small as r exceeds a few
fermi’s, but never goes to zero.

A rough (to with about 30%) estimate of the nuclear radius R can be obtained from the
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first minimum of the diffraction pattern and assuming that this occurs when

qR

~
≈ π

In the above case this occurs at q/~ ≈ 1fm−1 (the x-scale is given in fm−1 which means it
is really q/~), giving an approximate nuclear radius of about 3 fm.

A more realistic charge distribution is the Saxon-Woods model for which

ρ(r) ∝ 1

1 + exp((r −R)/δ
,

which looks like
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We can interpret R as the nuclear ‘radius’ and δ as the ‘surface depth’ - it measures the
range in r over which the charge distribution changes from the order of its value at the centre
to much smaller than this value.

This leads to a differential cross-section which looks like
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This has dips but no zeros and is much more similar in shape to the experimental results.

In fact, the Saxon-Woods model fits data from most nuclei rather well with empirical
values for R and δ depending on the atomic mass number, A (the total number of protons
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and neutrons in the nucleus):

R = (1.18A1/3 − 0.48) fm

δ = 0.4 − 0.5 fm for A > 40

The first term in the expression for R is easily understandable as one would expect the
volume occupied by a nucleus to be proportional to A, so that the radius is proportional to
A1/3.

3.1 Electric Quadrupole Moments

So far, we have assumed that the charge distribution is spherically symmetric. If that were
the case we would have

< x2 > = < y2 > = < z2 > =
1

3
< r2 >,

where

< x2 > =
1

Ze

∫

x2ρ(r)d3r

etc.

However, for many nuclei this is not the case and they possess an “electric quadrupole
moment” defined (with respect to an axis z) as

Q =

∫

(3z2 − r2)ρ(r)d3r

The Q/e has dimensions of area and is therefore usually quoted in barnes.

Nuclei that possess and electric quadrupole moment have a shape which is an oblate
spheroid for Q < 0 and a prolate spheroid for Q > 0.

Q < 0
z

Q > 0
z

On the other hand, the electric dipole moment, which is a vector defined by

d =

∫

rρ(r)d3r,

is almost zero. The reason for this that to a very good approximation, the wavefunction of
a proton in a nucleus is a parity eigenstate, i.e.

Ψ(r) = ±Ψ(−r)
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which implies
ρ(r) = ρ(−r),

so that the electric dipole moment vanishes by symmetric integration.

3.2 Strong Force Distribution

The protons and neutrons inside a nucleus are held together by a strong nuclear force. This
has to be strong enough to overcome the Coulomb repulsion between the protons, but unlike
the Coulomb force, it extends only over a short range of a few fermi’s.

Electron diffractive scattering is used to examine the distribution of electric charge (i.e.
the protons) within the nucleus. Similar experiments are performed using high energy neu-
trons in order to probe the distribution of the strong force, i.e the distribution of all “nucle-
ons” (neutrons and protons). In this case the form factor F (q) is not the electric form-factor
but the form-factor associated with the strong force.

For example the scattering of neutrons with energy of 14 MeV against a Ni target yields:
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The Saxon-Woods model is also useful for the analyses of these data and yields a nuclear
radius (for large A), given by

R = 1.2A1/3 fm

and
δ = 0.75 fm.

We see that the strong force extends over approximately the same region as the nuclear
charge, and that the ‘volume’ of the nucleus is proportional to the number of nucleons.
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Chapter 4

The Liquid Drop Model

4.1 Some Nuclear Nomenclature

• Nucleon: A proton or neutron.

• Atomic Number, Z: The number of protons in a nucleus.

• Atomic Mass number, A: The number of nucleons in a nucleus.

• Nuclide: A nucleus with a specified value of A and Z. This is usually written as
A
Z{Ch} where Ch is the Chemical symbol. e.g. 56

28Ni means Nickel with 28 protons and
a further 28 neutrons.

• Isotope: Nucleus with a given atomic number but different atomic mass number,
i.e. different number of neutrons. Isotopes have very similar atomic and chemical
behaviour but may have very different nuclear properties.

• Isotone: Nulceus with a given number of neutrons but a different number of protons
(fixed (A-Z)).

• Isobar: Nucleus with a given A but a different Z.

• Mirror Nuclei: Two nuclei with odd A in which the number of protons in one nucleus
is equal to the number of neutrons in the other and vice versa.

4.2 Binding Energy

The mass of a nuclide is given by

mN = Z mp + (A− Z)mn − B(A,Z)/c2,

where B(A,Z) is the binding energy of the nucleons and depends on both Z and A. The
binding energy is due to the strong short-range nuclear forces that bind the nucleons together.
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Unlike Coulomb binding these cannot even in principle be calculated analytically as the
strong forces are much less well understood than electromagnetism.

Binding energies per nucleon increase sharply as A increases, peaking at iron (Fe) and
then decreasing slowly for the more massive nuclei.

The binding energy divided by c2 is sometimes known as the “mass defect”.

4.3 Semi-Empirical Mass Formula

For most nuclei (nuclides) with A > 20 the binding energy is well reproduced by a semi-
empirical formula based on the idea the the nucleus can be thought of as a liquid drop.

1. Volume term: Each nucleon has a binding energy which binds it to the nucleus.
Therefore we get a term proportional to the volume i.e. proportional to A.

aV A

This term reflects the short-range nature of the strong forces. If a nucleon interacted
with all other nucleons we would expect an energy term of proportional to A(A − 1),
but the fact that it turns out to be proportional to A indicates that a nucleon only
interact with its nearest neighbours.
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2. Surface term: The nucleons at the surface of the ‘liquid drop’ only interact with
other nucleons inside the nucleus, so that their binding energy is reduced. This leads
to a reduction of the binding energy proportional to the surface area of the drop, i.e.
proportional to A2/3

−aS A2/3.

3. Coulomb term: Although the binding energy is mainly due to the strong nuclear
force, the binding energy is reduced owing to the Coulomb repulsion between the
protons. We expect this to be proportional to the square of the nuclear charge, Z,
( the electromagnetic force is long-range so each proton interact with all the others),
and by Coulomb’s law it is expected to be inversely proportional to the nuclear radius,
(the Coulomb energy of a charged sphere of radius R and charge Q is 3Q2/(20πǫ0R))
The Coulomb term is therefore proportional to 1/A1/3

−aC
Z2

A1/3

4. Asymmetry term: This is a quantum effect arising from the Pauli exclusion principle
which only allows two protons or two neutrons (with opposite spin direction) in each
energy state. If a nucleus contains the same number of protons and neutrons then for
each type the protons and neutrons fill to the same maximum energy level (the ‘fermi
level’). If, on the other hand, we exchange one of the neutrons by a proton then that
proton would be required by the exclusion principle to occupy a higher energy state,
since all the ones below it are already occupied.

The upshot of this is that nuclides with Z = N = (A−Z) have a higher binding energy,
whereas for nuclei with different numbers of protons and neutrons (for fixed A) the
binding energy decreases as the square of the number difference. The spacing between
energy levels is inversely proportional to the volume of the nucleus - this can be seen
by treating the nucleus as a three-dimensional potential well- and therefore inversely
proportional to A. Thus we get a term

−aA
(Z −N)2

A

5. Pairing term: It is found experimentally that two protons or two neutrons bind more
strongly than one proton and one neutron.
In order to account for this experimentally observed phenomenon we add a term to the
binding energy if number of protons and number of neutrons are both even, we subtract
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the same term if these are both odd, and do nothing if one is odd and the other is even.
Bohr and Mottelson showed that this term was inversely proportional to the square
root of the atomic mass number.
We therefore have a term

(

(−1)Z + (−1)N
)

2

aP
A1/2

.

The complete formula is, therefore

B(A,Z) = aV A − aS A
2/3 − aC

Z2

A1/3
− aA

(Z −N)2

A
+

(

(−1)Z + (−1)N
)

2

aP
A1/2

From fitting to the measured nuclear binding energies, the values of the parameters
aV , aS, aC , aA, aP are

aV = 15.56 MeV

aS = 17.23 MeV

aC = 0.697 MeV

aA = 23.285 MeV

aP = 12.0 MeV

For most nuclei with A > 20 this simple formula does a very good job of determining the
binding energies - usually better than 0.5%.

For example we estimate the binding energy per nucleon of 80
35Br (Bromine), for which

Z=35, A=80 (N = 80− 35 = 45) and insert into the above formulae to get

Volume term: (15.56× 80) = 1244.8MeV

Surface term: (−17.23× (80)2/3) = −319.9MeV

Coulomb term:

(

0.697× 352

(80)1/3

)

= −198.2MeV

Asymmetry term:

(

23.285× (45− 35)2

80

)

= −29.1MeV

Pairing term:

( −12.0

(80)1/2

)

= −1.3MeV

Note that we subtract the pairing term since both (A-Z) and Z are odd. This gives a total
binding energy of 696.3 MeV. The measured value is 694.2 MeV.

In order to calculate the mass of the nucleus we subtract this binding energy (divided
by c2) from the total mass of the protons and neutrons (mp = 938.4MeV/c2, mn =
939.6MeV/c2)

mBr = 35mp + 45mn − 696.1MeV/c2 = 74417 Mev/c2.
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Nuclear masses are nowadays usually quoted in MeV/c2 but are still sometimes quoted in
atomic mass units, defined to be 1/12 of the atomic mass of 12

6 C (Carbon). The conversion
factor is

1 a.u. = 931.5 MeV/c2

Since different isotopes have different atomic mass numbers they will have different bind-
ing energies and some isotopes will be more stable than others. It turns out (and can
be seen by looking for the most stable isotopes using the semi-empirical mass formula)
that for the lighter nuclei the stable isotopes have approximately the same number of
neutrons as protons, but above A ∼ 20 the number of neutrons required for stability in-
creases up to about one and a half times the number of protons for the heaviest nuclei.

Qualitatively, the reason for this arises from the Coulomb term. Protons bind less tightly
than neutrons because they have to overcome the Coulomb repulsion between them. It is
therefore energetically favourable to have more neutrons than protons. Up to a certain limit
this Coulomb effect beats the asymmetry effect which favours equal numbers of protons and
neutrons.
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Chapter 5

Nuclear Shell Model

5.1 Magic Numbers

The binding energies predicted by the Liquid Drop Model underestimate the actual binding
energies of “magic nuclei” for which either the number of neutrons N = (A − Z) or the
number of protons, Z is equal to one of the following “magic numbers”

2, 8, 20, 28, 50, 82, 126.

This is particularly the case for “doubly magic” nuclei in which both the number of neutrons
and the number of protons are equal to magic numbers.

For example for 56
28Ni (nickel) the Liquid Drop Model predicts a binding energy of 477.7

MeV, whereas the measured value is 484.0 MeV. Likewise for 132
50 Sn (tin) the Liquid Drop

model predicts a binding energy of 1084 MeV, whereas the measured value is 1110 MeV.

There are other special features of magic nuclei:

• The neutron (proton) separation energies (the energy required to remove the last neu-
tron (proton)) peaks if N (Z) is equal to a magic number.
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• There are more stable isotopes if Z is a magic number, and more stable isotones if N
is a magic number.

• If N is magic number then the cross-section for neutron absorption is much lower than
for other nuclides.

• The energies of the excited states are much higher than the ground state if either N or
Z or both are magic numbers.
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• Elements with Z equal to a magic number have a larger natural abundance than those
of nearby elements.

5.2 Shell Model

These magic numbers can be explained in terms of the Shell Model of the nucleus, which
considers each nucleon to be moving in some potential and classifies the energy levels in terms
of quantum numbers n l j, in the same way as the wavefunctions of individual electrons are
classified in Atomic Physics.

For a spherically symmetric potential the wavefunction (neglecting its spin for the mo-
ment) for any nucleon whose coordinates from the centre of the nucleus are given by polar
coordinates (r, θ, φ) is of the form

Ψnlm = Rnl(r)Y
m
l (θ, φ).

The energy eigenvalues will depend on the principle quantum number, n, and the orbital
angular momentum, l, but are degenerate in the magnetic quantum number m. These energy
levels come in ‘bunches’ called “shells” with a large energy gap just above each shell.

In their ground state the nucleons fill up the available energy levels from the bottom
upwards with two protons (neutrons) in each available proton (neutron) energy level.

Unlike Atomic Physics we do not even understand in principle what the properties of
this potential are - so we need to take a guess.

A simple harmonic potential ( i.e. V (r) ∝ r2) would yield equally spaced energy levels
and we would not see the shell structure and hence the magic numbers.

It turns out that once again the Saxon-Woods model is a reasonable guess, i.e.

V (r) = − V0
1 + exp (((r − R)/δ))
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For such a potential it turns out that the lowest level is 1s (i.e. n = 1, l = 0) which
can contain up to 2 protons or neutrons. Then comes 1p which can contain up to a further
6 protons (neutrons). This explains the first 2 magic numbers (2 and 8). Then there is the
level 1d, but this is quite close in energy to 2s so that they form the same shell. This allows
a further 2+10 protons (neutrons) giving us the next magic number of 20.

The next two levels are 1f and 2p which are also quite close together and allow a further
6+14 protons (neutrons). This would suggest that the next magic number was 40 - but
experimentally it is known to be 50.

The solution to this puzzle lies in the spin-orbit coupling. Spin-orbit coupling - the
interaction between the orbital angular momentum and spin angular momentum occurs in
Atomic Physics. In Atomic Physics, the origin is magnetic and the effect is a small correction.
In the case of nuclear binding the effect is about 20 times larger, and it comes from a term
in the nuclear potential itself which is proportional to L · S, i.e.

V (r) → V (r) + W (r)L · S.
As in the case of Atomic Physics (j-j coupling scheme) the orbital and spin angular momenta
of the nucleons combine to give a total angular momentum j which can take the values
j = l+ 1

2
or j = l− 1

2
. The spin-orbit coupling term leads to an energy shift proportional to

j(j + 1)− l(l + 1)− s(s+ 1), (s = 1/2).

A further feature of this spin-orbit coupling in nuclei is that the energy split is in the opposite
sense from its effect in Atomic Physics, namely that states with higher j have lower energy.
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We see that this large spin-orbit effect leads to crossing over of energy levels into different
shells. For example the state above the 2p state is 1g (l=4), which splits into 1g 9

2

, (j = 9
2
)

and 1g 7

2

, (j = 7
2
). The energy of the 1g 9

2

state is sufficiently low that it joins the shell
below, so that this fourth shell now consists of 1f 7

2

, 2p 3

2

, 1f 5

2

, 2p 1

2

and 1g 9

2

. The maximum

occupancy of this state ((2j + 1) protons (neutrons) for each j) is now 8+4+6+2+10=30,
which added to the previous magic number, 20, gives the next observed magic number of 50.

Further up, it is the 1h state that undergoes a large splitting into 1h 11

2

and 1h 9

2

, with
the 1h 11

2

state joining the lower shell.

5.3 Spin and Parity of Nuclear Ground States.

Nuclear states have an intrinsic spin and a well defined parity, η = ±1, defined by the
behaviour of the wavefunction for all the nucleons under reversal of their coordinates with
the centre of the nucleus at the origin.

Ψ(−r1,−r2 · · · − rA) = ηΨ(r1, r2 · · · rA)

.

The spin and parity of nuclear ground states can usually be determined from the shell
model. Protons and neutrons tend to pair up so that the spin of each pair is zero and each
pair has even parity (η = 1). Thus we have

• Even-even nuclides (both Z and A even) have zero intrinsic spin and even parity.

• Odd A nuclei have one unpaired nucleon. The spin of the nucleus is equal to the j-
value of that unpaired nucleon and the parity is (−1)l, where l is the orbital angular
momentum of the unpaired nucleon.

For example 47
22Ti (titanium) has an even number of protons and 25 neutrons. 20 of

the neutrons fill the shells up to magic number 20 and there are 5 in the 1f 7

2

state

(l = 3, j = 7
2
) Four of these form pairs and the remaining one leads to a nuclear spin

of 7
2
and parity (−1)3 = −1.

• Odd-odd nuclei. In this case there is an unpaired proton whose total angular momen-
tum is j1 and an unpaired neutron whose total angular momentum is j2. The total
spin of the nucleus is the (vector) sum of these angular momenta and can take val-
ues between |j1 − j2| and |j1 + j2| (in unit steps). The parity is given by (−1)(l1+l2),
where l1 and l2 are the orbital angular momenta of the unpaired proton and neutron
respectively.

For example 6
3Li (lithium) has 3 neutrons and 3 protons. The first two of each fill the

1s level and the thrid is in the 1p 3

2

level. The orbital angular mometum of each is l = 1

so the parity is (−1)× (−1) = +1 (even), but the spin can be anywhere between 0 and
3.

40



5.4 Magnetic Dipole Moments

Since nuclei with an odd number of protons and/or neutrons have intrinsic spin they also in
general possess a magnetic dipole moment.

The unit of magnetic dipole moment for a nucleus is the “nuclear magneton” defined as

µN =
e~

2mp

,

which is analogous to the Bohr magneton but with the electron mass replaced by the proton
mass. It is defined such that the magnetic moment due to a proton with orbital angular
momentum l is µN l.

Experimentally it is found that the magnetic moment of the proton (due to its spin) is

µp = 2.79µN = 5.58µNs,

(

s =
1

2

)

and that of the neutron is

µn = −1.91µN = −3.82µNs,

(

s =
1

2

)

If we apply a magnetic field in the z-direction to a nucleus then the unpaired proton with
orbital angular momentum l, spin s and total angular momentum j will give a contribution
to the z− component of the magnetic moment

µz = (5.58sz + lz)µN .

As in the case of the Zeeman effect, the vector model may be used to express this as

µz =
(5.58 < s · j > + < l · j >)

< j2 >
jz µN

using

< j2 > = j(j + 1)~2

< s · j > =
1

2

(

< j2 > + < s2 > − < l2 >
)

=
~
2

2
(j(j + 1) + s(s+ 1) − l(l + 1))

< l · j > =
1

2

(

< j2 > + < l2 > − < s2 >
)

=
~
2

2
(j(j + 1) + l(l + 1) − s(s+ 1)) (5.4.1)

We end up with expression for the contribution to the magnetic moment

µ =
5.58 (j(j + 1) + s(s+ 1) − l(l + 1)) + (j(j + 1) + l(l + 1) − s(s+ 1))

2j(j + 1)
j µN
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and for a neutron with orbital angular momentum l′ and total angular momentum j′ we get
(not contribution from the orbital angular momentum because the neutron is uncharged)

µ = −3.82 (j′(j′ + 1) + s(s+ 1) − l′(l′ + 1))

2j′(j′ + 1)
j′ µN

Thus, for example if we consider the nuclide 7
3Li for which there is an unpaired proton in

the 2p 3

2

state (l = 1, j = 3
2
then the estimate of the magnetic moment is

µ =
5.58

(

3
2
× 5

2
+ 1

2
× 3

2
− 1× 2

)

+
(

3
2
× 5

2
+ 1× 2 − 1

2
× 3

2

)

2× 3
2
× 5

2

3

2
= 3.79µN

The measured value is 3.26µN so the estimate is not too good. For heavier nuclei the estimate
from the shell model gets much worse.

The precise origin of the magnetic dipole moment is not understood, but in general they
cannot be predicted from the shell model. For example for the nuclide 17

9 F (fluorine), the
measured value of the magnetic moment is 4.72µN whereas the value predicted form the
above model is −0.26µN . !! There are contributions to the magnetic moments from the
nuclear potential that is not well-understood.

5.5 Excited States

As in the case of Atomic Physics, nuclei can be in excited states, which decay via the emission
of a photon (γ-ray) back to their ground state (either directly ore indirectly).

Some of these excited states are states in which one of the neutrons or protons in the
outer shell is promoted to a higher energy level.

However, unlike Atomic Physics, it is also possible that sometimes it is energetically
cheaper to promote a nucleon from an inner closed shell, rather than a nucleon form an outer
shell into a high energy state. Moreover, excited states in which more than one nucleon is
promoted above its ground state is much more common in Nuclear Physics than in Atomic
Physics.

Thus the nuclear spectrum of states is very rich indeed, but very complicated and cannot
be easily understood in terms of the shell model.

Most of the excited states decay so rapidly that their lifetimes cannot be measured. There
are some excited states, however, which are metastable because they cannot decay without
violating the selection rules. These excited states are known as “isomers”, and their lifetimes
can be measured.
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5.6 The Collective Model

The Shell Model has its shortcomings. This is particularly true for heavier nuclei. We have
already seen that the Shell Model does not predict magnetic dipole moments or the spectra
of excited states very well.

One further failing of the Shell Model are the predictions of electric quadrupole moments,
which in the Shell Model are predicted to be very small. However, heavier nuclei with A in
the range 150 - 190 and for A > 220, these electric quadrupole moments are found to be
rather large.

The failure of the Shell Model to correctly predict electric quadrupole moments arises
from the assumption that the nucleons move in a spherically symmetric potential.

The Collective Model generalises the result of the Shell Model by considering the effect
of a non-spherically symmetric potential, which leads to substantial deformations for large
nuclei and consequently large electric quadrupole moments.

One of the most striking consequences of the Collective Model is the explanation of
low-lying excited states of heavy nuclei. These are of two types

• Rotational States: A nucleus whose nucleon density distributions are spherically
symmetric (zero quadrupole moment) cannot have rotational excitations (this is anal-
ogous to the application of the principle of equipartition of energy to monatomic
molecules for which there are no degrees of freedom associated with rotation).

On the other hand a nucleus with a non-zero quadrupole moment can have excited
levels due to rotational perpendicular to the axis of symmetry.

For an even-even nucleus whose ground state has zero spin, these states have energies

Erot =
I(I + 1) ~2

2I , (5.6.2)

where I is the moment of inertia of the nucleus about an axis through the centre
perpendicular to the axis of symmetry.

I

It turns out that the rotational energy levels of an even-even nucleus can only take
even values of I. For example the nuclide 170

72 Hf (hafnium) has a series of rotational
states with excitation energies

E (KeV) : 100, 321, 641
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These are almost exactly in the ratio 2 × 3 : 4 × 5 : 6 × 7, meaning that these are
states with rotational spin equal to 2, 4, 6 respectively. The relation is not exact
because the moment of inertia changes as the spin increases.

We can extract the moment of inertia for each of these rotational states from eq.(5.6.2).
We could express this in SI units, but more conveniently nuclear moments of inertia
are quoted in MeV/c2 fm2, with the help of the relation

~ c = 197.3MeV fm.

Therefore the moment inertia of the I = 2 state, whose excitation energy is 0.1 MeV,
is given (inseting I = 2 into eq.(5.6.2) by

I = 2× 3× ~
2c2

2c2Erot

=
6

2

197.32

0.1
= 1.17× 106MeV/c2 fm2

For odd-A nuclides for which the spin of the ground state I0 is non-zero, the rotational
levels have excitation levels of

Erot =
1

2I (I(I + 1) − I0(I0 + 1)) ~2,

where I can take the values I0 + 1, I0 + 2 etc. For example the first two rotational
excitation energies of 143

60 Nd (neodynium), whose ground state has spin 7
2
, have energies

128 KeV and 290 KeV. They correspond to rotational levels with nuclear spin 9
2
and 11

2

respectively. The ratio of these two excitation energies (2.27) is almost exactly equal
to

11
2
× 13

2
− 7

2
× 9

2
9
2
× 11

2
− 7

2
× 9

2

= 2.22

• Shape oscillations: These are modes of vibration in which the deformation of the
nucleus oscillates - the electric quadrupole moment oscillates about its mean value. It
could be that this mean value is very small, in which case the nucleus is oscillating
between an oblate and a prolate spheroidal shape. It is also possible to have shape
oscillations with different shapes

The small oscillations about the equilibrium shape perform simple harmonic motion.
The energy levels of such modes are equally spaced. Thus an observed sequence of
equally spaced energy levels within the spectrum of a nuclide is interpreted as a man-
ifestation of such shape oscillations.
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Chapter 6

Radioactivity

Some nuclides have a far higher binding energy than some of its neighbours. When this is
the case it is often energetically favourable for a nuclide with a low binding energy (“parent
nucleus”) to decay into one with a higher binding energy (“daughter nucleus”), giving off
either an α-particle, which is the a 4

2He (helium) nucleus (α-decay) or an electron (positron)
and another very low mass particle called a “antineutrino” (“neutrino”). This is called “β-
decay”. The difference in the binding energies is equal to the kinetic energy of the decay
products

A further source of radioactivity arises when a nucleus in a metastable excited state
(“isomer”) decays directly or indirectly to its ground state emitting one or more high energy
photons (γ-rays).

6.1 Decay Rates

The probability of a parent nucleus decaying in one second is called the “decay constant”,
(or “decay rate”) λ. If we have N(t) nuclei then the number of ‘expected’ decays per second
is λN(t). The number of parent nuclei decreases by this amount and so we have

dN(t)

dt
= −λN(t). (6.1.1)

This differential equation has a simple solution - the number of parent nuclei decays expo-
nentially -

N(t) = N0e
−λt,

where N0 is the initial number of parent nuclei at time t = 0.

The time taken for the number of parent nuclei to fall to 1/e of its initial value is called
the “mean lifetime”, τ of the radioactive nucleus, and we can see from eq.(6.1.1) that

τ =
1

λ
.
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Quite often one talks about the “half-life”, τ 1

2

of a radioactive nucleus, which is the time

taken for the number of parent nuclei to fall to one-half of its initial value. From eq.(6.1.1)
we can also see that

τ 1

2

=
ln 2

λ
= ln 2 τ.

6.2 Random Decay

It was stated above that the “expected” number of decays per second would be λN(t). This
does not mean that there will always be precisely this number of decays per second.

Radioactive decay is a random process with a probability λ that any one nucleus will
decay in one second.

The laws of random distributions tell us that if the expected number of events in a given
period of time is ∆N , then the ‘error’ on this number is

√
∆N . More precisely there is a

68% probability that the number of events will be in the range

∆N −
√
∆N → ∆N +

√
∆N.

This means that if we want to measure the decay constant (lifetime, half-life) to within
an accuracy of ǫ, we need to collect at least 1/ǫ2 decays.

For example, suppose we have a sample with 1012 radioactive nuclei with a mean lifetime
of about 1010 seconds and we want to measure this lifetime then in 1 second we predict that
there will be (with 68% certainty) between

1012

1010
−
√

1012

1010
= 100− 10 = 90 and

1012

1010
+

√

1012

1010
= 100 + 10 = 110,

decays per second. So if we want to determine the lifetime to better than 1% we need to
observe the decays for 100 secs, for which we expect to have between 9900 and 10100 decays.

One decay per second is a unit of radioactivity known as the Bequerel (Bq) after the
person who discovered radioactivity. Radioactivity is more often measured in Curies where
one Curie is 3.7 × 1010 decays per second. This is the number of decays per second of one
gram of 226

88 Ra (radium).

What is the half-life of 226
88 Ra?

Neglecting the binding energy the mass of Ra nucleus is

MRa = 88mp + (226− 88)mn = 3.77× 10−25 kg

The number of nuclei in one gram is

N0 =
10−3

3.77× 10−25
= 2.67× 1021.
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Therefore of the number of decays per second is 3.7 × 1010 for 2.67 × 1021 nuclei of Ra, we
have for the decay constant

λ =
3.7× 1010

2.67× 1021
= 1.39× 10−11 s−1,

which gives us a half-life of

τ 1

2

=
ln 2

λ
=

0.693

1.39× 10−11
= 5× 1010 s (1620 yr)

6.3 Carbon Dating

Living organisms absorb the isotope of carbon 14
6 C, which is created in the atmosphere by

cosmic ray activity. The production of 14
6 C from cosmic ray bombardment exactly cancels the

rate at which thatbisotope decays so that the global concentration of 14
6 C remians constant.

A sample of carbon taken from a living organism will have a concentration of one part in
1.3×1012, and it is being continually rejuvenated, by exchanging carbon with the environment
(either by photosynthesis or by eating plants which have undergone photosynthesis or by
eating other animals that have eaten such plants.)

On the other hand a sample of carbon from a dead object cannot exchange its carbon
with the environment and therefore cannot rejuvenate its concentration of 14

6 C.

14
6 C decays radioactively into 14

7 N (nitrogen), via β-decay with a half-life of 5730 years.

Thus by measuring the concentration of the isotope 14
6 C in a fossil sample using techniques

of mass spectroscopy, the age of the fossil can be determined.

6.4 Multi-modal Decays

A radioactive nucleus can sometimes decay into more than one channel, each of which has
its own decay constant.

An example of this is 212
83 Bi (bismuth) which can either decay as

212
83 Bi → 208

81 Ti + α

or
212
83 Bi → 212

84 Po + e− + ν̄

with a total mean lifetime of 536 secs. Ratio of 208
81 Ti (titanium) to 212

84 Po (polonium) from
these decays is 9:16 What are the decay constants λ1 and λ2 for each of these decay modes?
The rate of change of the number of parent nuclei is given by

dN(t)

dt
= −λ1N(t) − λ2N(t),

47



with solution
N(t) = N0e

−(λ1+λ2)t.

From the total lifetime we have

λ1 + λ2 =
1

536
= 1.86× 10−3 s−1

The ratio of the number of decay products is equal to the ratio of the decay constants, i.e.

λ1
λ2

=
9

16

This gives us
λ1 = 6.8× 10−4 s−1.

λ2 = 11.8× 10−3 s−1.

6.5 Decay Chains

It is possible that a parent nucleus decays, with decay constant λ1 into a daughter nucleus,
which is itself radioactive and decays (either into a stable nuclide or into another radioactive
nuclide) with decay constant λ2. An example of this is

210
83 Bi

β→ 210
84 Po

α→ 206
82 Pb

The mean lifetime for the first stage of decay is 7.2 days and the mean lifetime for the second
stage is 200 days.

If at time t we have N1(t) nuclei of the parent nuclide and N2(t) nuclei of the daughter
nuclide, then for N1(t) we simply have

dN1(t)

dt
= −λ1N1(t) (6.5.2)

and therefore,
N1(t) = N1(0)e

−λ1t, (6.5.3)

whereas for N2 there is a production mechanism which contributes a rate of increase of N2

equal to the rate of decrease of N1. In addition there is a contribution to the rate of decrease
of N2 from its decay process, so we have

dN2(t)

dt
= λ1N1(t)− λ2N2(t) (6.5.4)

Inserting the solution of eq.(6.5.2) into eq.(6.5.4) gives

dN2(t)

dt
= λ1N1(0)e

−λ1t − λ2N2(t).
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This is an inhomogeneous differential equation whose solution with N2(0) = 0 is given by

N2(t) = N1(0)
λ1

(λ2 − λ1)

(

e−λ1t − e−λ2t
)

t

N2

N1
......

What is happening is that initially as the parent decays the quantity of the daughter
nuclide grows faster than it decays. But after some time the available quantity of the parent
nuclide is depleted so the production rate decreases and the decay rate of the daughter
nuclide begins to dominate so that the quantity of the daughter nuclide also decreases.

Some heavy nuclides have a very long decay chain, decaying at each stage to another
unstable nuclide before eventually reaching a stable nulcide. An example of this is 238

92 U,
which decays in no fewer than 14 stages - eight by α-decay and six by β-decay before
reaching a stable isotope of Pb. The lifetimes for the individual stages vary from around
10−4 s. to 109 years.
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In such cases, if the first parent is very long-lived, so that the number of parent nuclei
does not decrease much, it is possible to reach what is known as “secular equilibrium”, in
which the quantities of various daughter nuclei remains unchanged. This happens when the
numbers of nuclei in the chain NA, NB NC · · · are in the ratio

λANA = λBNB, etc.,

where λA, λB · · · are the decay rates for these nuclides. What is happening here is that the
rate of production of daughter B, is the rate of decay of A, which is λANA and this is equal
to λB NB, the rate of decay of B, so the quantity of B nuclei remains unchanged.

6.6 Induced Radioactivity

It is possible to convert a nuclide which is not radioactive into a radioactive one by bombard-
ing it with neutrons or other particles. The stable nuclide (sometimes) absorbs the projectile
in order to become an unstable, radioactive nucleus.

For example bombarding 23
11Na (sodium) with neutrons can convert the nuclide to 24

11Na,
which is radioactive and decays via β-decay to 24

12Mg (magnesium).
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In this case if we assume that the rate at which the radioactive nuclide (with decay
constant λ) is being generated is R, then the number of such nuclei is given by the differential
equation

dN(t)

dt
= R − λN

If at time t = 0 the number of these nuclei is zero (i.e. we start the bombardment at t = 0)
then the solution to this differential equation is

N(t) =
R

λ

(

1− e−λt
)

This starts at zeros and then grows so that asymptotically

R = λN,

which is the equilibrium state in which the production rate R is equal to the decay rate λN .
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Chapter 7

Alpha Decay

α- decay is the radioactive emission of an α-particle which is the nucleus of 4
2He, consisting

of two protons and two neutrons. This is a very stable nucleus as it is doubly magic. The
daughter nucleus has two protons and four nucleons fewer than the parent nucleus.

(A+4)
(Z+2){P} → A

Z{D} + α.

7.1 Kinematics

The “Q-value” of the decay, Qα is the difference of the mass of the parent and the combined
mass of the daughter and the α-particle, multiplied by c2.

Qα = (mP − mD − mα) c
2.

The mass difference between the parent and daughter nucleus can usually be estimated
quite well from the Liquid Drop Model. It is also equal to the difference between the sum
of the binding energies of the daughter and the α-particles and that of the parent nucleus.

The α-particle emerges with a kinetic energy Tα, which is slightly below the value of Qα.
This is because if the parent nucleus is at rest before decay there must be some recoil of
the daughter nucleus in order to conserve momentum. The daughter nucleus therefore has
kinetic energy TD such that

Qα = Tα + TD

The momenta of the α-particle and daughter nucleus are respectively

pα =
√

2mαTα,

pD = −
√

2mDTD,

wheremD is the mass of the daughter nucleus (we have taken the momentum of the α-particle
to be positive). Conserving momentum implies pα + pD = 0 which leads to

TD =
mα

mD

Tα,
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and neglecting the binding energies, we have

mα

mD
=

4

A
,

where A is the atomic mass number of the daughter nucleus. We therefore have for the
kinetic energy of the α-particle

Tα =
A

(A+ 4)
Qα.

Example:
The binding energy of 214

84 Po is 1.66601 GeV, the binding energy of 210
82 Pb (lead) is 1.64555

GeV and the binding energy of 4
2He is 28.296 MeV. The Q-value for the decay

214
84 Po → 210

82 Pb + α,

is therefore
Qα = 1645.55 + 28.296− 1666.02 = 7.83MeV.

The kinetic energy of the α-particle is then given by

Tα =
210

214
× 7.83 = 7.68MeV.

Sometimes the α-particles emerge with kinetic energies which are somewhat lower than
this prediction. Such α-decays are accompanied by the emission of γ-rays. What is happening
is that the daughter nucleus is being produced in one of its excited states, so that there is
less energy available for the α-particle (or the recoil of the daughter nucleus).

Example:
The binding energy of 22890 Th (thorium) is 1.743077 GeV, the binding energy of 22488 Ra (radium)
is 1.720301 GeV and the binding energy of 4

2He is 28.296 MeV. The Q-value for the decay

228
90 Th → 224

88 Ra + α,

is therefore
Qα = 1720.301 + 28.296− 1743.077.02 = 5.52MeV.

The kinetic energy of the α-particle is then given by

Tα =
224

228
× 5.52 = 5.42MeV.

α−particles are observed with this kinetic energy, but also with kinetic energies 5.34, 5.21,
5.17 and 5.14 MeV.

From this we can conclude that there are excited states of 224
88 Ra with energies of 0.08,

0.21, 0.25 and 0.28 MeV. The α-decay is therefore accompanied by γ-rays (photons) with
energies equal to the differences of these energies.

It is sometimes possible to find an α-particle whose energy is larger than that predicted
from the Q-value. This occurs when the parent nucleus is itself a product of a decay from a
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further (‘grand’-)parent. In this case the parent α-decaying nucleus can be produced in one
of its excited states. In most cases this state will decay to the ground state by emitting γ-
rays before the α-decay takes places. But in some cases where the excited state is relatively
long-lived and the decay constant for the α-decay is large the excited state can α-decay
directly and the Q-value for such a decay is larger than for decay form the ground state by
an amount equal to the excitation energy.

In the above example of α-decay from 214
84 Po (polonium) the parent nucleus is actually

unstable and is produced by β-decay of 214
83 Bi (bismuth). 214

84 Po has excited states with
energies 0.61, 1.41, 1.54, 1.66 MeV above the gound state. Therefore as well as an α-decay
with Q-value 7.83 MeV, calculated above, there are α-decays with Q-values of 8.44, 9.24,
9.37 and 9.49 MeV.

7.2 Decay Mechanism

The mean lifetime of α-decaying nuclei varies from the order of 10−7 secs to 1010 years.

We can understand this by investigating the mechanism for α-decay.

What happens is that two protons from the highest proton energy levels and two neutrons
from the highest neutron energy levels combine to form an α-particle inside the nucleus -
this is known as a “quasi-bound-state”. It acquires an energy which is approximately equal
to Qα (we henceforth neglect the small correction due to the recoil of the nucleus).

The α-particle is bound to the potential well created by the strong, short-range, nuclear
forces. There is also a Coulomb repulsion between this ‘quasi-’ α-particle and the rest of the
nucleus.
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Together these form a potential barrier, whose height, Vc, is the value of the Coulomb
potential at the radius, R, of the nucleus (where the strong interactions are rapidly attenu-
ated).

Vc =
2Ze2

4πǫ0R
,

where Ze is the electric charge of the daughter nucleus.

The barrier extends from r = R, the nuclear radius to r = R′, where

Qα =
2Ze2

4πǫ0R′ .

Beyond R′ the α-particle has enough energy to escape.

Using classical mechanics, the α-particle does not have enough energy to cross this barrier,
but it can penetrate through via quantum tunnelling.

For a square potential of height U0 and width a, the tunnelling probability for a particle
with mass, m and energy E, is approximately given by

T = exp
(

−2
√

2m(U0 −E)
a

~

)

.

It is this exponential which varies very rapidly with its argument, that is responsible for the
huge variation in α-decay constants.

56



✲✉m
✻

❄

E

✛ ✲a

✻

❄

U0

This formula applies to a potential barrier of constant height U0, whereas for α-decay
the potential inside the barrier is

U(r) =
2Ze2

4πǫ0r
.

The result of this is that the exponent in the above expression is replaced by the integral

−2

~

∫ R′

R

√

2mα

(

2Ze2

4πǫ0r
−Qα

)

dr

Finally we need to multiply the transition probability by the number of times per sec
that the α-particle ‘tries’ to escape, which is how often it can travel from the centre to the
edge of the nucleus and back. This is approximately given by

v

2R
,

where v =
√

2Qα/mα, is the velocity of the α-particle inside the nucleus.

When all this is done we arrive at the approximate result

lnλ = f − g
Z√
Qα

,

where

g = 2
√
2πα

√

mα c2 = 3.97MeV1/2,

and

f = ln
( v

2R

)

+ 8
√

RZαmαc/~.

f varies somewhat for different nuclei but is approximately equal to 128.

This very crude approximation agrees reasonably well with data
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We see that as the quantity Z/
√
Qα varies over the range 25 - 45, the logarithm of the

decay constant varies over a similar range from -45 to 15, but this implies a range of lifetimes
from e−15 to e45 secs (less than a microsecond to longer than the age of the Universe)
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Chapter 8

Beta Decay

β-decay is the radioactive decay of a nuclide in which an electron or a positron is emitted.

A
Z{P} → A

(Z+1){D} + e− + ν̄,

or
A
Z{P} → A

(Z−1){D} + e+ + ν.

The atomic mass number is unchanged so that these reactions occur between “isobars”.

The electron (or positron) does not exist inside the nucleus but is created in the reaction

n → p + e− + ν̄.

In fact the neutron has a mass that exceeds the sum of the masses of the proton plus the
electron so that a free neutron can undergo this decay with a lifetime of about 11 minutes.

Inside a nucleus such a decay is not always energetically allowed because of the difference
in the binding energies of the parent and daughter nuclei. When a neutron is converted
into a proton the Coulomb repulsion between the nucleons increases - thereby decreasing the
binding energy. Moreover there is a pairing term in the semi-empirical mass formula that
favours even numbers of protons and neutrons and a symmetry term that tells us that the
number of protons and neutrons should be roughly equal.

β-decay is energetically permitted provided the mass of the parent exceeds the mass of
the daughter plus the mass of an electron.

M(Z,A) > M((Z + 1), A) + me,

for electron emission, and

M(Z,A) > M((Z − 1), A) + me,

for positron emission. In the latter case a proton is converted into a more massive neutron,
but the binding energy of the daughter may be such that the total nuclear mass of the
daughter is less than that of the parent by more than the electron mass, me.
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The mass of the electron can be included directly by comparing atomic masses, since a
neutral atom always has Z electrons. Thus we require

M(Z,A) > M((Z + 1), A)

for electron emission. The atomic (as opposed to nuclear) mass included the masses of the
electrons. However, this will not work for positron emission, for which Z decreases by one
unit.

For nuclei with even A, it turns out that because of the pairing term in the binding
energy, nuclides with odd numbers of protons and neutrons (odd-odd nuclides) are nearly
always unstable against β- decay. On the other hand, even-even nuclides can also sometimes
be unstable against β-decay if the number of neutrons in a particular isobar is too large or
too small for stability.

For example, consider the isobars for A=100.

93055

93060

93065

93070

93075

93080

39 40 41 42 43 44 45 46 47 48

Atomic Mass

Z

e

e

e

e

o

o

o

o

We note that all the odd-odd nuclides marked “o” have a larger atomic mass than one
of the adjacent even-even (marked “e”) nuclides and that for the case of Z=43, both electron
and positron emission are energetically allowed so that this nuclide (Tc – Technetium) can
decay either by electron emission to Z=44 (Ru – Ruthenium) or by positron emission to
Z=42 (Mo – Molibdenium). Moreover, the even-even Z=40 nuclide (Zr – Zirconium) can
decay by electron emission to Z=41 (Nb – Niobium).

For nuclei with odd A there is either an even number of neutrons or an even number
of protons. In this case the pairing term does not change from isobar to isobar and the
question of stability relies on the balance between the symmetry term which prefers equal
numbers of protons and neutrons and the Coulomb terms which prefers fewer protons. For
such nuclides there is only one stable isobar, with some atomic number ZA. This means that
the isobars with atomic number Z > ZA have too many protons for stability can always
β-decay emitting a positron, whereas isobars with Z < ZA have too many neutrons, and can
undergo β-decay emitting an electron. The value of ZA for a given A can be obtained by
minimizing the atomic mass (including the masses of the electrons) from the semi-empirical
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mass formula. This gives

ZA = A
2aA + (mn −mp −me)c

2/2

4aA + aCA2/3
,

where aA and aC are the coefficients of the asymmetry term and Coulomb term in the
semi-empirical mass formula.

8.1 Neutrinos

As in the case of α-decay the difference between the mass of the parent nucleus, mP and the
mass of the daughter, mD plus the electron is the Q-value for the decay, Qβ ,

Qβ = (mP −mD −me)c
2,

and in this case the recoil of the daughter can be neglected because the electron is so much
lighter than the nuclei. We would expect this Q-value to be equal to the kinetic energy of the
emitted electron, but what is observed is a spectrum of electron energies up to a maximum
value which is equal to this Q-value. For example the intensity of electrons with different
energies form the β-decay of 210

83 Bi (bismuth) is

There is a further puzzle. Since the number of spin-1
2
nucleons is the same in the parent

and daughter nuclei, the difference in the spins of the parent and daughter nuclei must be an
integer. But the electron also has spin-1

2
, so there appears to be a violation of conservation

of angular momentum here.

The solution to both of these puzzles was provided in 1930 by Pauli who postulated the
existence of a massless neutral particle with spin-1

2
which always accompanies the electron

in β-decay. This was called a neutrino. Neutrinos interact very weakly with matter and
so they were not actually detected until 1953 (by Reines and Cowan). The fact that the
neutrino has spin-1

2
means that the total angular momentum can be conserved (if necessary

the electron-antineutrino system has orbital angular momentum) and the Q-value is the sum
of the energies of the electron and antineutrino. The kinetic energy of the electron can vary
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from zero (strictly arbitrarily small) where all the Q-value is taken by the antineutrino (the
momentum being conserved by the small recoil of the daughter nucleus) to the Q-value in
which case the energy carried off by the antineutrino is negligible.

Electrons and neutrinos are examples of “leptons” which are particles that do not interact
under the strong nuclear forces - they are not found inside nuclei.

By convention, electrons and neutrinos are assigned a “lepton number” of 1, which means
that positrons and antineutrinos have a lepton number of -1. Lepton number is conserved
so that it is actually an antineutrino that is emitted together with electron emission β-decay
and a neutrino together with positron emission.

The fact that the neutrino has (almost) zero mass is deduced by examining the end-point
of the electron energy spectrum. For example for the decay

3
1H → 3

2He + e− + ν̄,

with a Q-value of 18.6 KeV,

For a massless neutrino its total (relativistic) energy can be arbitrarily small and the
electron can carry energy up to the Q-value. If the neutrino has a mass, mν then the
minimum energy that it can have ismνc

2, and the electron energy spectrum drops off sharply
at the end-point.

It is now known that neutrinos do have a tiny mass. The first hint of this was during the
observation of the Supernova in 1987, when a burst of neutrinos were observed a few seconds
after the burst of γ-rays, implying that the neutrinos had not travelled form the Supernova
with exactly the speed of light. This was confirmed by neutrino observation experiments at
the Kamiokande neutrino detector in Japan in 1999. However the mass of the neutrino is
almost certainly smaller than 0.1 eV/c2 (compared with the electron mass of 0.511 MeV/c2).
For our purposes we may neglect the neutrino mass.
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8.2 Electron Capture

Nuclei which can β-decay emitting a positron and an neutrino, can also decay by another
mechanism.

e− + A
Z{P} → A

(Z−1){D} + ν.

What happens here is that an atom can absorb an electron from one of the inner shells
(usually the innermost shell, which is called the “K-shell”) and be converted into an atom
with one lower atomic number. The energy is entirely carried away by the neutrino and is
nearly always undetected because neutrinos interact so weakly with matter.

8.3 Parity Violation

β-decay exhibits a further peculiarity. This was discovered in 1957 by C.S. Wu who observed
the decay of radioactive cobalt into nickel

60
27Co → 60

28Ni + e− + ν̄.

The cobalt sample was kept a low temperature and placed in a magnetic field so that the
spin of the cobalt was pointing in the direction of the magnetic field.

She discovered that most of the electrons emerged in the opposite direction from the
applied magnetic field. If we write s for the spin of the parent nucleus and pe for the
momentum of an emitted electron, this means that the average value of the scalar product
s ·pe was negative. In order to balance the momentum the antineutrinos are usually emitted
in the direction of the magnetic field, so that the average value of s · pν̄ was positive.

Under the parity operation
r → −r
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and
p → −p

but angular momentum which is defined as a vector product

L = r× p,

is unchanged under parity
L → L.

Spin is an internal angular momentum and so it also is unchanged under parity.

But this means that the scalar product s · pe does change under parity

s · pe → −s · pe

so that the fact that this quantity has a non-zero average value (or expectation value in
quantum mechanics terms) means that the mechanism of β-decay violates parity conservation

If we viewed the above diagram in the corner of a mirrored room so that all the directions
were reversed the spin would point in the same direction, but the electron direction would
be reversed so that in that world the electrons would prefer to emerge in the direction of the
magnetic field.

The spin of the daughter nucleus 60
28Ni is 4 (it is produced in an excited state) whereas that

of the parent 60
27Co was 5, so that in order to compensate for unit of angular momentum lost

(in the direction of the magnetic field) the angular momentum the antineutrinos and electrons
have their spins in the direction of the magnetic field. This means that the antineutrinos
have a spin component +1

2
in their direction of motion (in units of ~) whereas the electrons

have a spin component −1
2
in their direction of motion. The sign of the component of the

spin of a particle in its direction of motion is called the “helicity” of the particle. Neutrinos
always have negative helicity (antineutrinos always have positive helicity). An electron
can have component of spin either +1

2
or −1

2
in its direction of motion (either positive or

negative helicity). However, the electrons emitted in β-decay usually have negative helicity
(positrons emitted in β-decay usually have positive helicity). This means that the mechanism
responsible for β-decay (called the “weak interaction”) distinguish between positive and
negative helicity and therefore violate parity.
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Chapter 9

Gamma Decay

As we have seen γ-decay is often observed in conjunction with α- or β-decay when the
daughter nucleus is formed in an excited state and then makes one or more transitions to its
ground state, emitting a photon whose energy is equal to the energy difference between the
initial and final nuclear state. These energy differences are usually of order 100 KeV so the
photon is well in the γ-ray region of the electromagnetic spectrum.

The lifetime of excited nuclear states is usually of the order of 10−13 − 10−12 s., so the
lifetime is far too short to be measured.

The decay rate (inverse of the mean lifetime) depends on the energy of the photon emitted
and the ‘type’ of radiation.

As in the case of Atomic Physics the transition amplitude is proportional to the matrix
element of the electric field between the initial and final wavefunctions of the nucleon that
makes the transition. This electric field has a space dependence that may be written

E = E0e
ik·r,

where k is the wavevector of the emitted photon. For photons of energy 100 KeV and a

nucleus of radius a few fm, k · r is much less than 1 (kr = pkr

~
= Er cos θ

c~
≃ 105ev×1fm

1.973×108ev×1fm
≃

10−3) and it is sufficient to expand this exponential to first order.

The transition amplitude is therefore proportional to

A ∝
∫

Ψ∗
f (r)k · rΨi(r)d

3r,

where Ψi and Ψf are the initial and final wavefunctions of the proton that makes the tran-
sition. This is called “electric dipole” transition (there is no “electric monopole” transition
from the first term in the expansion of the exponential because Ψf(r) and Ψi(r) are orthog-
onal wavefunctions).

The rate for such transition is well approximated by the formula

λ = 105E3
γA

2/3,

65



where Eγ is the energy of the photon in KeV. The factor of A2/3 is understood from the
fact that the transition amplitude is proportional to the nuclear radius, which is in turn
proportional to A1/3 (the transition rate is proportional to the square of the amplitude). For
photons with energy of order 100 KeV and A of order 100 this gives 2.5× 1012 s−1.

However, for the above electric dipole matrix element to be non-zero we require certain
conditions on the spin and parity of the initial and final states. As in Atomic Physics, the
photon carries away one unit of angular momentum, so that the initial and final nuclear
spins have to obey the selection rule

∆I = 0, ±1 (I = 0 → I = 0 forbidden)

Furthermore since r is odd under parity reversal, we require the initial and final sates to be
of opposite parity, which means that the orbital angular momentum changes by one unit.

If the parity of the initial and final states are the same then the transition is still allowed,
but this means that the photon carries away the angular momentum by flipping the spin
of the nucleon that makes the transition. For this to happen the magnetic moment of the
nucleon interacts with the magnetic field component of the electromagnetic wave associated
with the emitted photon. This is called a “magnetic dipole transition” amplitude, and for
such a process the transition amplitude is suppressed relative to the amplitude for a typical
electric dipole transition by about a factor of

~c

mpR

which is about 0.1 for a nucleus of radius a few fm. (and therefore .01 suppression of the
decay rate).

Transitions between nuclear states in which the photon is required to carry off more than
one unit of angular momentum are permitted. This is because the photon can acquire orbital
angular momentum relative to the recoiling nucleus. Thus the total angular momentum
change, L in a nuclear transition can take the values

|Ii − If | ≤ L ≤ |Ii + If |,

where Ii and If are the initial and final nuclear spins. However there is a price to pay in
terms of transition rates. For each increase in L there is a suppression in the transition
amplitude of kR, because these higher multipole transitions arise from higher orders in the
expansion of exp(ik · r). For a nucleus of radius a few fm and a photon energy of 100 KeV
is a factor of 10−3 ( so a factor of 10−6 in the rate). There is a further suppression factor for
higher values of L. A transition will proceed by the lowest allowed value of L.

This is also subject to selection rules for th parity difference between initial and final
states, namely

∆P = (−1)L,

for electric transitions (written E{L}) with angular momentum L, and and

∆P = (−1)L−1,
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for the (even further suppressed) magnetic transitions.

Thus from the initial and final nuclear spins and parities we can determine the “multi-
polarity” of the transition and whether it is electric or magnetic.

Here are some examples

2+ → 1−, E1,

2+ → 1+, M1,

3+ → 1−, M2,

3+ → 1+, E2.

Most electromagnetic transitions from an excited state to the ground state have a lifetime
which is too short to be measured ( less than 1 µs). However, in the Shell Model the energy
levels sometimes arrange themselves such that there is a very high spin excited state next
to a low spin ground state or vice versa. Such a transition is only permitted by a high
multipolarity transition and therefore proceeds very slowly. The excited states then live long
enough for their lifetime to be measured and can even be as long a several years. An example
is the nuclide 137

56 Ba (barium) which has an excited state with spin and parity 11
2

−
next to

a ground state of 3
2

+
. The transition is M4 and the excited state has a mean lifetime of

around 200 s. These metastable excited states are called “isomers” and there are regions of
the Periodic Table known as “islands of isomers” where such metastable excited states are
quite common.

9.1 The Mössbauer Effect

In Atomic Physics, it is possible to excite atoms into their excited states by bombarding
them with photons with the resonant frequencies, i.e. with energies equal to the energies
between the ground state and the excited states.

In nuclei this is not usually possible. The reason for this is to with the small nuclear
recoil. The energy of the emitted photon, Eγ is not exactly equal to the excitation energy
E0. The photon carries momentum Eγ/c and so the recoiling nucleus must have equal and
opposite momentum . Consequently it acquires a recoil kinetic energy of

T =
E2

γ

2MNc2
,

where MN is the nuclear mass. The de-excitation energy E0 is the sum of the photon energy
plus this kinetic energy

E0 = Eγ +
E2

γ

2MNc2
,
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which has approximate solution

Eγ = E0

(

1− E0

2MNc2

)

For a photon of energy 100 KeV and a nucleus with A=100, this recoil energy is about 0.05
eV. Furthermore if we now use the emitted photon to bombard a similar nuclide with the
hope of exciting it, we find that the target nucleus also recoils so that the energy that it can
absorb in its own rest frame, E ′

0 is given by

E ′
0 = Eγ

(

1− E0

2MNc2

)

≈ E0

(

1− E0

MNc2

)

,

so that E ′
0 falls short of E0 by about 0.1 eV (in the above example).

This may not seem much for a photon of energy 100 KeV, but the problem is that even
for fast decaying excited states with lifetimes, τ , of about 10−12 s., the line-width is given by

Γ =
~

τ
≈ 10−3 eV,

so the difference between the excitation energy E0 and the energy E0 that the recoiling
nucleus can absorb is much larger larger than the width of the photon, thereby making the
absorption impossible.

The way out of this was discovered by Mössbauer. If the source and target nuclei are
both fixed in a crystal lattice then the recoil momentum can be taken up by the entire crystal
(who mass is many orders of magnitude larger than that of the nucleus) and the recoil energy
is negligible.

This is called the Mössbauer effect and it provides an extremely accurate method for
measuring the widths of nuclear transitions.

The source and target are both fixed to a crystal and if the source is stationary the
intensity of γ−rays reaching the detector is small because most of them are absorbed by the
target.
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If the source is moving by as little as a few cm per second there is an increase in the
intensity of γ-rays reaching the detector, because the Doppler effect of the γ-rays from the
source causes the incident photons to be just off-resonance. Line widths can be measured
this way to an accuracy of 10−5 eV. If the source is moved with velocity v then using the
Doppler shift the difference ∆λ between the wavelength of the emitted photon (in the rest
frame of th emitter) and the wavelength of the absorbed photon is

∆λ

λ
=

v

c
,

(we are able to use the non-relativitic Doppler effect for such small velocities). In terms of
photon energies we may write this as

∆E

E
=

v

c
.

Now if for this velocity the absorption has fallen to approximately one half of the peak
absorption (for v = 0) then this value of ∆E corresponds to the half width, 1

2
Γ of the

spectral line. Thus we end up with an expression for the line-width for a photon of energy
E

Γ = 2E
v1/2
c
,

where v1/2 is the velocity for which the absorption falls to one-half of its peak value.
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Chapter 10

Nuclear Fission

If we look again at the binding energies (per nucleon) for different nuclei, we note that the
heavier nuclei have a smaller binding energy than those in the middle of the Periodic Table.

This means that it is energetically favourable for a heavy nucleus ( with A greater than
about 100) to split into two fragments of smaller nuclei, thereby releasing energy which goes
into the kinetic energy of the fragments. This process is called “nuclear fission”.

If we also recall the stability curve, which plots the number of protons against the number
of neutrons for the stable nuclides
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we observe that the heavier nuclei prefer more neutrons (compared with the number of
protons) than the lighter ones. This tells us that along with the fission process there will be
some ‘spare’ neutrons emitted. These neutrons will also take up some of the energy released.
There are usually 3 or 4 neutrons emitted per fission reaction.

An example of nuclear fission is

238
92 U → 145

57 La + 90
35Br + 3n

Note that the fission fragments do not have atomic mass numbers close to one half of the
atomic mass number of the parent, but rather their atomic mass numbers are separated by
about 50. This is normally the case - ( the reason for this is not well-understood).

The binding energies of 238
92 U, 145

57 La and 90
35Br are 1803 Mev, 1198 MeV and 763 MeV

respectively. This means that this reaction releases 1198+763-1803 = 158 MeV of energy.

Such spontaneous fission processes are known in Nature, but they are very rare. The
mean lifetime for the above process is about 1017 years, compared to the mean lifetime for
α-decay from the same nuclide which is about 1011 years.

The reason for this is that in order to split into two parts the nucleus must first undergo
a deformation of its shape ( a ‘stretching’) into an ellipsoidal shape and then to develop a
‘neck’ in the middle before it finally breaks into two nuclei.

→ → →

s s
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In its deformed state there are two forces acting on the nucleus. One is an increased
surface energy (surface tension of a liquid drop - which explains why liquid drops are spher-
ical), and the other is the Coulomb repulsion between the fission fragments. Together these
produce a potential barrier.

As in the case of α-decay, for spontaneous fission to take place the fissions fragments
must undergo quantum tunnelling through this barrier. The height of the barrier is about 6
MeV. This is the same as the case for α-decay, but if we recall that the tunneling probabililty

T ∼ exp

{

−2

~

∫ R′

R

√

2M

(

ZZ ′

4πǫ0r
−Q

)

dr

}

,

where M is the mass of the emitted particle, we see that the tunnelling probability for
an α-particles is much larger than the probability for tunnelling of a much heavier fission
product.

Much more likely is induced fission. In this case the parent nucleus is bombarded with a
neutron. If the parent absorbs the neutron, the neutron binds to the parent, releasing energy
(the binding energy of the neutron) in the form of vibrational energy, which could be more
than the ≈ 6 MeV required to overcome the potential barrier.
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Where the binding energy of the extra neutron is insufficient to overcome the potential
barrier, the incident neutron needs to have a minimum kinetic energy in order to be able to
induce fission. In the case of 238

92 U (uranium) the binding energy of the extra neutron falls
about 1 MeV short of the required energy. This means simply that fission is only induced
by a neutron of kinetic energy greater than 1 MeV. On the other hand, the isotope 235

92 U
has one unpaired neutron. When the nucleus absorbs an extra neutron it pairs up with this
unpaired neutron and there is extra binding energy from the pairing term. This is sufficient
to release sufficient energy to give the nucleus sufficient vibrational energy to overcome the
potential barrier and fission occurs for this isotope for any incident neutron.

Despite the fact that three or four neutrons are emitted in the fission reaction, the fission
fragments still contain more neutrons than their stable isobars. This means that the fission
fragments are usually unstable against β-decay.

For example in the case of fission of 238
92 U, the stable isobar with A=145 is 145

60 Nd (neo-
dynium), which means that the fragment 145

57 La (lanthanum) decays in three steps emitting
and electron and an antineutrino at each step, until it reaches a stable nuclide. The stable
isobar of with A=90 is 90

40Zr (zirconium) so the fission fragment 90
35Br (bromine) decays in a

five stage β-decay chain.

These β-decay chains release further energy almost all of which is carried away by the
energies of the electrons and antineutrinos.

Direct emission of a neutron from a nuclide with too many neutrons for stability is unlikely
- the point here is that there is no Coulomb repulsion and so the surface energy tends to
keep the neutron bound to the parent. However, it does sometimes occur. For example,
the fission fragment 90

35Br produces 90
36Kr (krypton) in its first stage of β-decay, which can

be produced in an excited state with sufficient energy to overcome the surface energy. This
excited state can emit a neutron directly to become 89

36Kr. This isobar is still unstable against
β-decay the stable isobar being 89

39Y, so the 89
36Kr decays in three stages.
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The neutrons which are emitted in a fission reaction can be absorbed by another parent
nucleus which then itself undergoes induced fission. In the case of 238

92 U, however, the three
neutrons that emerge come out with an energy of less than 1 MeV (most of the 158 MeV
released in this reaction goes into the kinetic energy of the fission fragments), so that these
neutrons do not have enough energy to induce further fission of this nuclide. However, if
there is a substantial concentration of the rarer isotope 235

92 U, then these spare neutrons can
be captured by the nuclei of 235

92 U and this can indeed induce fission, because in this case
there is no energy threshold below which fission is not induced.

This is the principle of the “chain reaction”.

Let k be the number of neutrons produced in a sample of fissile material at stage n of
this chain divided by the number of neutrons produced at stage n − 1. This number will
depend on how many of the neutrons produced at stage n − 1 are absorbed by a nucleus
that can undergo induced fission.

• If k < 1 the the chain reaction will simply fizzle out and the process will halt very
quickly. This is what happens in natural uranium ore, in which the concentration of
235
92 U is so small that the probability of one of the neutrons produced is absorbed by
this isotope is very small.

• If k > 1, then the chain reaction will grow until all the fissile material is used up
(atomic bomb). This is achieved by enriching the natural ore so that there is a suffi-
ciently large concentration of 235

92 U. For a spherical sample the value of k grows as the
neutron absorption probability which grows with the radius of the sphere. The mass of
the uranium must therefore exceed some “critical mass” in order for the chain reaction
to occur.

• If k = 1 then we have a controlled reaction. This is needed in a nuclear reactor. The
absorption is controlled by interspersing the uranium with cadmium or boron rods
that absorb most of the neutrons (cadmium and boron have a high neutron capture
cross-section). The reaction is controlled automatically by moving the rods in and out
so that the value of k is kept equal to one.
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Chapter 11

Nuclear Fusion

If we look again at the binding energies (per nucleon) for different nuclei, we note also that
the lightest nuclei have a much smaller binding energy per nucleon than those in the middle
of the Periodic Table.

Much more energy per nucleon can be released by fusion of two of these light nuclei to
form a heavier nucleus, than in the case of fission.

For example, if we consider the fusion of a deuteron and a hydrogen nucleus into helium

2
1H + 1

1H → 3
2He + γ

The γ is emitted because the helium is formed in an excited state. The mass of a deuteron
is 3.34358 × 10−27 kg, that of a proton is 1.67262 × 10−27 kg, and for 3

4He the mass is
5.00832 × 10−27 kg. Using E = ∆mc2 where ∆m is the mass difference between the initial
and final states, and converting into MeV, we find that this reaction releases 4.4 MeV

E = (3.34358 + 1.67262− 5.00832)× 10−27kg × (3 · 108m/s)2/1.6021−19J/eV ≃ 4.4MeV
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which is carried off in the energy of the γ and the kinetic energy of the helium nucleus. The
energy released per fusion reaction is usually much less than that released in a typical fission
reaction. However, the energy released per nucleon and therefore the energy released per
unit mass is very much greater.

Many fusion reactions are a little more complicated than this, for the opposite reason
that fission products are unstable against β-decay. The fusion products usually have too few

neutrons to form a stable nucleus and one of the protons converts into a neutron, emitting a
positron and a neutrino. For example, there is no bound state of two protons, i.e. 2

2He does
not exist. Therefore for proton-proton fusion

1
1H + 1

1H → 2
1H + e+ + ν

Such fusion reactions do not occur spontaneously. The reason for this is that the nuclei
are positively charged so that they repel each other and they have to overcome the Coulomb
barrier in order to be able to get close enough to be able to fuse. An approximate estimate
of the energy required for two protons to fuse is

E =
e2

4πǫ0R

where R is a typical nuclear radius. Inserting 4 fm for this radius we get an energy of around
350 KeV.

In order for protons to have an average energy associated with the degree of freedom
corresponding to motion in the direction of the target proton, we would need a temperature
T such that

E =
1

2
kT

Putting in numbers we get a required temperature of 4× 109 K.

In practice, fusion can take place at temperatures which are considerably lower than this.
Fusion takes place in the core of the sun whose temperature is a mere 1.3×107 K. The reason
for this is twofold

1. The above calculation of temperature determines the average energy per proton. But
we know that these energies are distributed according to the Maxwell-Boltzmann dis-
tribution, which has a tail (albeit exponentially suppressed) and this tail means that
there are some particles whose energy is much larger than the average.

2. It is not necessary for the incident protons to have sufficient energy to overcome the
Coulomb barrier entirely. The protons can also get through the barrier by quantum
tunnelling, provided the barrier height is not too high above the kinetic energy of the
incoming particle.

The fusion in the sun and other stars, which is their source of energy, works in cycles. A
cycle is a series of stages of fusion in which the initial particles are protons, but in subsequent
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stages the product of a previous stage fusion can fuse with another proton to form yet another
fusion product. At the end of the cycle all the intermediate fusion products have disappeared
leaving a stable fusion product, usually 4

2He.

The most common such cycle is the so-called proton cycle:

1
1H + 1

1H → 2
1H + e+ + ν (×2)

1
1H + 2

1H → 3
2He + γ (×2)

3
2He + 3

2He → 4
2He + 1

1H + 1
1H

The third step in this cycle has as its initial state the result of two instances of the first
two steps. At the end of the cycle there is no 3

2He and if we balance the number of initial
and final protons we see that a net four protons have been turned into one 4

2He nucleus and
two positrons, two neutrinos and two photons:

411H →4
2 H + 2e+ + 2ν + 2γ

The total energy released by this process is 24.7 MeV (one can calculate it using m4
2
H =

6.64466× 10−27kg,me = 9.109× 10−31kg).

Other cycles also occur within the sun. An example is the carbon cycle

12
6 C + 1

1H → 13
7 N + γ

13
7 N → 13

6 C + e+ + ν
13
6 C + 1

1H → 14
7 N + γ

14
7 N + 1

1H → 15
8 O + γ

15
8 O → 15

7 N + e+ + ν
15
7 N + 1

1H → 12
6 C + 4

2He

Two steps are β-decays of fusion products which have too few neutrons for stability and
therefore one of the protons is converted into a neutron in the β-decay process. The 12

6 C is
regenerated and the net effect is again four protons have been turned into one 4

2He nucleus
and two positrons, two neutrinos and three photons, with total energy released by this
process is 24.7 MeV. The carbon is initially produced by the fusion of three 4

2He nuclei. The
fusion processes in the carbon cycle require more energy in order to overcome the Coulomb
barrier, and is therefore more likely at higher temperatures. On the other hand, once these
temperatures have been reached, this cycle is more likely than the proton cycle, because in
the proton cycle it is necessary for two 3He nuclei to fuse together - which is unlikely because
the 3He nuclei are produces from previous fusion processes and their density is low. The sun
is a relatively cool star for which the proton cycle dominates.

The γ-rays are initially produced at energies of around 1 MeV. They scatter against
other charged particles in the sun, losing energy at each scattering (Compton effect) and
eventually “thermalize”, i.e. they settle at an energy (wavelength) distribution which is the
black-body distribution at the temperature of the surface of the sun - a distribution with a
peak in the visible light range.
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For over fifty years a great deal of effort has been put into trying to produce the equivalent
environment of the core temperature of the sun, in order to be able to use fusion as an energy
source. The necessary temperatures have been achieved but usually for too short a time for
the fusion to take place.

In 1989 Pons and Fleischman (Southampton) announced that they had observed cold
fusion in a chemistry laboratory. It is now widely accepted that their interpretation of their
data was erroneous.

More recently it has been suggested that when small bubbles are adiabatically suppressed
they can reach very high temperatures forming a plasma. Certainly a light flash can be
observed from this plasma. In 2002 it was suggested by Taleyarkhan and collaborators that
the temperature could reach that required for fusion and that a γ-ray emission was observed.
The experiment has recently been repeated by Suslick et. al. who have cast doubt as to
whether this γ-ray is indeed associated with fusion. More information about this can be
found at the Website
http://www.nature.com/news/2005/050228/full/050228-7.html
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Chapter 12

Charge Independence and Isospin

If we look at mirror nuclei (two nuclides related by interchanging the number of protons and
the number of neutrons) we find that their binding energies are almost the same.

In fact, the only term in the Semi-Empirical Mass formula that is not invariant under Z
↔ (A-Z) is the Coulomb term (as expected).

B(A,Z) = aV A − aS A
2/3 − aC

Z2

A1/3
− aA

(Z −N)2

A
+

(

(−1)Z + (−1)N
)

2

aP
A1/2

Inside a nucleus these electromagnetic forces are much smaller than the strong inter-nucleon
forces (strong interactions) and so the masses are very nearly equal despite the extra Coulomb
energy for nuclei with more protons.

Not only are the binding energies similar - and therefore the ground state energies are
similar but the excited states are also similar.

As an example let us look at the mirror nuclei (Fig. 12.2) 7
3Li and

7
4Be, where we see that

for all the states the energies are very close, with the 7
4Be states being slightly higher because

it has one more proton than 7
3Li.

All this suggests that whereas the electromagnetic interactions clearly distinguish between
protons and neutrons the strong interactions, responsible for nuclear binding, are ‘charge
independent’.

Let us now look at a pair of mirror nuclei whose proton number and neutron number
differ by two, and also the nuclide between them. The example we take is 6

2He and 6
4Be,

which are mirror nuclei. Each of these has a closed shell of two protons and a closed shell of
two neutrons. The unclosed shell consists of two neutrons for 6

2He and two protons 6
4Be. the

nuclide ‘between’ is 6
3Li which has one proton and one neutron in the outer shell.

From the principle of charge independence of the strong interactions we might have
expected all three nuclides to display the same energy-level structure. We see that although
there are states in 6

3Li which are close to the states of the mirror nuclei 6
2He and 4

2Be, there
are also states in 6

3Li which have no equivalent in the two mirror nuclei.

We can understand this from the Pauli exclusion principle. In the case of 6
2He and 4

2Be
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Figure 12.1: Energy states for the mirror nuclei (Fig. 12.2) 7
3Li and

7
4Be.

which have either two protons or two neutrons in the outer shell, these cannot be in the same
state (with the same spin), whereas in the case of 6

3Li for which the nucleons in the outer
shell are not identical, this principle does not apply and there are extra states, in which the
neutron and proton are in the same state.

12.1 Isospin

We can express this is a more formal (mathematical), but useful way by introducing the
concept of “Isospin”.

If we have two electrons with z- component of their spin set to sz = +1
2
and sz = −1

2

(in units of ~) then we can distinguish them by applying a (non-uniform) magnetic field in
the z-direction - the electrons will move in opposite directions. But in the absence of this
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Figure 12.2: Energy states for 6
2He,

7
3Li and

6
4Be.

external field these two cannot be distinguished and we are used to thinking of these as two
states of the same particle.

Similarly, if we could ‘switch off’ electromagnetic interactions we would not be able to
distinguish between a proton and a neutron. As far as the strong interactions are concerned
these are just two states of the same particle (a nucleon).

We therefore think of an imagined space (called an ‘internal space’) in which the nucleon
has a property called “isospin”, which is mathematically analogous to spin. The proton and
neutron are now considered to be a nucleon with different values of the third component of
this isospin.

Since this third component can take two possible values, we assign I3 = +1
2
for the proton

and I3 = −1
2
for the neutron. The nucleon therefore has isospin I = 1

2
, in the same way that

the electron has spin s = 1
2
, with two possible values of the third component.

As far as the strong interactions are concerned this just represents two possible quantum
states of the same particle. If there were no electromagnetic interactions these particles
would be totally indistinguishable in all their properties - mass, spin etc.
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In the same way that angular momentum is conserved, isospin is conserved in any transi-
tion mediated by the strong interactions. This is an example of an approximate symmetry -
inside the nucleus the strong forces between nuclei do not distinguish between particles with
different third component of isospin and would lead to identical energy levels, but there are
electromagnetic interactions which break this symmetry and lead to small differences in the
energy levels of mirror nuclei.

The electromagnetic interactions couple to the electric charge, Q, of the particles and in
the case of nucleons this electric charge is related to the third component of isospin by

Q = I3 +
1

2

Other particles can also be classified as isospin multiplets. For example there are three
pions, π+

, π
0, π−, which have almost the same mass and zero spin etc. There are three of

them with different charges but which behave in the same way under the influence of the
strong interactions. Therefore they form an isospin multiplet with I = 1 and three possible
third components, namely +1, 0 − 1. In the case of pions the electric charges are equal to
I3.

Particles which are members of an isospin multiplet have the same properties, with the
exception of their electric charge, i.e. they have the same spin and almost the same mass (the
small mass differences being due to the electromagnetic interactions which are not isospin
invariant. We will see later that particles can have other properties (call “strangeness”,
“charm” etc.) and members of an isospin multiplet will have the same values of these
proerties as well.

In the same way that two electrons can have a total spin S = 0 or S = 1, two nucleons
can have a total isospin I = 0 or I = 1, and (systems of n nucleons can have isospins up to
n/2). For two electrons we may write the total wavefunction as

Ψ12 = Ψ(r1, r2)χ(s1, s2),

where χ(s1, s2) is the spin part of the wavefunction. For S = 1 we have

χ(s1, s2) = (↑↑) , Sz = +1

χ(s1, s2) =
1√
2
(↑↓ + ↓↑) , Sz = 0

χ(s1, s2) = (↓↓) , Sz = −1

which is symmetric under interchange of the two spins, which means that by fermi statistics
the spatial part of the wavefunction must be antisymmetric under the interchange of the
positions of the electrons,

Ψ(r1, r2) = −Ψ(r2, r1),

or for the case of S = 0,

χ(s1, s2) =
1√
2
(↑↓ − ↓↑) ,
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which is antisymmetric under interchange of spins so it must be accompanied by a symmetric
spatial part of the wavefunction

Ψ(r1, r2) = +Ψ(r2, r1).

In the case of two nucleons we also have a total isospin part of the wavefunction, so the
complete wavefunction is

Ψ12 = Ψ(r1, r2)χS(s1, s2)χI(I1, I2),

where χI(I1, I2) is the isospin part of the wavefunction. For total isospin I = 1 we have

χI(I1, I2) = (p p) , I3 = +1

χI(I1, I2) =
1√
2
(p n + n p) , I3 = 0

χI(I1, I2) = (n, n) , I3 = −1,

which is symmetric under the interchange of the isospins of the two nucleons, so that (as in the
case of two electrons) it must be accompanied by a combined spatial and spin wavefunction
that must be antisymmetric under simultaneous interchange of the two positions and the
two spins. But we also have the I = 0 state

χI(I1, I2) =
1√
2
(p n − n p) ,

which is antisymmetric under the interchange of the two isospins and therefore when the
nucleons are combined in this isospin state they must be accompanied by a combined spa-
tial and spin wavefunction which is symmetric under simultaneous interchange of the two
positions and the two spins.

Returning to the three nuclei 6
2He and 6

4Be and 6
3Li, the closed shells of neutrons and

protons have a total isospin zero so we do not need to consider these in determining the
isospin of the nuclei. We note that 6

2He has two neutrons in the outer shell so its isospin
must be I = 1, with I3 = −1 whereas the 6

4Be has two protons in the outer shell so its
isospin must be I = 1, with I3 = +1 implying that for these two nucleons the remaining
part of the wavefunction (spatial and spin parts) must be antisymmetric under simultaneous
interchange of the two positions and the two spins. On the other hand, the nucleus 6

3Li has
one proton and one neutron in the outer shell and can therefore be either in an I = 1 state
like the other two nuclei or in an I = 0 state which is not possible for the other two. The
strong interactions will give rise to different energy levels depending on the total isospin of
the nulceons in the outer shell (in the same way that atomic energy levels depend on the total
angular momentum J). Thus we see that two of the states shown for 6

3Li can be identified
as I = 1 states and they approximately match states for the other two nuclei, but the others
are I = 0 states and have no counterpart in 6

2He or 6
4Be, and which have wavefunctions that

are symmetric under the simultaneous interchange of the positions and the spins of the two
nucleons in the outer shell.
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The fact that the ground states of 6
2He and 6

4Be have spin zero and the ground state
of 6

3Li has spin one, can be deduced from the isospin of these ground states. For ground
state wavefunctions the orbital angular momentum, l, is zero and since the symmetry of the
spatial part of the wavefunction is given by (−1)l, this means that the spatial part of the
wavefunction is symmetric under the interchange of the positions of the two nucleons in the
outer shell. Since we know that the overall wavefunction for the two nucleons in the outer
shell must be antisymmetric under interchange, because the nucleons are fermions, it follows
that the isospin part and the spin part of the wavefunction must have opposite symmetry.
Thus for the ground states of 6

2He and 6
4Be, which are in I=1 (symmetric) isospin states,

the spin part of the wavefunction must be antisymmetric and therefore the spins of the two
outer shell nucleons must combine to give spin S = 0, whereas for the ground state of 6

3Li
which is from the experiment known to be in an I=0 (antisymmetric) isospin state, the
spin part of the wavefunction must be symmetric and therefore the spins of the two outer
shell nucleons must combine to give spin S = 1.
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Chapter 13

Accelerators

Particles physics, also known as ‘high energy physics’ is the study of the fundamental forces
of nature and the particles that can be found at very high energies.

The most massive particles that has been discovered so far are W -boson with a mass
of 80.4 GeV/c2, Z-boson with a mass of 91.2 GeV/c2, and top-quark with a mass of 172.0
GeV/c2. All these particles are 100 times heavier than the proton. So we need a really high
energy to produce these particles.

Another way of seeing that we need high energies is to note that we wish to probe very
short distances. At the very least we want to probe distances which are small compared with
a typical nuclear radius, i.e.

x ≪ 1 fm = 10−15m

In order to do this the uncertainty in the position, ∆x must be much smaller than 1 fm, and
by Heisenberg’s uncertainty principle

∆x∆p ≥ ~/2

the uncertainty in momentum ∆p must obey the inequality

∆p ≫ ~

1 fm
= 197MeV/c.

This in turn means that the momenta of the particle used as a probe must have a momentum
much larger than this, and hence an energy large compare with ≈ 200 MeV.

In fact, the weak interactions have a range which is more than two orders of magnitude
shorter than this and so particles used to investigate the mechanism of weak interactions
have to have energies of at least 100 GeV.

In order to achieve these very high energies particles are accelerated in “accelerators”.
Incident particles are accelerated to these high energies and scattered against another par-
ticle. There is enough energy to smash the initial particles up and produce many other
particles in the final state, some of them with considerably higher masses than the incident
particles. Such scattering is called “inelastic scattering” (conversely a scattering event in
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which the final state particles are the same as the initial particles is called “elastic scatter-
ing”. Rutherford scattering or Mott scattering are examples of elastic scattering.) The word
‘elastic’ here means that none of the incoming energy is used up in the production of other
particles.

In elastic scattering we talk about a differential cross-section (with respect to solid angle),
which is the number of particles per incident flux in a given element of solid angle. For in-
elastic events we can talk about the total cross-section for a particular process. For example,
at the LEP accelerator (electron-positron scattering) at CERN one possible process was

e+ + e− → W+ + W−,

in which the electron and positron annihilate each other and produce two W -bosons instead.
The W -boson has a mass of 80.4 GeV/c2, so that total centre-of-mass energies of over 160
GeV are required for this process to take place. The cross-section σ(e+e−→W+W−) is the total
number of events in which twoW -bosons are produced per unit incident flux (i.e. the number
of W -boson pairs produced divided by the number of particle scatterings per unit area)

It is now believed that there exist particles with masses which are an order of magnitude
larger than this and modern accelerators can achieve energies of up to 1 TeV (1012 eV).
This new energy frontier and respectively new small distances can be probed by presently
the most powerful accelerator in the world – the Large Hadron Collider (LHC) – at CERN
which has resumed running in November 2009 with energy 7.5 TeV.

13.1 Fixed Target Experiments vs. Colliding Beams

The total energy of a projectile particle plus the target particle depends on the reference
frame. The frame that is relevant for the production of high mass particles is the centre-of-
mass frame for which the projectile and target have equal and opposite momentum p. For
simplicity let us suppose that the projectile and target particle are the same, or possibly
particle antiparticle (e.g. proton-proton, proton-antiproton, or electron-positron) so that
their masses, m are the same. This means that in this frame both the particle have the same
energy, ECM (since we are usually dealing with relativistic particles, this means kinetic plus

rest energy.)

Let us construct the quantity

s =

(

∑

i=1,2

Ei

)2

−
(

∑

i=1,2

pi

)2

c2

In the centre-of-mass frame, where the momenta are equal and opposite the second term
vanishes and we have

s = 4E2
CM ,

i.e. s is the square of the total incoming energy in the centre of mass frame - this is a
quantity that is often used in particle physics and the notation s is always used. For one
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particle we know that E2 − p2c2 is equal to m2c4 and is therefore the same in any frame of
reference even though the quantities E and p will be different in the two frames. Likewise
the above quantity, s, is the same in any frame of reference (we say that ‘it invariant under
Lorentz transformations.’)

In the frame in which the target particle is at rest, its energy is mc2 and its momentum
is zero, whereas the projectile has energy ELAB and momentum pLAB so that we have

s =
(

ELAB +mc2
)2 −p2

LABc
2 = E2

LAB+m
2c4+2mc2ELAB −p2

LABc
2 = 2m2c4+2mc2ELAB,

where in the last step we have used the relativity relation

E2
LAB − p2

LABc
2 = m2c4.

Equating the two expressions for s (and taking a square root we obtain the relation

√
s = 2ECM =

√

2m2c4 + 2mc2ELAB.

For non-relativistic incident particles with kinetic energy T ≪ mc2 for which ELAB =
mc2 + T , this gives √

s = 2ECM = 2mc2 + T,

as expected, but for relativistic particles the centre-of-mass energy is considerably reduced.
For example, taking the proton mass be be approximately 1 GeV/c2, the if we have an
accelerator that can accelerate protons up to an energy of 100 GeV, the total centre-of-mass
energy achieved is only about 15 GeV - far less than the energy required to produce a particle
of mass 100 GeV/c2.

The solution to this problem is to use colliding beams of particles. In these experiments
both the initial particles involved in the scattering emerge from the accelerator and are then
stored in storage rings, in which the particles move in opposite directions around the ring,
with their high energies maintained by means of a magnetic field. At various point around
the rings the beams intersect and scattering takes place. In this way the laboratory frame
is the centre-of-mass frame and the full energy delivered by the accelerator can be used to
produce high mass particles.

13.2 Luminosity

The luminosity L is the number of particle collisions per unit area (usually quoted in cm2)
per second. The number of events of a particular type which occur per second is the cross-
section multiplied by the luminosity. In the example of two W -boson production at LEP
the cross-section, σ(e+e−→W+W−) is 15 pb (p=pico means 10−12) and the luminosity of LEP
was 1032 per cm2 per second. The number of these pairs of W -bosons produced per second
is given by

dNW+W−

dt
= (15× 10−12 × 10−28)× (1032 × 104) = 1.5× 10−3,
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where the first term in parenthesis is the cross-section converted to m2 and the second is the
luminosity converted to m−2 sec−1. So, the general formula for reaction rate, R = dN/dt is

R = σ ×L
while for integrated luminosity over the time L =

∫

Ldt the number of events, N , we will
observe is given by

N = σ × L

.

L is proportional to the number ’bunches’ of particles in each beam, n (typically 5-100),
the revolution frequency, f(kHz-MHz), N1, N2 – the number of particles in each bunch
(≃ 1010 − 1011) and inversely proportional to the bean cross section, A (µm2):

L =
nfN1N2

A

As in the case of radioactivity the cross-section is a probability for a particular event and
the actual number of events observed is a random distribution with that probability. If a
cross-section predicts N events over a given time-period, the error on that number is

√
N

(this means that there is a 68% probability that the number of events observed will lie in the
region N −

√
N to N =

√
N). To be able to measure the above cross-section at LEP to an

accuracy of 1% it was necessary to collect 10000 such W -pairs, which, at a rate of 1.5×10−3

per sec., took about three months.

We pay a price for colliding beam experiments in terms of luminosity. For a fixed target
experiment we can make an estimate of the luminosity in the case of proton-proton scattering
from the fact that the incident particles are travelling almost with the speed of light. The
luminosity is given by the number of protons in a column of the target of unit area and length
c. For a solid whose density is 104 kgm−3, and assuming that about one half of the target
material consists of protons of mass 1.67 × 10−27 kg, this comes out to about 1035 per cm2

per sec. In colliding beams it is necessary to focus the incident beams as tightly as possible
using magnetic fields, in order to maximize the luminosity. So far, luminosities of 1032 per
cm2 per sec. have been achieved, which means the reaction rate is down by three orders of
magnitude compared with a fixed target experiment. However, the LHC is designed to reach
a luminosity of 1034 per cm2 per sec. - i.e luminosities within an order of magnitude of that
obtained in fixed target experiments.

13.3 Types of accelerators

As we have discussed, the general aim of accelerators is to collide two particles at high(est)
energy and create new particles from combined energy and quantum numbers or to probe
inside one of the particles to see what it is made of.

Only stable charged particles can be accelerated: such as electrons, positrons, protons,
anti-proton and some ions. Potentially, the long-lived particles such as muon (τ ≃ 2×10−6s)
were discussed to be used in the future muon collider.
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Single DC stage accelerators such as the Van de Graaff Generator can accelerate electrons
and protons upto about 20 MeV.

There are two general types of modern accelerators – Circular (Cyclic) and Linear.

13.3.1 Cyclotrons

The prototype design for all circular accelerators is the cyclotron.

This is a device in which the (charged) particles to be accelerated move in two hollow
metallic semi-disks (D’s) with a large magnetic field B applied normal to the plane of the
D’s. The particles move in a spiral from the center and an alternating electric field is applied
between the D’s whose frequency is equal to the frequency of rotation of the charged particles,
such that when the particles crosses from one of the D’s to the other the electric field always
acts in the direction which accelerates the particles.

A charged particle with charge e moving with velocity v in a magnetic field B experiences
a force F, where

F = qv ×B.

When the magnetic field is perpendicular to the plane of motion of the charged particle, this
force is always towards the centre and gives rise to centripetal acceleration, so that at the
moment when the particles are moving in a circle of radius r

F = B e v = m
v2

r
.

We see immediately that the angular velocity ω = v/r is constant, so that the frequency of
the alternating electric field remains constant. The maximum energy that the particles can
acquire depends on the radius, R, for which the velocity has its maximum value vmax,

vmax =
BeR

m
,

leading to a maximum kinetic energy

Tmax =
1

2
mv2max =

B2e2R2

2m
.
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This works fine if the energy of the particle remains non-relativistic. However, in high
energy accelerators the particles are accelerated to energies which are extremely relativistic
- the particles are travelling very nearly with the velocity of light (at the LHC v/c will be
1− 10−15 !). Taking relativistic effects into account The angular velocity is now

ω =
√

1− v2/c2
Be

m
.

This means that as the particles accelerate, either the frequency of the applied electric field
must vary - such machines are called “synchrocyclotrons” - or the applied magnetic field
must be varied (or both) - such machines are called “synchrotrons”.

At Synchrotron dipole magnets keep particles in circular orbit using p = 0.3×B ×R (p
in GeV/c, B in Tesla, R in meters), while quadrupole magnets used to focus the beam.

Since the bending field B is limited then the maximum energy is limited by the size of the
ring. The CERN SPS (Super Proton Synchrotron) has a radius R = 1.1Km and a momentum
of 450 GeV/c. Particles are accelerated by resonators (RF Cavities). The bending field B
is increased with time as the energy (momentum p) increases so as to keep R constant
[p = 0.3BR]. Electron synchrotrons are similar to proton synchrotrons except that the
energy losses are greater.

One of the main limiting factors of synchrotron accelerators is the Synchrotron Radiation.
A charged particle moving in a circular orbit is accelerating (even if the speed is constant)
and therefore radiates. The energy radiated per turn per particle is:

∆E =
4πe2β2γ4

3R

where e is the charge, β = v/c and γ = 1/
√

1− β2 = E/m, from which follows that

∆E ∝ 1/m4

For relativistic electrons and protons of the same momentum the ratio of energy losses are
very large for electrons versus protons:

∆Ee

∆Ep
=

(

mp

me

)4

≃ 1013

.
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13.3.2 Linear Accelerators

The energy loss due to synchrotron radiation, can be avoided in a linear accelerator. In such
a machine the particles are accelerated by means of an applied electric field along a long a
tube.

Proton Linear Accelerators (Linacs) use a succession of drift tubes of increasing length
(to compensate for increasing velocity).

Particles always travel in vacuum. There is no field inside the drift tubes. External field
between ends of tubes changes sign so proton always sees −ve in front and +ve behind.
Proton linacs of 10-70m give energies of 30 to 200 MeV. Usually used as injectors for higher
energy machines. Above a few MeV, electrons travel at speed of light. The ’tubes’ become
uniform in length and microwaves provide by Klystrons provide accelerating potential.

The largest linear collider in existence is SLAC (Stanford Linear Collider Center) in Cali-
fornia. This is 3 km. long and accelerates both electrons and positrons up to energies of
50 GeV. It is able to accelerate both electrons and positrons simultaneously by sending an
electromagnetic wave in the microwave band along the beam pipe and injecting bunches of
electrons and positrons which are precisely one half wavelength apart, so that the electric
field acting on the positrons is in the forward direction and so accelerates the positrons in
the forward direction, whereas the electric field acting on the electrons is in the backwards
direction, but because the electrons have negative charge they are also accelerated in the
forward direction.
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At the end of the tube the electrons and positrons are stored in a storage ring (they go around
the storage ring in opposite directions under the influence of the same magnetic field) and
there are intersection points where electron-positron scatterings occur.

There are plans (awaiting international approval) to build a much larger linear collider
(known as ILC - the International Linear Collider) which will have a total centre-of-mass
energy of 500 GeV (or perhaps even 1 TeV).

13.4 Main Recent and Present Particle Accelerators

Here are some of today’s main accelerator laboratories.

• FermiLab:

Situated just outside Chicago this is now running the Tevatron in which protons and
antiprotons are each accelerated to an energy of 1.96 TeV and then move around a
ring of circumference 6 km. This is a synchrotron in which very high magnetic fields
are achieved using superconducting (electro-)magnets, which are capable of maintain-
ing very large currents thereby producing large magnetic fields. The luminosity is
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1032 cm−2 sec−1

• CERN:
Situated just outside Geneva, until 2001 the main experiment was LEP in which elec-
trons and positrons were each accelerated to an energy of about 100 GeV, and had a
luminosity of 1032 cm−2 sec−1. This was the largest electron synchrotron in the world
with a circumference of 27 km.

The next project at CERN is the LHC has started in September 2008. After an acci-
dent in October 2008, LHC has resumed its operation in November 2009 and now it is
colliding protons against protons with energies 3.5TeV×3.5TeV resulting to a total cms
energy of 7 TeV. Using a specially designed magnetic field configuration, two beams of
protons moving in opposite direction around the same ring is possible. In the future,
protons will each be accelerated to 7 TeV and the design luminosity is 1034 cm−2 sec−1.

• DESY:
Situated just outside Hamburg, this laboratory is running the HERA accelerator which
accelerated protons to an energy of 820 GeV and electrons (or positrons) to 27 GeV.
It is the only accelerator in which the initial particles are not the same - or particle-
antiparticle pairs.

Table below presents summary on present and recent colliders as well as comparison of
electron and proton accelerators.
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Chapter 14

Fundamental Interactions (Forces) of
Nature

Interaction Gauge Boson Gauge Boson Mass Interaction Range
(Force carrier)

Strong Gluon 0 short-range (a few fm)
Weak W±, Z MW = 80.4 GeV/c2 short-range (∼ 10−3 fm)

MZ = 91.2 GeV/c2

Electromagnetic Photon 0 long-range
Gravity Graviton 0 long-range

Gravity is by far the weakest interaction. The gravitational force between two protons
is about 10−9 of the electromagnetic force between them. We shall not discuss gravity
further in these lectures. [Experiments designed to investigate the theory of gravity (General
Relativity), are astronomical observations - the other end of the magnitude scale from particle
physics.]

14.1 Relativistic Approach to Interactions

Electromagnetic Interaction:

pi

pf

Potential of a particle of charge e located at r, due to another charge e′ (fixed) at the
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origin is

V (r) =
ee′

4πǫ0r

If this charge has initial momentum pi and final momentum pf , its initial and final
(time-independent) wavefunctions are given by

Ψi ∝ eipi·r/~

Ψf ∝ eipf ·r/~

The amplitude for such a transition is

A =

∫

Ψ∗
fV (r)Ψid

3r ∝ ee′
∫

ei(pi−pf )·r/~1

r
d3r.

Performing the integral (this is a Fourier transform) we get

A ∝ ee′

−|q|2 ,

where q = pf − pi, is the momentum transferred from the scattered charged particle to the
charge at the origin. (We have seen this in the Rutherford scattering formula where the
cross-section is proportional to 1/|q|4, so that the amplitude is proportional to 1/|q|2).

For the scattering of a relativistic particle, this expression is modified to

A ∝ ee′

(q20 − |q|2) ,

where q0 = (Ef − Ei)/c, with Ei and Ef being the initial and final energy of the scattered
particle. (In the non-relativistic limit (Ef −Ei)/c≪ |pf − pi| so q20 is negligible.)

The interpretation of this process is that a photon, which is the ‘carrier’ of the electro-
magnetic interactions, with energy c q0 and momentum q, is exchanged between the two
charged particles. The electric charges e and e′ measure the strengths of the coupling of the
charged particles to the photon, and the quantity

D(q0,q) =
1

q20 − |q|2 (14.1.1)

is the amplitude for the propagation of a photon whose energy is c q0 and whose momentum
is q. This is known as a “propagator”.

Recall that (Ef −Ei)
2 − |pf − pi|2c2 = c2(q20 − |q|2) is invariant under Lorentz transfor-

mations and so this propagator is the same in any reference frame.

In relativity, we cannot really talk about a ‘potential’ since this implies some sort of
instantaneous action at a distance. The relativistic approach to all interactions is via the
exchange of a “gauge boson” which carries the interaction between the particles that are
interacting. The interaction between the interacting particles and the gauge bosons are
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always local in space and time. Particles can only influence each other at a distance because
gauge bosons are emitted by one of the particles, they propagate through space-time, and
are then absorbed by the other interacting particle.

There is a classical picture of this. Two people who throw a ball to each other back and
forth will experience a repulsive force - there is no action at a distance but only an exchange
of ‘particles’ that carry momentum.

14.2 Virtual particles

For a photon of energy c q0 and momentum q we have the relation, q0 = |q|, so one would
think that the propagator defined in eq.(14.1.1) would diverge.

We are rescued by Heisenberg’s uncertainty principle that tells us that over a sufficiently
short period of time there is an uncertainty in energy. This means that if a particle only exists
for a very short time we no longer have the usual relation between energy and momentum

E2 = |p|2c2 + m2c4

and in the case of the photon this means q0 6= |q|. Such particles, which are exchanged
rapidly between other particles, are called “virtual particles” and because their energy and
momentum do not obey the relativistic energy-momentum relation they are said to be “off
mass-shell”.

14.3 Feynman Diagrams

We can ‘unpin’ the charge at the origin and use these techniques to calculate the scattering
amplitude for the scattering of a particle of charge e1 and incoming energy and momentum,
(E1

i ,p
1
i ) against a particle with charge e2 and incoming energy and momentum (E2

i ,p
2
i ) to

form final state energies and momenta (E1
f ,p

1
f) and (E2

2 ,p
2
f). We represent this process

diagrammatically as
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γ (q0,q)

(E1
i ,p

1
i )

(E1
f ,p

1
f)

(E2
i ,p

2
i )

(E2
f ,p

2
f)

This is known as a “Feynman diagram” (or “Feynman graph”). The amplitude for the
process is obtained by applying a set of “Feynman rules” for each vertex and internal line.
The full set of Feynman rules takes into account the spins of the external and internal
particles (gauge bosons, such as photons have spin one) - these are beyond the scope of these
lectures.

Some of the Feynman rules in the case of electromagnetic interactions are:

• A factor of the charge at each vertex between a charged particle and a photon.

• Energy and momentum are conserved at each vertex.

• A factor of

D(q0,q) =
1

(q20 − |q|2)
for the propagation of an internal gauge boson with energy c q0 and momentum q.

In the above example we have (by conservation of energy and momentum at each vertex)

q0 = (E1
f −E1

i )/c = (E2
f − E2

i )/c

q = p1
f − p1

i = p2
f − p2

i ,

so that the amplitude is proportional to

e1e2
(q20 − |q|2) =

e1e2
(E1

f − E1
i )

2/c2 − |(p1
f − p1

i )|2
.
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We can turn these diagrams on their side and consider the annihilation of a particle and
its antiparticle. For example, the process

e+ + e− → µ+ + µ−,

( the muons, µ± are more massive copies of the electron or positron, with the same electric
charge, e)

The Feynman diagram for this process is

(Ee−,pe−)

(Ee+ ,pe+)

(Eµ− ,pµ−)

(Eµ+ ,pµ+)

Note the convention that the direction of the arrow on the antiparticles, e+ and µ+ are
drawn against the direction of motion of the particles.

In this case the energy and momentum carried by the gauge boson are the sum of the
initial (or final) energies and momenta

q0 = (Ee− + Ee+)/c = (Eµ− + Eµ+)/c

q = (pe− + pe+) = (pµ− + pµ+)

so that the amplitude is proportional to

e2

(Ee− + Ee+)2/c2 − |(pe− + pe+)|2
.

In the centre-of-mass frame of the incoming electron-positron pair (e.g. in the lab. frame of
LEP) (pe− + pe+) = 0 and (Ee− + Ee+) is the total centre-of-mass energy, which we denote
as

√
s so that (absorbing a factor of c2 into the constant of proportionality) we have

A ∝ e2

s
.

14.4 Weak Interactions

The gauge bosons (interaction carriers) of the weak interactions are W± and Z. the fact
that the W -bosons carry electric charge tells us that electric charge can be exchanged in
weak interaction processes, which is how we get β-decay.

The Feynman diagram for the process

n → p + e− + ν̄
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is

W−

n

p

e−

ν̄

(note that once again the direction of the arrow on the antineutrino is opposite to the
direction of the antineutrino.)

What is happening is that the neutron emits a W− and is converted into a proton (we
will see later that the neutron and proton are not point particles but are made up of quarks,
so that it is actually a d-quark, whose electric charge is −1

3
e, that is converted into a u-quark,

whose charge is +2
3
e). At the other end (after the W− has propagated) the W− decays into

an electron and an antineutrino.

The equivalent of the electric charge in weak interactions is a coupling, gW , which indi-
cates the strength of the coupling of the weakly interacting particles to the W -bosons and
is approximately twice the electron charge (the coupling to the neutral Z-boson is almost
equal to this value).

The W− has a mass MW = 80.4GeV/c2 and for the propagation of a massive particle,
the propagator is

DW (q0,q) =
1

q20 − |q|2 −M2
W c

2
,

where again c q0 and q are the energy and momentum difference between the incoming
neutron and outgoing proton and are transferred to the electron antineutrino pair. (c q0 is
the Q-value of the decay). Once again if the W -boson were a real particle we would have
q20 − |q|2 −M2

W c
2 = 0 and the propagator would diverge. However, in this process the W -

boson propagates for a very short time before decaying into the electron and antineutrino-
it is a virtual particle and therefore off mass-shell so that this energy momentum relation is
violated by virtue of the uncertainty principle.

The amplitude for this decay is therefore proportional to

g2W
q20 − |q|2 −M2

W c
2

If we take the non-relativistic limit we may neglect q20 compared with |q|2 and this amplitude
can be viewed as the matrix element of a weak potential, V wk, between the initial (neutron)
state with momentum pn and final (proton) state momentum pp, with q = pp − pn i.e.

g2W
−|q|2 −M2

W c
2

=

∫

e−ipp·r/~V wk(r)eipn·r/~d3r
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The potential for which this relation is obeyed is

V wk(r) =
g2W
r

exp(−MW cr/~)

Such a potential is called a Yukawa potential (originally proposed by Yukawa as a description
of the strong interactions mediated by pions - the mass of theW - in the above formula would
then be replaced by the pion mass - this picture of the strong interactions is now obsolete).

As well as decreasing as 1/r (like the Coulomb potential) this has an exponentially
suppressed term for large values of r. The effective force therefore has a range R, where

R ∼ ~

MW c
.

At distances much larger than this the potential is rapidly suppressed. This is an extremely
short range (about 10−3 fm.)

Returning to the amplitude in terms of the energy and momentum transferred, in the
case of β-decay the momentum transferred (a few MeV/c) is very small compared with
MW c which is 80.4 GeV/c so we can also neglect the momentum term and approximate the
amplitude by

−g2W
M2

W c
2

Because of the very large mass of the W -boson this is extremely small and it is the reason
that weak interactions are actually so weak.

We see that in general an interaction for which the gauge boson is massive has a range
which is inversely proportional to the mass of the gauge boson, whereas interactions for
which the gauge boson is massless are long range - meaning that the potential only falls as
1/r.

14.5 Strong Interactions

The strong interaction is an exception to this rule. The gauge bosons (gluons) are massless
and yet the strong interactions have a range of only a fm. The reason for this is due to a
phenomenon known as “quark confinement”, which will be discussed later. The essential idea
is that the couplings of the strongly interacting particles to the gluons, which binds these
strongly interacting particles together, grows as the distance between the particles increases
- making it impossible to separate the particles to very large distances.
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Chapter 15

Classification of Particles

Particle Strong Weak Electromagnetic Spin
type interaction interaction interaction

Leptons No Yes Some 1
2

Mesons Yes Yes Yes integer
Hadrons Baryons Yes Yes Yes half-integer

Interaction carriers

Interaction Gauge-boson

strong gluon
weak W±, Z

electromagnetic photon (γ)

15.1 Leptons

The electron and the neutrino are leptons. They partake in the weak interactions and
the electron, being electrically charged, also has electromagnetic interactions. They do not

interact strongly and are not found inside the nucleus.

In terms of coupling to gauge bosons, this means that they both couple to W±- and
Z-bosons and the electron couples to the photon. There is no coupling between leptons and
gluons.

Nature gives us three copies of each “family” or “generation” of particles. There are,
therefore, two particles with similar properties to the electron (electric charge −e, spin-1

2
,

weakly interacting but not strongly interacting). These are called the muon (µ) and the tau
(τ). Each of these has its own neutrino, νµ and ντ respectively.

Thus the six leptons are
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Leptons Electric Charge
νe νµ ντ 0
e µ τ -1

The electron has a mass of 0.511 Mev/c2, the muon a mass of 106 Mev/c2 and the tau a
mass of 1.8 Gev/c2. The heavier charged leptons can decay via the weak interactions into an
electron a neutrino and an anti-neutrino. The charged lepton emits a W− and converts into
its own neutrino. The W− then decays into an electron and an electron-type anti-neutrino
- just as in the β-decay of a neutron.

W−

µ−

νµ

e−

ν̄e

The muon has a lifetime of about 2× 10−6 s. and the tau about 3× 10−13 s. (these are
regarded as “long-lived” particles!)

In the same way that the electron has an antiparticle (positron) with positive electric
charge and the same mass and spin, the µ−, and τ - also have antiparticles, µ+ and τ+,
respectively. Likewise νµ and ντ have antiparticles ν̄µ and ν̄τ , respectively.

15.2 Hadrons

These are particles that partake in the strong interactions.

Hadrons with integer spins (bosons) are called “mesons”, whereas hadrons with half
(odd-)integer spins (fermions) are called “baryons”.

Well over one hundred of each type have been identified so far. For this reason, hadrons
are no longer considered to be elementary particles (leptons probably are) but to be con-
structed out of elementary spin-1

2
particles known as “quarks”.

Mesons are bound states of a quark and an anti-quark and can therefore have integer
spin. Baryons are bound states of three quarks and can have spin-1

2
or spin-3

2
.

The proton is the only hadron which is absolutely stable (the lifetime is known to be
greater than 1032 years!). All other hadrons decay eventually into protons, leptons and
photons.

Hadrons participate in all interactions since quarks from which they consist participate
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in all interactions. As for leptons, there are also 3 generations for quarks

Quarks Electric Charge
u c t +2/3
d s b -1/2

Some hadrons cannot decay via the strong interactions and can only decay weakly (the
neutron is such an example). This is because the quarks come in different types called
“flavours” and the strong interactions conserve this flavour. For example the meson K− is a
bound state of a s-quark and an ū anti-quark. The s-quark has a flavour called “strangeness”
(for unfortunate historical reasons the s-quark is assigned strangeness -1 - and its antiparticle
has strangeness +1). The strong interactions conserve flavor and strangeness in particular,
and since the K− is the lightest meson which contains an s-quark, it cannot decay via the
strong interactions.

The weak interactions do not necessarily conserve flavour, so that via the weak interac-
tions the s−quark can decay into a u−quark, emitting a W− which decays into and electron
and anti-neutrino. The final state meson is a bound state of an u-quark and its anti-quark,
which can bind together to form a neutral pion, π0. Thus the decay

K− → π0 + e− + ν̄e

can proceed through the weak interactions. The lifetime of the K− is 1.2× 10−8 s. (another
long-lived particle)

On the other hand there exists a meson K∗−, which is also a bound state of an s−quark
and a ū anti-quark, but in an excited state and with a mass which is greater than that of a
K− and a π0 combined. The decay

K∗− → K− + π0,

can indeed proceed via the strong interactions, since flavour is conserved (note that an anti-
quark always has the opposite flavour of the corresponding quark - which means that a π0

is flavour neutral). Typical lifetimes of particles that can decay through strong interactions
are 10−23 s.

15.3 Detection of “Long-lived” particles

A particle whose lifetime exceeds about 10−11 s. and is travelling almost with the speed of
light can leave a discernible track in a detector (recall that particles travelling with velocities
very close to the velocity of light suffer a considerable time dilation so that the lifetime in
the laboratory is larger than the lifetime in the frame of the particle - so that the track left
is longer.)
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The first particle detectors were bubble chambers. These were filled with saturated
vapour. When a charged particle travelled through the vapour small bubbles would condense
on it leaving a visible track. The bubble chamber was placed in a magnetic field which caused
the path of the charged particle to curve by an amount which depends on its momentum
and mass - this enables the particle to be identified (for example electron tracks have a very
small radius of curvature) and the momentum of the particle to be measured. ‘Vertices’ can
also be seen - these are caused by a neutral particle, which leaves no track, decaying into
two (or more) charged particles.

Modern detectors do not give rise to visible tracks. Some types consist of arrays of electric
wires, fibers or silicon layers. When a charged particle approaches a wire it causes an electric
discharge which is recorded electronically.

By tracking which of the wires discharge it is possible to reconstruct the paths of the
charged particles.
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15.4 Detection of Short-lived particles - Resonances

Particles with a lifetime of less than about 10−11 s. do not live long enough to leave a track
in a detector. They are observed as “resonances” - peaks in production cross-sections or
in decay channels when the centre-of-mass energy of the incident particles in a scattering
experiment is equal to the mass of the resonance particle (times c2), or if the centre-of-mass
energy of some subset of the final state particles is to the mass of the resonance particle
(times c2).

These peaks have a width Γ, corresponding to the uncertainty in their energy due to the
fact that they have a short lifetime, τ . According to Heisenberg’s uncertainty relation

Γ =
~

τ

For example, consider the Z-boson. This is a neutral particle that couples to all particles
that partake in the weak interaction. Thus it can decay into a pair of charged leptons (i.e. a
charged lepton and its antiparticle), a pair of neutrinos, or into quarks - ending up as showers
of hadrons. It can also be produced by the annihilation of any of the above-mentioned pairs
of particles. It was discovered in 1983 in an proton-antiproton scattering, but studied in
more detail in electron-positron scattering in which the centre-of-mass energy was tuned to
match the rest energy of the Z-boson.

The Feynman graph for a typical production and decay process

e+ e− → Z → µ+ µ−

is

Z

(Ee−,pe−)

(Ee+ ,pe+)

(Eµ− ,pµ−)

(Eµ+ ,pµ+)

The amplitude for the exchange of the Z is (up to an overall constant)

1

(s−M2
z c

4)

where s = (Ee− + Ee+)
2 − (pe− + pe+)

2c2, is the square of the centre-of-mass energy of the
incident electron-positron pair.

We see that if we tune
√
s to be exactly equal to MZc

2 this diverges. The above formula
neglects the fact that the particle is unstable and has a width, Γ. Far away from the resonant
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energy this approximation is reasonable, but in the resonant region the above amplitude is
modified to the (complex) expression

1

(s−M2
z c

4 + iΓMzc2)

The transition probability is the square modulus of the amplitude, so that the scattering
cross-section is proportional to

σ ∝ 1

(s−M2
z c

4)2 + Γ2M2
Zc

4
.

We note that this has a maximum when
√
s =Mzc

2 i.e. when the centre-of-mass energy is
exactly equal to the rest-energy of the Z and the cross-section falls to one-half its maximum
value when

√
s =Mzc

2 ± 1
2
Γ
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A strongly interacting particle resonance will occur whenever the centre-of-mass of the
incident scattering particles is close to the rest energy of a particle that has the same flavour
as the sum of the flavours of the incoming particles - this means that the resonant particle
can be made up from the same quarks (and anti-quarks) as the two incident particles. For
example, there exists a baryon called the ∆0 which has the same flavour as a neutron (zero
electric charge, zero strangeness etc. - although it does have spin-3

2
). This can be produced

in the scattering of a proton against a negative pion.

p + π− → ∆0 → p + π−

If we plot the cross-section for this scattering in the region of centre-of-mass energy 1 - 1.5
GeV, we get a resonance

0

50

100

150

200

250

1 1.05 1.1 1.15 1.2 1.25 1.3 1.35 1.4 1.45 1.5

� (mb)

�

�

p (C.M.) energy (GeV)

�

�

p! �

�

p

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

m

�

c

2

� !

We see that the ∆0 has a mass of 1.23 GeV/c2 and a width of about 0.1 GeV.

It is not always possible to prepare an initial state state with the correct flavour for the
production of a given particle. In such cases one can look for resonances in the decay of the
resonant particle when the centre-of-mass energy of the decay products is equal to the rest
energy of the resonant particle. For example, consider the process

p + π− → π+ + π− + n

The pions leave tracks in detectors and their momenta can be measured by observing the
radius of curvature of the tracks in a magnetic field. Thus we can contract the Lorentz
invariant quantity which is the centre-of-mass energy of the two-pion system

Eππ =
√

(Eπ+ + Eπ−)2 − (pπ+ + pπ−)2c2

There is a particle called a ρ0 which has the same flavour as the π+ π− pair and a mass
of 740 MeV/c2 and a width of about 0.1 GeV. If we plot the number of events for a given
Eππ against Eππ, we observe a resonance.
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15.5 Partial Widths

An unstable particle can usually decay into several different possible “channels”. The fraction
of the decays into a particular channel is called the “branching ratio”. For example the
branching ratio for a Z to decay into a µ+ µ− pair, BZ→µµ is 3.4 %. The width of the
resonance in the process

e+ e− → Z → µ+ µ−

is the “partial width”, ΓZ→µµ and in this case it is 0.084 GeV. The total width Γtot is the
sum of all the partial widths. The branching ratio is the ratio of the partial width for a
particular channel and the total width

BX =
ΓX

Γtot
.

Thus in the case of the Z a measurement of the partial width for the decay channel into a
muon pair and a determination of the branching ratio yields the total width

Γtot =
ΓZ→µµ

BZ→µµ

= 2.5 GeV.
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Chapter 16

Constituent Quark Model

Quarks are fundamental spin-1
2
particles from which all hadrons are made up. Baryons

consist of three quarks, whereas mesons consist of a quark and an anti-quark. There are six
types of quarks called “flavours”. The electric charges of the quarks take the value +2

3
or

−1
3
(in units of the magnitude of the electron charge).

Symbol Flavour Electric charge (e) Isospin I3 Mass Gev/c2

u up +
2
3

1
2 +

1
2 ≈ 0.33

d down −1
3

1
2 −1

2 ≈ 0.33
c charm +2

3 0 0 ≈ 1.5
s strange −1

3 0 0 ≈ 0.5
t top +

2
3 0 0 ≈ 172

b bottom −1
3 0 0 ≈ 4.5

These quarks all have antiparticles which have the same mass but opposite I3, electric
charge and flavour (e.g. anti-strange, anti-charm, etc.)

16.1 Hadrons from u,d quarks and anti-quarks

Baryons:

Baryon Quark content Spin Isospin I3 Mass Mev/c2

p uud 1
2

1
2 +1

2 938
n udd 1

2
1
2 −1

2 940

∆++ uuu 3
2

3
2 +3

2 1232
∆+ uud 3

2
3
2 +

1
2 1232

∆0 udd 3
2

3
2 −1

2 1232
∆− ddd 3

2
3
2 −3

2 1232
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• Three spin-1
2
quarks can give a total spin of either 1

2
or 3

2
and these are the spins of the

baryons (for these ‘low-mass’ particles the orbital angular momentum of the quarks is
zero - excited states of quarks with non-zero orbital angular momenta are also possible
and in these cases the determination of the spins of the baryons is more complicated).

• The masses of particles with the same isospin (but different I3) are almost the same -
the differences being due to the electromagnetic interactions which distinguish members
of the isospin multiplet with different electric charge. If it were possible to ‘switch off’
the electromagnetic interactions these masses would be exactly equal.

• The baryons which consist of three u-quarks or three d-quarks only occur for spin 3
2

(we return to this later)
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Mesons:

Meson Quark content Spin Isospin I3 Mass Mev/c2

π+ ud̄ 0 1 +1 140
π0 1√

2

(

uū− dd̄
)

0 1 0 135

π− dū 0 1 −1 140

ρ+ ud̄ 1 1 +1 770
ρ0 1√

2

(

uū− dd̄
)

1 1 0 770

ρ− dū 1 1 −1 770
ω 1√

2

(

uū+ dd̄
)

1 0 0 782

• A spin-1
2
quark and an anti-quark with the same spin can combine (when the orbital

angular momentum is zero) to give mesons of spin-0 or spin-1.

• The neutral mesons are not pure uū, or dd̄ states, but quantum superpositions of these.

• The neutral mesons have I3 = 0. They could be in an isospin I = 1 state, (π0, ρ0),
in which case their masses are similar to those of their charged counterparts, or I = 0
(ω) in which case their masses are somewhat different.

The strong interactions conserve flavour. There a d-quark cannot be converted into an
s-quark (or vice versa), even though the electric charge is the same.

However, in a scattering process a quark can annihilate against an anti-quark of the same
flavour, giving some energy which can be converted into mass and used to create a more
massive particle. An example of this is

π− + p → ∆0

(dū) (uud) (udd)

d
ūπ−{

u
u
d

p{

d
u
d
}∆0
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A u-quark from the proton and a ū anti-quark from the pion have annihilated and the
extra energy goes into the extra mass of the ∆0, which is very short-lived and appears as a
resonance in the π− p scattering cross-section.

Likewise in a decay process it is possible for some of the mass of the decaying particle
to create a quark and anti-quark pair of the same flavour which go to forming the decay
products, e.g.

∆− → π− + n
(ddd) (ddu) (dū)

d
ū}π−

u
d
d
}n

d
d
d

∆−{

Here a u-quark and ū anti-quark pair are created when the ∆− decays and the ū anti-
quark binds with one of the d-quarks in the decaying ∆− to make a π−, whereas the u-quark
binds with the other two d-quarks in the decaying ∆− in order to make a neutron.

Quark and anti-quark pair creation is possible in any particle particle scattering process
provided there is sufficient energy to create the final state particles. Thus for example it is
possible to have the inelastic process

p + p → n + n + π+ + π+

(uud) (uud) (udd) (udd) (ud̄) (ud̄)

In this process two pairs of d-quarks and d̄ anti-quarks are created. The d-quarks bind
with the u and d quarks from the incoming protons to form neutrons, whereas the d̄ anti-
quarks bind with the remaining u-quarks in the incoming protons to form pions. In the
centre-of-mass frame in which the total momentum is zero, so that the outgoing particles
can be at rest - this is the lowest energy that they can have and is equal to sum of the masses
of two neutrons and two pions (times by c2), which is therefore the lowest total centre-of-mass
energy of the incoming protons.
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16.2 Hadrons with s-quarks (or s̄ anti-quarks)

Baryons:

Baryon Quark content Spin Isospin I3 Mass Mev/c2

Σ+ uus 1
2 1 +1 1189

Σ0 uds 1
2 1 0 1193

Σ− dds 1
2 1 −1 1189

Ξ0 uss 1
2

1
2 +

1
2 1314

Ξ− dss 1
2

1
2 −1

2 1321
Λ uds 1

2 0 0 1115

Σ∗+ uus 3
2 1 +1 1385

Σ∗0 uds 3
2 1 0 1385

Σ∗− dds 3
2 1 −1 1385

Ξ∗0 uss 3
2

1
2 +

1
2 1530

Ξ∗− dss 3
2

1
2 −1

2 1530
Ω− sss 3

2 0 0 1672

• For historical reasons the s-quark was assigned strangeness equal to −1, so these
baryons have strangeness −1, −2 or −3 for one, two, or three strange quarks respec-
tively. (likewise the b-quark has bottom flavour -1, whereas the c-quark has flavour
charm=+1, and the t-quark has flavour top=+1)

• As in the case of ∆− and ∆++, the Ω− which has three s-quarks (strangeness=-3) has
spin-3

2
.

The Ω− had not discovered when the Quark Model was invented - its existence was a
prediction of the Model. Furthermore its mass was predicted from the observation

MΣ∗ − M∆ ≈MΞ∗ − MΣ∗ ≈ 150MeV/c2

giving a predicted value for MΩ of

MΩ = MΞ∗ + 150 = 1680MeV/c2.
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Mesons:

Meson Quark content Spin Isospin I3 Mass Mev/c2

K+ us̄ 0 1
2 +

1
2 495

K0 ds̄ 0 1
2 −1

2 495

K0 sd̄ 0 1
2 +

1
2 495

K− sū 0 1
2 −1

2 495
η (uū, dd̄, ss̄) 0 0 0 547

K∗+ us̄ 1 1
2 +1

2 892
K∗0 ds̄ 1 1

2 −1
2 896

K∗0 sd̄ 1 1
2 +

1
2 896

K∗− sū 1 1
2 −1

2 892
φ ss̄ 1 0 0 1020

16.3 Eightfold Way:

There is a method of classifying hadrons made up from u, d and s quarks and their anti-
quarks by plotting particles with the same spin on a plot of strangeness against I3.

For the lightest mesons and baryons there are eight particles on each plot. For this reason
this classification method is known as the “Eightfold Way”.

Spin-1
2
Baryons:

I3

S
Σ0Λ,

(uds)
Σ− Σ+

(dds) (uus)

n p
(udd) (uud)

Ξ−
(dss)

Ξ0

(uss)

Spin-3
2
Baryons:
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I3

S

∆−
(ddd)

∆0

(udd)
∆+

(uud)
∆++

(uuu)

Σ∗−
(dds)

Σ∗0
(uds)

Σ∗+
(uus)

Ξ∗−
(dss)

Ξ∗0
(uss)

Ω−
(sss)

The rows contain the isospin multiplets. However, in the case of the row for I = 1, there
can also be states with I = 0, I3 = 0, so that the point in the middle can have two (or more)
entries.

Spin-0 Mesons:

I3

S
π0η,

(uū, dd̄, ss̄)
π− π+

(dū) (ud̄)

K0 K+

(ds̄) (us̄)

K− K0

(sū) (sd̄)

Spin-1 Mesons:
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Spin-1 Mesons

I3

S
ρ0φ, , ω

(uū, dd̄, ss̄)
ρ− ρ+

(dū) (ud̄)

K∗0 K∗+
(ds̄) (us̄)

K∗−

(sū)
K∗0

(sd̄)

These meson multiplets contain the mesons and their antiparticles (obtained by replacing
each quark by its anti-quark and vice versa), whereas the baryon multiplets have separate
antiparticle multiplets which are bound states of three anti-quarks.

Some mesons, such as π0, ρ0, η are their own antiparticle, because they are bound states
of a quark and an anti-quark of the same flavour so that replacing a quark by its anti-quark
with the same flavour (and vice versa) produces the same particle. Other charged or neutral
particles have separate antiparticles which have opposite electric charge and/or strangeness.

16.4 Associated Production and Decay

In strong interaction processes, quark flavour is conserved. s-quarks cannot be created or
destroyed by the strong interactions (they can be created or destroyed by the weak inter-
actions). This means that in a scattering experiment (e.g proton-proton or pion-proton
scattering) one can only create a particle containing a strange quark if at the same time
there is a particle containing an s̄ anti-quark, so that the total strangeness is conserved. An
example of such a process is

π− + p → Λ + K0

(dū) (duu) (dus) (s̄d)

d
ūπ−{

u
u
d

p{

d
s̄}K0

s
u
d}Λ
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What happens is that a u-quark annihilates against a ū anti-quark and an s-quark s̄
anti-quark pair has been created. This reaction is only possible above a threshold energy.
In the centre-of-mass frame, the lowest total energy of the incoming particles is the sum of
the masses of the Λ and the K0, i.e.

√
s = ETOT

CM = (MΛ + MK0) c2,

(here ETOT
CM means to the total energy of the incoming (or outgoing) particles in the centre-of-

mass frame - as the particles are not of the same mass, the individual energies of the particles
will be different). In a (proton) fixed target experiment the pions must be accelerated to
sufficient energy such that the centre-of-mass energy is greater than this value.

On the other hand the process

π− + p → Λ + π0

(dū) (duu) (dus) (d̄d, ūu)

is forbidden because the number of strange quarks in the initial and final states is not the
same.

It is possible to scatter charged kaons (K±) against nucleons. The K− contains an
s-quark. it is therefore possible to produce strange baryons in this process, such as

K− + n → Λ + π−

(sū) (udd) (dus) (ūd)

All flavours have been conserved in this reaction. However, K+ − n scattering will not
produce a strange baryon because a strange baryon contains s-quarks but no s̄ anti-quarks,
whereas the K+ contains a s̄ anti-quark, but no s-quark.

Recent evidence has suggested that there is a resonance in K+−n scattering at a centre-
of-mass energy of 1.5 GeV. This suggests that there is an (unstable) particle with mass
1.5GeV/c2. If confirmed this would be a new type of particle called a “pentaquark” since it
must be a bound state of four quarks and an anti-quark (s̄uudd). Such a particle does not
fit in with the usual quark model picture of hadrons.

Similarly, in the decays of particles containing s-quarks (or s̄ anti-quarks), the decay can
proceed via the strong interactions and will be very rapid - leading to a large width - only if
the decay products have a total strangeness which is equal to the strangeness of the decaying
particle. For such a process to occur, the mass of the decaying particle must be larger than
the combined mass of the decay products.

An example is

K∗+ → K0 + π+

(us̄) (ds̄) (ud̄)
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s̄
uK∗+{

u
d̄

d
s̄}K0

}π+

A d-quark and d̄ anti-quark pair have been created but the initial and final states both
contain an s̄ anti-quark - so flavour is conserved.

mK∗ = 842, mK∗ = 495, mπ = 135 (MeV/c2)

so there is enough energy in the decaying K∗ to produce a kaon (K) and a pion, since the
mass of the K∗ exceeds the sum of the masses of the kaon and pion. This decay therefore
can proceed via the strong interactions which means that the K∗ has a very short lifetime.
It is only seen as a resonance in the centre-of-mass frame of the K−π system width a width
of 50 MeV.

Likewise the Ξ∗ has enough mass to decay into a Ξ plus a pion - the inital and final states
both having strangeness -2, and similarly the Σ∗ can decay into a Σ plus a pion, or into a Λ
plus a pion - conserving strangeness. These decays are therefore very rapid as they proceed
though strong interactions.

Most of the lighter strange particles do not have enough energy to decay into other
strange particles. They therefore decay through the weak interactions - and therefore have
a much longer lifetime. The usually can leave a track in a detector.

Combining associated production and decay one can have an event such as

π+ + n → K∗+ + Λ → K0 + π+ + Λ.

The observed particles are the K0, π+, Λ but if we look at the energies and momenta of the
K0 and π+ and construct the quantity

P 2
Kπ = (EK0 + Eπ+)2 /c2 − (pK0 + pπ+)2 ,

we would get a resonance peak at

PKπ = 842MeV/c,

indicating that at such momenta a K∗ particle is produced for a very short time.
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16.5 Heavy Flavours

When the quark model was invented only u−, d− and s-quarks were postulated and all
known hadrons could be built out of these three quarks and their anti-quarks. Since then
three new quarks, c, b and t gave been discovered. They are much more massive than the
u−, d− and s-quarks, so they were not discovered until sufficiently large accelerators had
been built and were in use. In the same way that there are hadrons containing one or
more s−quarks (or s̄ anti-quarks), there are hadrons which contain these heavy quarks. So
far, only hadrons containing one c-quark or one b-quark (or their antiparticles) have been
observed. It is believed that a hadron which contained a t-quark would be too unstable to
form a bound state.

There are also bound states of c c̄ and bb̄. These are neutral - like the φ meson which
is a bound state of s s̄. These heavy quarks were first observed by observing these neutral
bound states.

16.6 Quark Colour

There is a difficulty within the quark model when applied to baryons. This can be seen if we
look at the ∆++ or ∆− or Ω−, which are bound states of three quarks of the same flavour.
For these low-mass states the orbital angular momentum is zero and so the spatial parts of
the wavefunctions for these baryons is symmetric under interchange of the position of two
of these (identical flavour) quarks.

We know that the total wavefunction for a baryon must be antisymmetric as baryons have
half-odd-integer spin, so the spin part of the wave function should be antisymmetric. On the
other hand these baryons have spin-3

2
which means that the spin part of the wavefunction

is symmetric (for example the Sz = +3
2
state is the state in which all three quarks have

sz = +1
2
and this is clearly symmetric under the interchange of two spins).

This is solved by assuming that quarks come in three possible “colour” states - R, G or
B. The antisymmetry of the baryon wavefunction is restored by the assumption that the
baryon wavefunction is antisymmetric under the interchange of two colours. If a baryon is
composed of three quarks with flavours f1, f2 and f3 the these should also have a colour
index, e.g. fR

1 , f
G
1 or fB

1 etc. The colour antisymmetric wavefunction is written

1√
6

(

|fR
1 f

G
2 f

B
3 〉+ |fB

1 f
R
2 f

G
3 〉+ |fG

1 f
B
2 f

R
3 〉 − |fB

1 f
G
2 f

R
3 〉 − |fR

1 f
B
2 f

G
3 〉 − |fG

1 f
R
2 f

B
3 〉
)

We can see that this changes sign if we interchange any two colours. This means that in
order to have a totally antisymmetric wavefunction (including the colour part), the spin and
spatial part must be symmetric so that a particle in which all three quarks have the same
flavour (and zero orbital angular momentum) must be symmetric under the interchange of
any two of the spins - and this is the spin-3

2
state.

A state of three different colours which is antisymmetric under the interchange of any
two of the colours is called a “colour singlet” state - we can think of it as a colourless state.
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The quarks themselves are a colour triplet - meaning that they can be in any one of three
colour states.

It is assumed that all physically observable particles (i.e all hadrons) are colour singlets
(colourless particles). This means that it is not possible to isolate individual quarks and
observe them. indeed no individual quark has ever been observed. This is called “quark
confinement” and it is the explanation of why the strong interactions are short-range, despite
the fact that the gluons, which are the strong-interaction carriers, are massless - you can’t
pull a quark too far away from the other quarks or antiquarks in the hadron to which it is
bound.

For mesons we also require that the quarks and anti-quarks bind in such a way that the
meson is a colour singlet. in the case of a quark and ant-quark bound state this means
that the wavefunction is a superposition of R with R̄, G with Ḡ, and B with B̄. Thus, for
example, the wavefunction for the π+ is written

|π+〉 =
1√
3

(

|uRdR〉+ |uGdG〉+ |uBdB〉
)

The colourless property is achieved by requiring that a quark of a given colour binds with an
antiquark which is the antiparticle of a quark of the same colour - then we have to ‘average’
over all the colours by taking a superposition of all three possible colour pairs.
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Chapter 17

Weak Interactions

The weak interactions are mediated by W± or (neutral) Z exchange. In the case of W±,
this means that the flavours of the quarks interacting with the gauge boson can change.

W± couples to quark pairs (u, d). (c, s), (t, b) with vertices

u d

W+

c s

W+

t b

W+

as well as to leptons (νe, e). (νµ, µ), (ντ , τ) with vertices

νe e

W+

νµ µ

W+

ντ τ

W+

Note that in these interactions both quark number (baryon number) and lepton number
are conserved.

It is this process that is responsible for β-decay. Neutron decays into a proton because
a d-quark in the neutron converts into a u-quark emitting a W− which then decays into an
electron and anti-neutrino.
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d
u
d

n{
u
u
d}p

ν̄e

e

W−

The amplitude for such a decay is proportional to

g2W
(q2 −M2

W c
2)
,

where gW is the strength of the coupling of the W− to the quarks or leptons and q2 =
E2

q/c
2 − |q|2, where q is the momentum transferred between the neutron and proton and Eq

is the energy transferred. This momentum is of order 1 MeV/c and so we can neglect it in
comparison with MW c which is 80.4 GeV/c. Thus the amplitude is proportional to

g2W
M2

W c
2
.

The coupling gW is not so small. In fact it is twice as large as the electron charge e. Weak
interactions are weak because of the large mass term in the denominator.

At modern high energy accelerators, it is possible to produce weak interaction processes
in which |q| ∼ MW c or even |q| ≫ MW c. In such cases weak interactions are larger than
electromagnetic interactions and almost comparable with strong interactions.

17.1 Cabibbo Theory

Particles containing strange quarks, e.g. K±, K0, Λ etc. cannot decay into non-strange
hadrons via the strong interactions, which have to conserve flavour, but they can decay via
the weak interactions. This is possible because W± not only couples a u-quark to a d-quark
but can also (with a weaker coupling) couple a u-quark to an s-quark so we have a vertex

gW sin θc

u s

W+

with coupling gW sin θC , whereas the u − d −W coupling is actually gw cos θC . θC is called
the “Cabibbo angle” and its numerical value is sin θC ≈ 0.22.
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This coupling allows a strange hadron to decay into non-strange hadrons and (sometimes)
leptons.

Thus, for example the decay

Λ → p + e− + ν̄e

occurs when an s-quark converts into a u quark and emits a W− which then decays into an
electron and anti-neutrino. The Feynman graph is

d
u
s

Λ{
u
u
d}p

ν̄e

e

W−

Likewise, the c-quark has a coupling to the s-quark with coupling gW cos θC and a coupling
to a d-quark with coupling −gW sin θC .

c s

W+

gW cos θC −gW sin θC

c d

W+

This implies that charm hadrons are more likely to decay into hadrons with strangeness,
because the coupling between a c-quark and a s-quark is larger than between a c-quark and
a d-quark.

We can piece this together in a matrix form as follows

gW
(

d s
)

(

cos θC sin θC
− sin θC cos θC

)(

u
c

)

This 2 × 2 matrix is called the “Cabbibo matrix”. It is described in terms of a single
parameter, the Cabibbo angle.

Since we know that there are, in fact, three generations of quarks this matrix is extended
to a general 3× 3 matrix as follows

gW
(

d s b
)





Vud Vus Vub
Vcd Vcs Vcb
Vtd Vts Vtb









u
c
t
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The 3× 3 matrix is called the “CKM” (Cabibbo, Kobayashi, Maskawa) matrix. Quantum-
mechanical constraints lead to the conclusion that of the nine elements there are only four
independent parameters. Comparing the CKM matrix with the Cabibbo matrix we see that
to a very good approximation, Vud ≈ Vcs ≈ cos θC and Vus ≈ −Vcd ≈ sin θC .

17.2 Leptonic, Semi-leptonic and Non-Leptonic Weak

Decays

Because the W± couples either to quarks or to leptons, decays of strange mesons can either
be leptonic, meaning that the final state consists only of leptons, semi-leptonic, meaning
that the final state consists of both hadrons and leptons, or non-leptonic, meaning that the
final state consists only of hadrons. For strange baryons only semi-leptonic and non-leptonic
decays are possible because baryon number is strictly conserved - so there must be a baryon
in the final state. Lepton number is also strictly conserved which means that a charged
lepton is always accompanied by its anti-neutrino (or vice versa) in the final state.

For mesons, examples are:

Leptonic decay K− → µ− + ν̄µ

K−{s

ū

µ−

ν̄µ

As well as converting an s-quark into a u-quark to emit a W−, it is also possible to create a
W− from the annihilation of an s-quark with a ū anti-quark.

Semi-leptonic decay K− → µ− + ν̄µ + π0

ū
sK−{ u

ū}π0

ν̄µ

µ−

W−

Non-leptonic decay K− → π0 + π−
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s

ū

ū

d

u

ū

W−K−{
} π−
}π0

Note that mK > 2mπ which is why this non-leptonic decay mode is energetically allowed.

In the case of baryons, we have already seen an example of a semi-leptonic decay, Λ →
p e− ν̄e. An example of a non-leptonic decay is

Λ → p π−

s
u
d

u
d
u

Λ{ }p

}π−d
ū

A W− is exchanged between the s-quark and the u-quark in the Λ, converting them into
a u-quark and a d-quark respectively. A u− ū quark-antiquark pair is created in the process
in order to make up the final state hadrons of a proton and a negative pion.

17.3 Flavour Selection Rules in Weak Interactions

Since in the exchange of a single W± an s-quark can be converted into a non-strange quark,
it is highly unlikely that two strange quarks would be converted into non-strange quarks in
the same decay process. We therefore have a selection rule for weak decay processes

∆S = ±1

Therefore, hadrons with strangeness -2 which decay weakly must first decay into a hadron
with strangeness -1 (which in turn decays into non-strange hadrons). Thus, for example, we
have

Ξ0 → Λ + π0

The same selection rules apply for changes in other flavours (charm, bottom).
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17.4 Parity Violation

The parity violation observed in β-decay arises because the W± tends to couple to quarks
or leptons, which are left-handed (negative helicity), i.e. states in which the component of
spin in their direction of motion is −1

2
~.

W± always couple to left-handed neutrinos. For quarks and massive leptons the W± can

couple to positive helicity (right-handed) states, but the coupling is suppressed by a factor

mc2

E
,

where m is the particle mass and E is its energy. The suppression is much larger for
relativistically moving particles

In the case of nuclear β-decay, the nucleus is moving non-relativistically, but the electron
typically has energy of a few MeV (and a mass of 0.511 MeV/c2), so there is a significant
suppression of the coupling to right-handed electrons. This is what was observed in the
experiment by C.S. Wu on 60Co.

For the coupling ofW± to anti-quarks or anti-leptons, the helicity is reversed -i.e. theW±

always couples to positive helicity anti-neutrinos and usually to positive helicity e+, µ+, τ+

or to antiquarks, with a suppressed coupling to left-handed antileptons or anti-quarks.

A striking example of the consequence of this preferred helicity coupling can be seen in
the leptonic decay of K+.

K+ → µ+ + νµ

K+νµ µ+

L.HL.H

In the rest frame of the K+ the momentum is zero, so the µ+ and the νµ must move in
opposite directions. The K+ has zero spin, so by conservation of angular momentum, the
two decay particles must have opposite spin component in any one chosen direction (e.g. the
direction of the µ+. This means that they have the same helicity. This means that the W±

couples to the left-helicity anti-muon, µ+ and such a coupling is suppressed by

mµc
2

Eµ

If we look at the decay mode

K+ → e+ + νe,

the same argument would lead to a suppression (of the decay amplitude) of

mec
2

Ee

.
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Since me ≪ mµ we expect the decay into a positron to be heavily suppresses. In fact we
expect the ratio of the partial widths

Γ(K+ → µ+νµ)

Γ(K+ → e+νe)
=

m2
µ

m2
e

≈ 4× 104

This coincides very closely to the experimentally observed ratio.

17.5 Z-boson interactions

As well as exchange of W± in which flavour is changed, the weak interactions are also
mediated by a neutral gauge-boson, Z. This couples to both quarks and leptons but does
not change flavour.

In that sense the interactions of the Z are similar to that of the photon, but there are
some important differences.

• The Z couples to neutrinos whereas the photon does not (neutrinos have zero electric
charge).

• The Z has a mass of 91.1 Gev/c2, so the interactions are short range - like the inter-
actions of the W±.

• The Z also has a coupling of different strength to left-handed (negative helicity) and
right-handed (positive helicity) quarks and leptons and so these interactions also violate
parity.

Nevertheless, in any process where there can be photon exchange, there can also be Z
exchange. In terms of Feynman diagrams for e+ e− scattering into any pair of final state
particles, we have

e−

e+
γ

but also

e−

e+
Z

The first diagram (photon exchange) has a propagator

1/s,
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where
√
s is the centre-of-mass energy, whereas the second diagram (Z exchange) has a

propagator

1

s−M2
Zc

4
.

For relatively low centre-of-mass energies for which
√
s ≪ MZc

2, the second diagram may
be neglected and the second diagram gives a negligible contribution. But as

√
s grows to

become comparable (or greater than) MZc
2 both of these diagrams are equally important.

The Z and photon can both couple to W±, so we get interaction vertices

and

W+ W−

Z

W+ W−

γ

The interaction between the photon and W± is not surprising since the W± are charged and
we would expect them to interact with photons, with coupling e. The interaction of W±

with the Z is similar but has a different coupling.

The coupling of the Z and photon to the W± was confirmed at the LEPII experiment
at CERN where it was possible to accelerate electrons and positrons to sufficient energies
to produce a W+ and a W− in the final state. From the coupling of the W to electron and
neutrino the Feynman diagram for this process is

e+

e−

ν

W+

W−

but because of the coupling of the Z and photon to W± we also have diagrams

e−

e+
γ

W−

W+

e−

e+
Z

W−

W+

The data from LEPII clearly show that these graphs have to be taken into account
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It turns out that the Standard Model of weak and electromagnetic (“electroweak”) inter-
actions, developed in the 1960’s by Glashow, Weinberg, and Salam, gives a relation between
the weak coupling gW , the (magnitude of the ) electron charge, e and the masses of the Z
and W±

MW

MZ
= cos θW

where θW is known as the weak mixing angle.

e = gW sin θW = gW

√

1− M2
W

M2
Z

This enables us to make an order of magnitude estimate of the rates for weak processes at
low energies.

At energies ≪ MW c
2, the amplitude for a W± exchange process is proportional to

g2W
4πǫ0M

2
W c

4
,

so that the rate is proportional to

(

g2W
4πǫ0M2

W c
4

)2

.

Now for a weak decay rate we want dimensions of inverse time, so we need to multiply this
by something with dimensions of the fourth power of energy divided by time. The only
quantity proportional to the energy is the Q value of the decay, Qβ and to get inverse time
we can divide by ~ so we get an estimate

Rate ∼
(

g2W
4πǫ0~cM

2
W c

4

)2

.
Q5

β

~
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The pre-factor is actually quite small. For example, for muon decay Qβ ≈ mµc
2, and the

muon decay rate is actually

1

τµ
=

1

768π3

(

g2W
4πǫ0~c

)2 m4
µ

M4
W

mµc
2

~
.

We know
g2W

4πǫ0~c
=

e2

4πǫ0~c sin
2 θW

=
α

sin2 θW

and

sin2 θW = 1− M2
W

M2
Z

.

Therefore from the measured masses of the W and Z we can determine the muon lifetime.

17.6 The Higgs mechanism

There is one further particle predicted by the Standard Model of electroweak interactions
which has not yet been discovered.

This arises from the mechanism, discovered by P.Higgs, by which particles acquire their
mass. The basic idea is that there exists a field, φ called the “Higgs field” which has a
constant non-zero value everywhere in space. This constant value is called the “vacuum
expectation value”, 〈φ〉.

In the absence of this field it is assumed that all particles would be massless and would
travel with velocity c. But because of their interaction with the background Higgs field they
are slowed down - thereby acquiring a mass, M

M =
1

2

gH√
ǫ0~c

〈φ〉,

where gH is the coupling of the particle to the Higgs field ( the denominator factor
√
ǫ0~c

gives it the correct dimensions.) This mechanism is part of the Standard Model.

The Higgs field couples to W± with coupling gW so that

MW =
1

2

gW√
ǫ0~c

〈φ〉.

Inserting gW = e/ sin θW with cos θW = MW/MZ and MW = 80.4GeV/c2, and MZ =
91.2GeV/c2, we get the value of the vacuum expectation value

〈φ〉 = 250GeV/c2

Other particles couple to the Higgs field with couplings that are proportional to their
mass.
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In the same way that there are quanta of the electromagnetic field which are particles
(photons), so there must be quanta of the Higgs field. These are called “Higgs particles”.
They must necessarily exist if the Higgs mechanism for generating masses for particles is to
be consistent with quantum physics.

As it was mentioned in the introduction, the Higgs boson was discovered on the 4th of
July 2012 by ATLAS and CMS collaborations at the LHC, completing the set of particles
of the Standard Model. With a high confidence level this particle is confirmed to have the
following properties:

1. It has a spin zero. This is consistent with the theoretical predictions since the vacuum
expectation value has to be invariant under Lorentz transformations - so that it is the
same in all frames of reference.

2. Higgs boson couples to W± and Z (which are consequently massive).

3. It does not directly couple to photons (which are massless) so it is uncharged.

4. it does not not couple directly to gluons (which are massless) and so it does not take
part in the strong interactions.

5. Its coupling to massive particles is proportional to the particle mass.

6. Its mass is measured to be about 125 GeV/c2.

Diagrams for production mechanisms of the Higgs boson at the LHC are shown below
(left) together with the respective cross sections (right). They include: (a) gluon fusion, (b)
weak-boson fusion, (c) Higgs-strahlung (or associated production with a gauge boson) and
(d) associated production with top quarks processes. Note, that the first process is the loop-
induce one: while Higgs boson does not interact directly with massless gluons, it actually
can interact with gluons via virtual massive quarks (e.g. top-quarks which the strongest
coupling to the Higgs boson) in the triangle loop diagram. Actually gluon fusion is the main
production process of the Higgs boson, while the weak-boson fusion plays the next to leading
role. Theoretical uncertainties are represented by the widths of the cross section bands.
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Higgs boson decay is dominated by the most massive particles allowed by its mass because
its coupling to particles is proportional to the mass. The t-quark mass is 175 GeV/c2 so
it cannot decay into a t − t̄ pair. The next most massive quark is the b-quark so Higgs
boson predominantly decays into a b − b̄ pair, shown in diagram (a) below. Higgs boson is
not sufficiently massive to decay into real W+W− or two real Z particles, however it can
decay to one real and another virtual W or Z boson (W∗ and Z∗) followed by their decay
into fermion-antifermion pair as shown in diagrams (b) and (c). As in case of gluon fusion
production process, Higgs boson can also decay into photon pair via its interactions with
virtual top quark and W-boson as shown in diagram (d). Higgs boson also decays to τ+τ−

pair, the dominant leptonic decay channel since τ -lepton is the most massive amongst the
leptons. The respective branching ratios for Higgs boson decay channels are shown in the
right frame of the figure below as a function of the Higgs boson mass.

Higgs boson discovery was based not on the process with the highest production and
decay rates, which would be naively the gg → H → bb̄ process. Actually it was was based
on the processes with optimal signal-to-background ratio and the highest signal significance.
In particular, one of the most significant and cleanest signatures comes from H → γγ
decay for which Standard Model background is relatively low. Another very important and
significant signature is based on H → ZZ∗ → 4leptons decay which also provide clean
4-lepton signature.
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Chapter 18

Electromagnetic Interactions

18.1 Electromagnetic Decays

There are a few cases of particles which could decay via the strong interactions without
violating flavour conservation, but where the masses of the initial and final state particles
are such that this decay is not energetically allowed.

For example the Σ∗0 (mass 1385 MeV/c2) can decay into a Λ (mass 1115 MeV/c2) and
a π0 (mass 135 MeV/c2). The quark content of the Σ∗0 and Λ are the same and the π0

consists of a superposition of quark-antiquark pairs of the same flavour. As required in
strong interaction processes the isospin is conserved - the Σ∗0 has isospin I=1, the Λ has
isospin I = 0 and the pion has isospin I = 1.

On the other hand, the Σ0 whose mass is 1189 MeV/c2 does not have enough energy to
decay into a Λ and a pion.

In such cases the decay can proceed via the electromagnetic interactions producing one
or more photons in the final state. The dominant decay mode of the Σ0 is

Σ0 → Λ + γ

The quark content of the Σ0 and the Λ are the same, but one of the charged quarks emits a
photon in the process. Note that in this decay the isospin is not conserved - the initial state
has isospin I=1, whereas the final state has isospin I = 0. Electromagnetic interactions do
not conserve isospin.

Because the electromagnetic coupling constant, e, is much smaller than the strong cou-
pling constant the rates for such decays are usually much smaller than the rates for decays
which can proceed via the strong interactions.The lifetime of the Σ0 is 10−10 seconds, whereas
the Σ∗0 has a width of 36 MeV, corresponding to a lifetime of about 10−23 seconds.

Another important example of electromagnetic decay is the decay of the π0 into two
photons.

π0 → γ + γ.
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Note that to produce only one photon would not be possible by conservation of energy and
momentum. For a π0 decaying from rest momentum is conserved because the two photons
have identical frequency and move in opposite directions. The π0 is actually a superposition
of a u− ū quark-antiquark pair and a d− d̄ quark-antiquark pair

|π0〉 =
1√
2

(

|uū〉 − |dd̄〉
)

In either of these states, the quark can annihilate against the antiquark of identical flavour
to produce two photons. In terms of Feynman diagrams we have

π0

γ

γ
u, (d)

ū, (d̄)

Using Quantum Field Theory, we can work out the decay rate for this process and
summing over the u and d contributions we get an estimate for the π0 lifetime of

τ = 7.6× 10−16 s,

whereas the measured value if 8.4× 10−17 seconds.

What has gone wrong is that we have forgotten about colour. In the calculation of the
decay amplitude we must not only sum the contribution from the above Feynman diagram
over u and d quarks but also over the three possible colours that these quarks can have. This
gives us a further factor of 3 in the decay amplitude and so a factor of 9 in the decay rate.

18.2 Electron-positron Annihilation

Another striking piece of evidence that quarks come in three colours comes from the study
of the process

e+ + e− → hadrons

(summed over all possible hadrons in the final state)

At the level of quarks, the Feynman diagram for this process is

e−

e+
γ

q̄

q

(provided
√
s≪MZc

2 so that the Z-exchange diagram can be neglected.)

138



For the process

e+ + e− → µ+ + µ−,

the Feynman diagram is

e−

e+
γ

µ+

µ−

The only difference between these two graphs is the coupling of the final state quarks or
final state muons to the photon, i.e. the electric charges of the quarks and the muons.

This means that for a quark of flavour i with electric charge Qi (in units of e) the ratio
of the amplitudes is

A(e+e− → qiq̄i)

A(e+e− → µ+µ−)
= Qi.

In order to calculate the ratio of total cross-sections we square the amplitude and sum over
all possible final state quarks that can be produced, so that

R =
σ(e+e− → hadrons)

σ(e+e− → µ+µ−)
=
∑

i

Q2
i .

How many quarks we sum over depends on the centre-of-mass energy
√
s. If

√
s < 2mcc

2,
then only u, d and s quarks can be produced in the final state and we have

R =
σ(e+e− → hadrons)

σ(e+e− → µ+µ−)
= 3

(

Q2
u +Q2

d +Q2
s

)

= 3

(

(

2

3

)2

+

(−1

3

)2

+

(−1

3

)2
)

= 2.

The factor of 3 is needed because we can produce final state quarks in any of the three
colours states (in principle these would be distinguishable at the quark level - so we multiply
the cross-section by 3 and not the amplitude.)

In the region 2mcc
2 <

√
s < 2mbc

2 we can also produce a c- (charm) quark and this
has to be added to the cross-section. Likewise, for

√
s > 2mbc

2 we also have to include the
production of b-quarks. Thus we expect this ratio, R, to have jumps as we cross thresholds
in incoming energy which allow the production of more massive quarks.
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Fragmentation

What we are interested in is the total cross-section for e+ e− to annihilate to produce hadrons,
whereas what we have calculated is the total cross-section to all quarks.

What happens is that the quarks, which cannot be observed directly, interact with gluons
in a complicated way and are converted into sets of ordinary hadrons. This process is called
“fragmentation”. Its mechanism is not understood but several computer simulations have
been developed which mimic this process fairly well.

In the centre-of-mass frame, the final state quark and antiquark are moving in opposite
directions. What usually happens is that the process of fragmentation acting on the quark
and antiquark separately leads to two narrow jets of particles moving in opposite directions.

Resonances

As well as the almost constant value for the ratio, R, between energy thresholds (with jumps
near each threshold), the quantity, R, is populated with resonances wherever

√
s/c2 is equal

to the mass of a neutral, spin one, particle that can couple directly to a photon.

The spin has to be the same as the spin of the photon (spin 1), as there is a direct coupling
between the photon and the resonant particle which must conserve angular momentum.

e+

e−

γ ρ0 γ

q

q̄

At low energies these are mesons such as ρ0 which consist of a quark and antiquark of the
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same flavour (or superpositions like in the case of π0). When
√
s/c2 = mρ the ρ propagator

1

(s−m2
ρc

4 + imρΓρc2)

gives rise to a resonance.

The thresholds for the production of more massive quarks are also indicated by thresholds.
When

√
s ≈ 2mcc

2 it is possible to create a resonance of a particle called J/Ψ which is a
bound state of a c-quarks and a c̄ antiquark, with mass 3.1 GeV/c2 - there are further
resonances corresponding to excited states with the same quark content.

Likewise at the threshold
√
s = 2mbc

2, there is a resonance called the Υ, which is a
bound state of a b-quark and a b̄ antiquark, with mass 9.5 GeV/c2 - and also some further
resonances corresponding to excited states.
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Chapter 19

Quantum Chromodynamics (QCD)

19.1 Gluons and Colour

In the same way that in weak interactions, the weak gauge bosons W± can effect changes of
flavour when they interact with quarks, in the case of strong interactions the strong gauge
bosons (gluons) can effect changes of colour of the quarks (but conserve flavour). Thus we
get interaction vertices of the form

ur ub

r̄b

which converts a red quark into a blue quark. The fact that the flavour is unchanged is the
reason why flavour is conserved in strong interactions. There are 6 such colour changing
gluons and in addition two colour neutral gluons (like the Z in weak interactions) which do
not change colour, making a total of 8 gluons (the reason that there are 8 gluons comes from
a group theory analysis of the theory of colour - outside the scope of these lectures),

Strong interaction processes consist of quarks exchanging gluons and (usually) changing
colour, e.g
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ur ub

r̄b

db dr

This theory of strong interactions, developed in the 1970’s is called Quantum Chromody-
namics (QCD).

In the same way that the Z can couple to the W±, so gluons can couple to each other
with vertices such as

r̄b

ḡr

b̄g

(total colour must be conserved)

There are also vertices between four gluons of the form

In the case of weak and electromagnetic interactions, the strengths of the couplings of
the gauge bosons to quarks and leptons, controlled by the electron charge, e, and the weak
coupling, gW , are sufficiently small

α =
e2

4πǫ0~c
=

1

137
, αW =

g2w
4πǫ0~c

≈ 1

30

so that we can calculate the rates for weak and electromagnetic processes using perturbation
theory, with higher order corrections being of order α, for electromagnetic processes, and
αW for weak processes. However, for the strong interactions inside a nucleus, the coupling
constant is too large for this to be possible. It is for this reason that we cannot, even in
principle, calculate the energy levels of nuclei.

19.2 Running Coupling

However, QCD is not entirely useless.
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It turns out that at sufficiently high energy/momentum scales, Q, the effective strong
coupling becomes small.

It is convenient to work in terms of αs where

αs =
g2s

4πǫ0~c
.

where gs is the coupling of the gluons to quarks or the coupling of gluons to each other.

The reason that this becomes small is ‘negative screening’. When an electric charge is
probed by another charge, the virtual photon exchanged between them can sometimes create
a pair of charged particles (a particle and its antiparticle), which exist for a short while before
annihilating each other again. Diagrammatically we would represent this as

q+ q−

The effect is to surround the probed charge by a cloud of charged particles which act as a
screen - reducing the effective measured charge. As the energy/momentum scale increases
and the probe penetrates further into this screen the measured charge increase.

When we write

α =
1

137

this refers to low energy/momentum measurements of the electron charge. At a momentum
scale Q ∼MZc the value is closer to 1/129.

In the case of QCD, we can also have processes in which a cloud of gluons can be produced
by the exchanged virtual gluon, because gluons interact with each other (unlike photons).
Thus we have diagrams like
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The effect of this is negative screening and it turns out that at large momenta the effective
coupling decreases.

Mathematically we describe the momentum scale dependence (running) of the coupling
in terms of a function known as the β-function, defined as

β =
dα(Q)

d lnQ2

For electromagnetism, β is positive so that α increases with increasing Q.

But for QCD, we have an expansion of β as a power series in αs,

β = α2
sβ0 + O(α3

s).

where

β0 = − 1

4π

(

11− 2

3
nf

)

Here nf means the number of active flavours and is used in the same way as in the calculation
of R in e+e− →hadrons.
For Q < 2mcc, nf = 3,
for 2mcc < Q < 2mbc, nf = 4
for Q > 2mbc, nf = 5.
In this expression for β the−11/(4π) comes from the interaction of the gluons with each other
producing a gluon cloud which decreases the effective coupling with increasing Q, whereas
the term proportional to nf (with a positive sign) comes from the creation of quark-antiquark
pairs by the virtual gluon and is similar to the producing of charged pairs in electromagnetism
- so its effect on the running coupling has the same sign as in electromagnetism.

The solution to this differential equation (neglecting the higher order terms in αs) is

αs(Q) =
αs(µ)

(1− β0αs(µ) ln(Q2/µ2))

where αs(µ) is the value of αs at some reference momentum scale (it serves as the integration
constant for the differential equation). Usually this is taken to be µ =MZc, since the value
of αs was measured very accurately at LEPI at this scale and its value was found to be

αs(MZc) = 0.12,
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which is not too large.

Experimental measurements of αs over a large range of energy/momentum scales agrees
well with this formula.

We see that for Q greater than a few GeV, αs(Q) is small enough that we would expect
a calculation using perturbation theory to be fairly reliable. Below these energy/momentum
scales (e.g. inside the nucleus) we cannot use perturbation theory and QCD is not very
helpful.

The property of QCD that the effective coupling decreases with increasing energy/momentum
is called “asymptotic freedom”.

19.3 Quark Confinement

We have seen that the weak interactions are short-range because the gauge bosons W± and
Z are massive and so the weak potential is of the Yukawa type with an exponential fall-off
with distance exp(−MW cr/~).

In the case of QCD the gluons are massless, so we might expect the strong interactions to
be long-range (as in the case of electromagnetic interactions mediated by massless photons),
whereas we know that the strong interactions have a range of a few fermi.

The answer to this puzzle is the converse of asymptotic freedom. At large momen-
tum, where we are probing short distances, the effective coupling decreases. Conversely at
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large quark separations the effective coupling increases and the binding between them gets
stronger.

b b̄
r

→ b b̄
r

→
“snap”

b b̄
r

b b̄
r

It is not possible to isolate a single quark or gluon. Consider a meson, which is a quark-
antiquark state of the opposite colour (e.g. red and anti-red) bound together by a ‘string’ of
gluons. As we try to pull the quark and antiquark apart, the tension in the string increases
and eventually the string will ‘snap’ producing a quark a the end of the part of the string
containing the antiquark (of opposite colour) and likewise and antiquark of opposite colour
at the end of the part of the string containing the quark. So we end up with two mesons,
both of which are colour singlets (colourless), but we do not succeed in isolating a single
quark or antiquark.

The only hadron states that we can observe are colourless (colour singlet) states - either
mesons which are superpositions of quark-antiquark pairs of opposite colours, or baryons
which consist of three quarks but which are antisymmetric under the interchange of any
two quark colours. This is known as “quark confinement”. Its exact mechanism is not
understood, but numerical studies in QCD confirm that this confinement does indeed take
place.
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19.4 Quark-antiquark Potential and Heavy Quark Bound

States

At momentum scales Q ∼ 2mcc, the running coupling is αs ∼ 0.3 which is small enough to
use perturbation theory to obtain energy levels for the J/Ψ (also known as “charmonium”),
by solving the Schrödinger equation using a potential which contains a term that represents
the confinement,

V (r) = −4

3

αs

r
+ kr.

The first term is the usual Coulomb-like potential which dominates at short distances where
the potential can be viewed as the exchange of massless gluons - the factor of 4/3 is associated
with the number of quark colours and the number of gluons. The term kr increases with
increasing separation and represents confinement. By fitting the data, k is found to be about
0.85 Gev fm−1 (1.3× 105 N. !).

Using this potential and making corrections for relativistic effects and spin-orbit coupling,
the spectrum of the c− c̄ system (J/Ψ and its excited states) and also the b− b̄ system (Υ
and its excited states) can be obtained to a high degree of accuracy.
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19.5 Three Jets in Electron-positron Annihilation

When we were considering the process

e+ + e− → hadrons

the Feynman diagram considered was

e−

e+

q

q̄

The final state quarks fragment to produce two jets of hadrons moving in opposite directions.
Such two-jet events were observed in the e+ e− experiment at DESY in the 1970’s. A typical
event looks like

Because quarks interact with gluons one can also have Feynman diagrams

qe−

e+ q̄

qe−

e+ q̄

which have a quark, an antiquark, and a gluon in the final state. The gluon also fragments
into a hadron jet and so we get three jets of particles.

The first such events we observed at DESY in 1979
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Since gluons cannot be isolated and observed directly, this was taken as the first piece of
evidence that gluons existed and coupled to quarks.

Four and five jet events have now also been observed. At LEP energies (100 - 200 GeV)
the running coupling is small (αs ∼ 0.1). For this reason three jet events are rarer than two
jet events because the amplitude for the process contains a factor of the gluon coupling gs
and so the rate is expected to be suppressed relative to the two jet rate by a factor of order
αs ∝ g2s . Likewise four and five jets events are even rarer

The exact definition of a jet depends on how big an opening angle constitutes a single jet.
This is parametrised by a kinematic variable called ycut (this is a measure of the maximum
fraction of the total energy that can be contained in a single jet). Because of the small running
coupling, perturbative QCD can be used to calculate the number of jets as a function of this
ycut
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Some correction to the result from pure perturbative QCD has to be made for the process
of fragmentation. The different curves shown are for different models used to simulate this
fragmentation process. Nevertheless the agreement between the data and QCD theory is
impressive.

19.6 Sea Quarks and Gluon content of Hadrons

The quarks (and antiquarks) inside hadrons are bound together by exchanging gluons. Thus,
as well as having the quarks inside hadrons there will be gluons. These gluons can in
turn create quark-antiquark pairs (which exist for a very short time and then annihilate).
Diagrammatically the ‘inside’ of a π− may look like
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d̄

u

q q̄

Thus, inside the hadron, we have the main quarks, called valence quarks which determine
the quantum numbers (flavour) of the hadron and in addition a cloud of quark-antiquark pairs
created by the gluons exchanged between the valence quarks. These extra quark-antiquark
pairs are called “sea quarks”.

19.7 Parton Distribution Functions

Quarks, antiquarks and gluons are collectively known as “partons”. If we consider a rela-
tivistically moving hadron (≈ pc), some fraction, x (known as “Bjorken-x”) will be carried
by a parton of each possible type. The probability that a fraction, x, of the momentum of
the hadron (say a proton) is carried by a parton of type i is called the “parton distribution
function” and is written as

f i
h(x)

where i can mean a gluon, quark, or antiquark of any given flavour.

It is not possible to calculate these parton distribution functions in QCD, but they can
be inferred by examining experimental data. Once they are known QCD can be used to
predict scattering cross-sections for other processes.

An example of these parton distributions (as a function of x) is
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19.8 Factorization

Perturbative QCD can be used to calculate cross-sections at the parton level, provided that
the energy/momentum scale of the process, Q is large enough so that αS(Q) is sufficiently
small.

For, example we can calculate the cross-section for the processes

•
g, + g → q + q̄

•
g, + g → g + g
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•
q, + q → q + q

•
q + q̄ → q + q̄

etc.

Denote the calculated differential cross-section for two partons of type i and j to go into
two other partons with momentum pT transverse to the direction of the incoming partons
by

dσ̂(ŝ)

dpT
,

where
√
ŝ is the centre-of-mass energy of the incoming partons.

What we are really interested in is a process in which the initial states are not partons
(which cannot be isolated in a laboratory owing to confinement) but initial state hadrons
such as a proton and an antiproton.

In order to obtain the differential cross-section for proton-antiproton scattering into two
jets of final state hadrons with transverse momentum, pT we can invoke the factorisation
theorem.

If we pull a parton of type i from one of the incoming protons, with a fraction x1 of the
momentum of the parent proton, and a parton of type j from the antiproton, with a fraction
x2 of its momentum, then (in the case of relativistically moving particles whose energy E
and momentum p are related by E ≈ |p|c ) the centre-of-mass energy of the two partons is
given by

ŝ = x1x2s

(where
√
s is the centre-of-mass energy of the incoming proton and antiproton).

Factorisation tells us that if f i
p(x1) and f

j
p (x2) are the parton distribution functions for

partons i and j, then the contribution to the proton-proton differential cross-section due to
this particular parton scattering is

∫ 1

0

dx1

∫ 1

0

dx2f
i
p(x1)f

j
p̄ (x2)

dσ̂(x1x2s)

dpT

For example if the parton level scattering is quark-quark scattering we can represent this
contribution as
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p

p̄

f i
p(x1)

f j
p̄ (x2)

x1

x2

x1x2s→

Now the total differential cross-section for proton-antiproton scattering is obtained by
summing over all possible parton types that can be pulled out of the incoming protons
(quarks, antiquarks, gluons).

Thus we finally obtain an expression for the proton-proton differential cross-section

dσpp(s)

dpT
=
∑

i,j

∫ 1

0

dx1

∫ 1

0

dx2f
i
p(x1)f

j
p̄ (x2)

dσ̂(x1x2s)

dpT
,

where the sum over i, j means sum over all possible partons.

QCD calculations based on this factorisation theorem agree well with experiment.

Only a single parton from each hadron takes part in the parton scattering process. The
other partons in the incoming hadrons finally fragment into hadrons, which are moving
almost in the same direction as the incoming protons (and are usually not observed because
they get lost in the beam-pipe of the accelerator).
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Chapter 20

Parity, Charge Conjugation and CP

20.1 Intrinsic Parity

In the same way that nuclear states have parity, so hadrons, which are bound states of quarks
(and antiquarks) have parity. This is called intrinsic parity, η and under a parity inversion
the wavefunction for a hadron acquires a factor η

PΨ{P}(r) = = Ψ{P}(−r) = η{P}Ψ{P}(r).

η can take the values ±1 noting that applying the parity operator twice must bring us back
to the original state.

The lighter baryons (for which there is zero orbital angular momentum) have positive
intrinsic parity.

On the other hand, antiquarks have the opposite parity from quarks. This means that
the light antibaryons have negative parity. It also means that the light mesons, such as
pions and kaons, which are bound states of a quark and an antiquark have negative intrinsic
parity. The lightest spin-one mesons, such as the ρ-meson, also have zero orbital angular
momentum and thus they too have negative intrinsic parity - they have spin-one because of
the alignment of the spins of the (valence) quark and antiquark.

For more massive (higher energy) particles, the quarks can be in non-zero orbital angular
momentum states so that both baryons and mesons with higher masses can have either
parity.

Parity is always conserved in strong interaction processes. A consequence of this is the
decay

ρ0 → π+ + π−

Since ρ mesons have spin-one and pions have spin zero the final pion state must have l = 1.
The ρ has negative intrinsic parity and so do the two pions. The orbital angular momentum
l = 1 means that the parity of the final state is

η2π(−1)1 = −1,
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so that parity is conserved. On the other hand, two π0’s cannot be in an l = 1 state. The
reason for this is that pions are bosons and so the wavefunction for two identical pions must be
symmetric under interchange, whereas the wavefunction for an l = 1 state is antisymmetric
if we interchange the two pions. This means that the decay mode

ρ0 → π0 + π0

is forbidden.

If we look at the non-leptonic weak decay of a K+ into pions (weak because strangeness
is not conserved) we find that

K+ → π+ + π0

and
K+ → π+ + π0 + π0, or π+ + π+ + π−

both occur. Since the K+ has negative parity and zero spin - so that the final state cannot
have any orbital angular momentum, the final two pion state has even parity, whereas the
final three pion state has odd parity.

This is a demonstration that the weak interactions do not conserve parity - and this was
in fact observed before C.S. Wu’s experiment on the β-decay of 60Co.

20.2 Charge Conjugation

This is the operation of replacing particles by their antiparticles

CΨ{P} = Ψ{P}

e.g.
CΨπ+ = Ψπ−

CΨp = Ψp

Some mesons are their own antiparticles such as a π0 or the J/Ψ (a quark-antiquark pair
of the same flavour). In this case we have a charge conjugation quantum number ηC

CΨπ0 = ηCΨπ0 ,

where ηC can take the values ±1 - again noting that the application of the charge conjugation
operator twice must bring us back to the original state.

A photon has charge conjugation ηC = −1. This is because under charge conjugation
electric charges switch sign and therefore so do electric and magnetic fields. We know that
the π0 can decay into two photons via electromagnetic interaction, which are invariant under
charge conjugation

π0 → γ + γ
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This forces the charge conjugation of π0 to be ηC = +1.

The spectra of charmonium (c − c̄ bound states), or bottomonium (b − b̄ bound states)
contain both positive and negative charge conjugation states.

20.3 CP

Like parity, charge conjugation is conserved by the strong and electromagnetic interactions
but not by the weak interactions,

On the other hand, the weak interactions are (almost) invariant under the combined
operations of charge conjugation and parity inversion, known as “CP”.

Thus the weak interactions will allow a (highly relativistic) left-handed (negative helicity)
electron to convert into a neutrino emitting a W−

e−L

νe

W−

(or alternatively a W− will decay into a left-handed electron and an antineutrino)

W−

e−L

νe

Similarly a right-handed (positive helicity) positron can convert into an antineutrino

e+R

νe

W+

If it were possible to repeat the experiment of C.S. Wu using the antiparticle of 60Co, 60Co
which decays into 60Ni emitting positrons and neutrinos, one would find that the positrons
tended to be emitted in the same direction as the spin of the antinucleus (whereas in the
original experiment they tended to be emitted in the opposite direction from the spin of the
nucleus).

20.4 K0 −K0 Oscillations

The invariance of the weak interactions under CP has consequences for the K0 and K0

particles (and also for B0 and B0 mesons currently being studied at the BaBar collaboration
at SLAC.)
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PΨK0 = −ΨK0

and
CΨK0 = ΨK0

so that
CPΨK0 = −ΨK0.

This means that the ‘particles’ K0 and K0 are not eigenstates of CP. But if CP is
conserved, then the energy eigenstates (i.e. masses) must also be eigenstates of CP (CP
commutes with the Hamiltonian). These eigenstates of CP are

ΨKL
=

1√
2

(

ΨK0 + ΨK0

)

, CP = −1

and

ΨKs
=

1√
2

(

ΨK0 − ΨK0

)

, CP = +1

where L and S stand for long and short for reasons we shall see. These mass eigenstates are
therefore not pure K0 or K0 states, but quantum superpositions of the two.

The allowed non-leptonic decays of these states are

KL → π0 + π0 + π0, or π0 + π+ + π−,

because there is no orbital angular momentum as the kaons and pions both have spin zero
and we require three pions to make a CP = −1 state because the pions have negative parity.
Likewise we have

KS → π0 + π0, or π+ + π−,

because two pions give us a CP = +1 state.

The lifetime of the KS is shorter than that of the KL (τS = 10−10 s. compared with
τL = 10−8 s), because the Q-value for the decay into only two pions is larger than that for a
decay into three pions (mK − 2mπ > mK − 3mπ).

On the other hand, we can distinguish a K0 (s̄− d bound state) from a K0 (s− d̄ bound
state) by their semi-lepton decay modes

K0 → π− + µ+ + νµ

K0{ d
s̄

W+

µ+

νµ

}π−
ū
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K0 → π+ + µ− + νµ

K0{ d̄
s

W−

µ−

νµ

}π+
u

If, at time t = 0, we have a pure K0, this is a superposition of the KL and KS states

ΨK0(t = 0) =
1√
2
(ΨKL

+ ΨKS
) .

The KL and KS have slightly different masses

∆m

m
= 7× 10−15

KL and KS therefore have different energies, which means that their wavefunctions have
different frequencies.

Applying the Schrödinger equation to obtain the time dependence of the wavefunction,
whgich at time t = 0 represents a pure K0 state, we obtain a wavefunction which contains
oscillations between the wavefunction for a K0 and the wavefuntion for a K0, so that if at
some later time t the particle decays semi-leptonically the probabilities P (K0) or P (K0) of
observing aK0 decay ( decay products (µ+, π− νµ)) orK0 decay (decay products (µ−, π+ νµ))
are of the form

P (K0) = A(t) + B(t) cos
(

∆mc2t/~
)

P (K0) = A(t) − B(t) cos
(

∆mc2t/~
)

,

where ∆m = mKL
−mKS

.

In other words, as time progresses there are oscillations between the K0 and K0 states
(details of the calculation are shown in the Appendix).

This oscillation has been observed experimentally.

161



0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

t (ns)

P (K

0

)

P (K

0

)

This is a striking example of the effects of quantum interference.

In 1964, Christensen et.al. observed a few decays of KL into two pions. Such a decay, in
which the (CP = −1) KL decays into a CP = +1 final state, indicated that CP invariance
was violated to a very small extent by the weak interactions.
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20.5 Summary of Conservation laws

• Baryon number: baryons=+1, antibaryons=-1, mesons, leptons=0.

• Lepton number:

– electron number: e−, νe = 1, e+, νe = −1

– muon number: µ−, νµ = 1, µ+, νµ = −1

– τ number: τ−, ντ = 1, τ+, ντ = −1

Strong Electromagnetic Weak
Interactions Interactions Interactions

Baryon number yes yes yes
Lepton number (all) yes yes yes
Angular momentum yes yes yes

Isospin yes no no
Flavour yes yes no
Parity yes yes no

Charge conjugation yes yes no
CP yes yes almost
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Appendix
Neutral Kaon Oscillations

If at time t = 0, we prepare a state which is pure K0 (e.g. a decay product of a strongly
decaying particle with strangeness +1), then in terms of the wavefunctions for KL and KS

the wavefucntion at time t = 0 is

Ψ(t = 0) =
1√
2
(ΨKL

(t = 0) + ΨKS
(t = 0)) .

The wavefunctions for KL and KS therefore have different oscillatory time dependences

exp
(

−imKL
c2t/~

)

and exp
(

−imKS
c2t/~

)

as well as exponentially decaying time dependent factors

exp (−t/(2τL)) and exp (−t/(2τS)) ,

indicating that the probabilities of the particles surviving at time t are

exp (−t/τL) and exp (−t/τS) respectively.

The time dependence of ΨKL
and ΨKS

are given by

ΨKL
(t) = ΨKL

(t = 0) exp
(

−imKL
c2t/~

)

exp (−t/(2τL))

ΨKS
(t) = ΨKS

(t = 0) exp
(

−imKS
c2t/~

)

exp (−t/(2τS))

Therefore the above wavefunction at time t may be written

Ψ(t) =
1√
2

{

ΨKL
exp

(

−imKL
c2t/~− t/(2τL)

)

+ΨKS
exp

(

−imKS
c2t/~− t/(2τS)

)}

Writing this out in terms of wavefunctions for K0 and K0 we get

Ψ(t) =
1

2

{

ΨK0

[

exp
(

−imKL
c2t/~− t/(2τL)

)

+ exp
(

−imKS
c2t/~− t/(2τS)

)]

+ ΨK0

[

exp
(

−imKL
c2t/~− t/(2τL)

)

− exp
(

−imKS
c2t/~− t/(2τS)

)]}

The modulus squared of the coefficients of ΨK0 and ΨK0 are the probabilities that at time t
the particle is a K0 or K0, respectively. These probabilities are

P (K0) =
1

4

[

exp (−t/τL) + exp (−t/τS) + 2 exp (−t(τL + τS)/(τLτS)) cos
(

∆mc2t/~
)]

and

P (K0) =
1

4

[

exp (−t/τL) + exp (−t/τS)− 2 exp (−t(τL + τS)/(τLτS)) cos
(

∆mc2t/~
)]

where ∆m = mKL
−mKS

.
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Chapter 21

Epilogue

In the second part of this course, I have tried to give you a ‘whirlwind tour’ of some of the
concepts of modern particle physics.

These concepts have not been easy to assimilate. This is because many of the ideas
involved are radically new and differ from one‘s previous ideas (for example the fact that
couplings run and are not constant), and not because they have required a great deal of math-
ematics. In fact, I have relied very much on a qualitative picture rather than mathematical
descriptions. The main reason for this is that in order to carry out proper quantitative cal-
culations in particles physics where it is necessary to account both for Special Relativity and
Quantum Mechanics, required the use of Quantum Field Theory, which is taught to Particle
Physics graduate students.

Despite the difficulty, it is my hope that you have been stimulated by the fact that much
of the material concerns current research activities. So far, nearly all of the core physics that
you have studied was developed up to the middle of the last century. Many of the theoretical
concepts and experimental results discussed in these last lectures were discovered in your
lifetime or shortly before.

For those of you who will stay here next year and share some of my excitement at this
rapidly developing subject, I recommend the fourth year option on Particle Physics in which
some of the topics discussed in these lectures are developed in more detail.
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