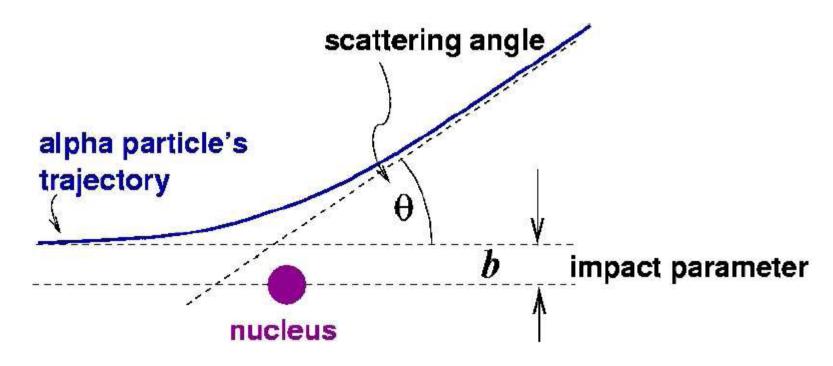
PHYS3002. Nuclei and Particles. Synoptic.

1	Mod	dels of Nuclei
	1.1	Rutherford Scattering and cross section
	1.2	Cross section
	1.3	Units
	1.4	Diffraction
		1.4.1 Electric Quadrupole Moments
	1.5	$ \ \text{Liquid drop model} \ \dots $
		1.5.1 Some Nuclear Nomenclature
		1.5.2 Binding Energy
	1.6	Nuclear Shell Model
		1.6.1 Spin and Parity of Nuclear Ground States
	1.7	The Collective Model


2	Rac	lioactivity and nuclear reactions
	2.1	Radioactivity
	2.2	Decay Rates
	2.3	Alpha Decay
	2.4	Beta Decay
	2.5	Gamma Decay
	2.6	Nuclear Fission
	2.7	Nuclear Fusion

3	Cha	arge Independence and Isospin
4	Acc	elerators and particle kinematics
	4.1	Fixed Target Experiments vs. Colliding Beams
	4.2	$Luminosity \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$
5	Fun	damental Interactions (Forces) of Nature
	5.1	Photon Propagator
	5.2	Virtual particles
	5.3	Feynman Diagrams
	5.4	Weak Interactions

6	Cla	ssification of matter Particles
	6.1	Leptons
	6.2	$\operatorname{Hadrons} \ \ldots \ $
	6.3	Short-lived particles - resonances
	6.4	Partial Widths and branching ratios
7	Cor	stituent Quark Model
	7.1	Hadrons from u,d quarks and anti-quarks
	7.2	Hadrons with s-quarks (or \bar{s} anti-quarks)
	7.3	Quark Colour
8	Wea	ak Interactions
	8.1	Cabibbo Theory $\ \ldots \ \ldots \ \ldots \ \ldots \ \ldots \ \ldots \ \ldots$
	8.2	Parity Violation
	8.3	Z-boson interactions
	8.4	The Higgs mechanism

9	Elec	tromagnetic Interactions
	9.1	Electromagnetic Decays
	9.2	Electron-positron Annihilation
10	Qua	ntum Chromodynamics (QCD)
	10.1	Gluons and Colour
	10.2	Running Coupling
	10.3	Quark Confinement
	10.4	Three Jets in Electron-positron Annihilation
11	Sum	mary of Conservation laws

Rutherford Scattering and cross section

The relation between b (impact parameter) and θ (scattering angle) is given by

$$\tan\left(\frac{\theta}{2}\right) \; = \; \frac{D}{2b}$$

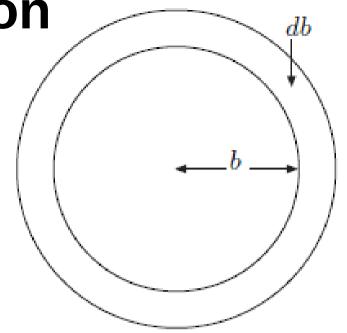
Cross section

The "flux", F of incident particles is defined as the number of incident particles arriving per unit area per second at the target.

The number of particles, dN(b) per second, with impact parameter between b and b+db is this flux multiplied by the area between two concentric circles of radius b and b+db.

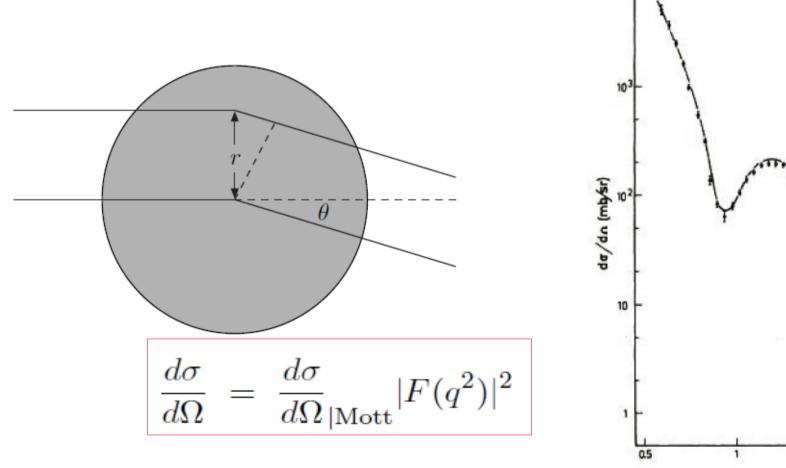
$$dN(b) = F 2\pi b db$$

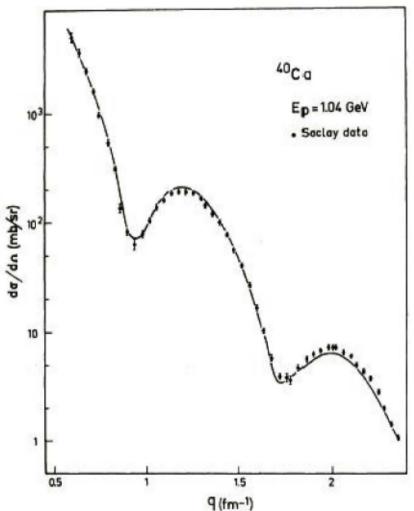
Differentiating equation above we derive


$$dN(\theta) = F\pi \frac{D^2}{4} \frac{\cos(\theta/2)}{\sin^3(\theta/2)} d\theta$$

We define the "differential cross-section", $d\sigma/d\theta$, with respect to the scattering angle is the number of scatterings between θ and $\theta + d\theta$ per unit flux, per unit range of angle, i.e.

$$\frac{d\sigma}{d\theta} = \frac{dN(\theta)}{Fd\theta} = \pi \frac{D^2}{4} \frac{\cos(\theta/2)}{\sin^3(\theta/2)}.$$


Using $d\Omega = \sin\theta d\theta d\phi$ we define differential cross-section with respect to a given solid angle Ω :


$$\frac{d\sigma}{d\Omega} = \frac{D^2 \cos(\theta/2)}{8 \sin^3(\theta/2)} \frac{1}{2 \sin(\theta/2) \cos(\theta/2)} = \frac{D^2}{16 \sin^4(\theta/2)}$$

$$\textbf{Diffraction} \quad \frac{d\sigma}{d\Omega_{|\text{Mott}}} \; = \; \frac{d\sigma}{d\Omega_{|\text{Rutherford}}} \left(1 - \frac{v^2}{c^2} \sin^2 \left(\frac{\theta}{2} \right) \right)$$

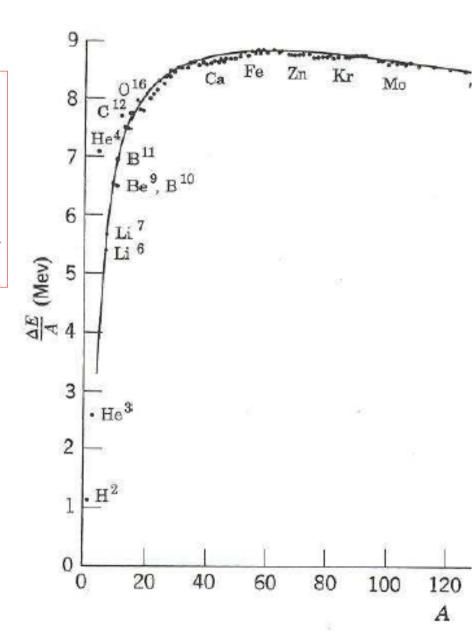
The structure of "electric form-factor" has a diffractive nature

and the first minimum of the diffractive pattern occurs when

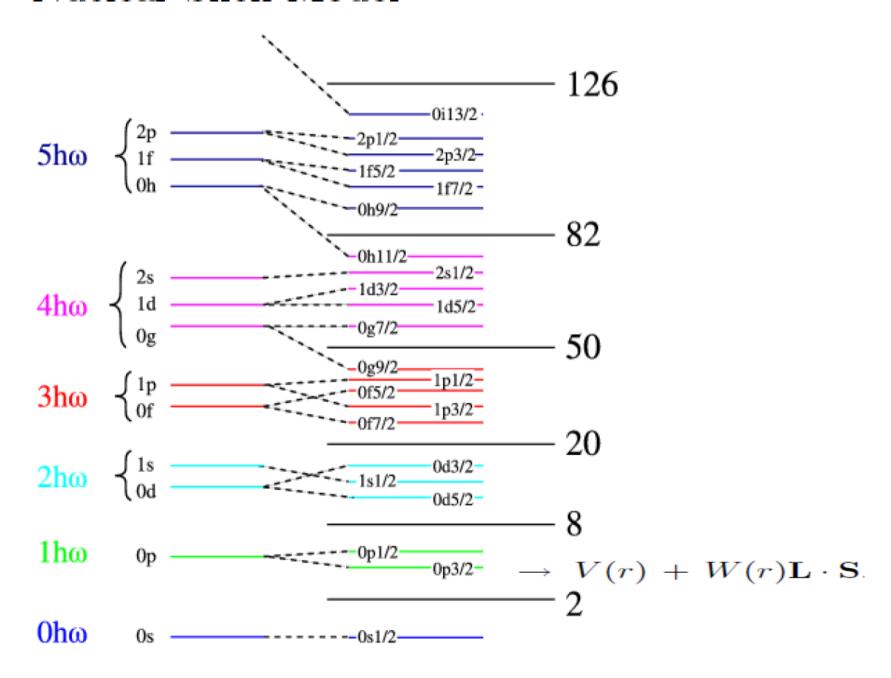
$$\frac{qR}{\hbar} \approx \pi$$

Liquid drop model

Binding Energy


The complete formula is

$$B(A,Z) = a_V A - a_S A^{2/3} - a_C \frac{Z^2}{A^{1/3}}$$


$$-a_A \frac{(Z-N)^2}{A} + \frac{\left((-1)^Z + (-1)^N\right)}{2} \frac{a_P}{A^{1/2}}$$

where the values of fitted parameters a_V , a_S , a_C , a_A , a_P are

$$a_V = 15.56 \text{ MeV}$$
 $a_S = 17.23 \text{ MeV}$
 $a_C = 0.697 \text{ MeV}$
 $a_A = 23.285 \text{ MeV}$
 $a_P = 12.0 \text{ MeV}$

Nuclear Shell Model

Decay Rates

$$\frac{dN(t)}{dt} = -\lambda N(t)$$

$$N(t) = N_0 e^{-\lambda t}$$

$$\tau = \frac{1}{\lambda} \qquad \tau_{\frac{1}{2}} = \frac{\ln 2}{\lambda} = \ln 2\tau$$

Alpha Decay

$$_{(Z+2)}^{(A+4)}\{P\} \rightarrow _{Z}^{A}\{D\} + \alpha.$$

$$Q_{\alpha} = (m_P - m_D - m_{\alpha})c^2.$$

Beta Decay

$${}_{Z}^{A}\{P\} \rightarrow {}_{(Z+1)}^{A}\{D\} + e^{-} + \bar{\nu}, \quad \text{or} \quad {}_{Z}^{A}\{P\} \rightarrow {}_{(Z-1)}^{A}\{D\} + e^{+} + \nu.$$

$$n \rightarrow p + e^- + \bar{\nu}$$
.

$$^{60}_{27}\mathrm{Co} \rightarrow ^{60}_{28}\mathrm{Ni} + e^- + \bar{\nu}. \quad \langle \mathbf{s} \cdot \mathbf{p_e} \rangle \neq 0$$

$$\langle \mathbf{s} \cdot \mathbf{p_e} \rangle \neq 0$$

Gamma Decay

The total angular momentum change, L in a nuclear transition can take the values

$$|Li - Lf| \le L \le |Li + Lf|, L>0$$

This is also subject to selection rules for the parity difference between initial and final states:

 $P = (-1)^L$, for electric transitions and

 $P = (-1)^{L-1}$, for the (even further suppressed) magnetic transitions.

Here are some examples:

$$2+ \rightarrow 1-(E1)$$

$$2+ \to 1+(M1)$$

$$3+ \to 1-(M2)$$

$$3+ \to 1+(E2)$$

The Mössbauer Effect

$$E_0=E_\gamma+rac{E_\gamma^2}{2M_Nc^2}, ~~ ext{and}~~ E_\gamma\simeq E_0\left(1-rac{E_0}{2M_Nc^2}
ight) \ \Gamma=rac{\hbar}{ au}~pprox 10^{-3}~ ext{eV} \ rac{\Delta\lambda}{\lambda}~=~rac{\ddot{v}}{c}=rac{\Delta E}{E} \ \Gamma~=~2Erac{arphi_{1/2}}{c}$$

Accelerators and particle kinematics

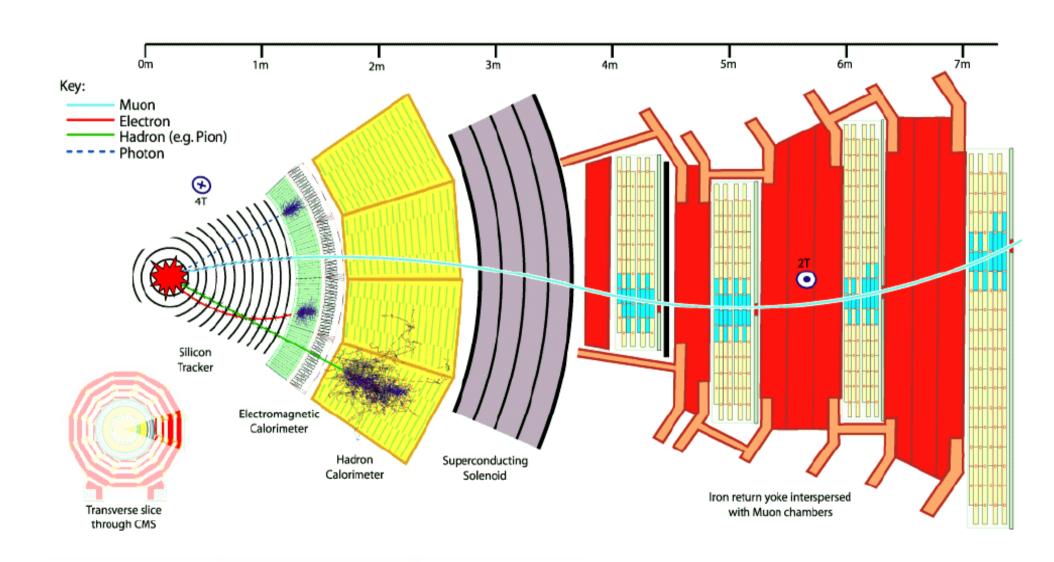
$$s = \left(\sum_{i=1,2} E_i\right)^2 - \left(\sum_{i=1,2} \mathbf{p}_i\right)^2 c^2$$

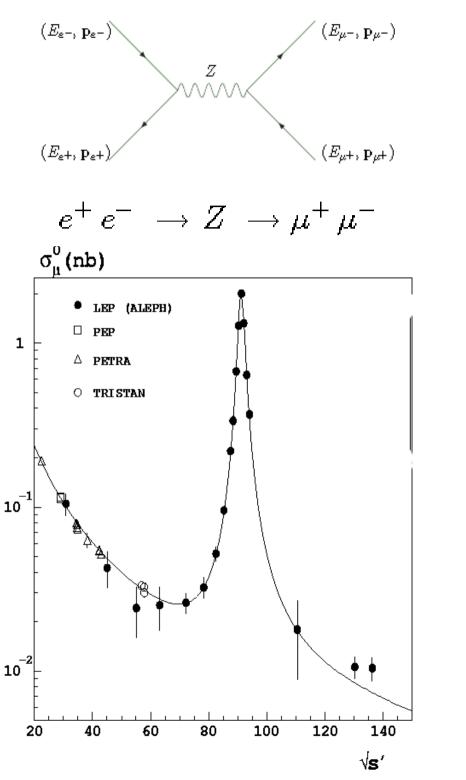
CM frame:

$$s = 4E_{CM}^2$$

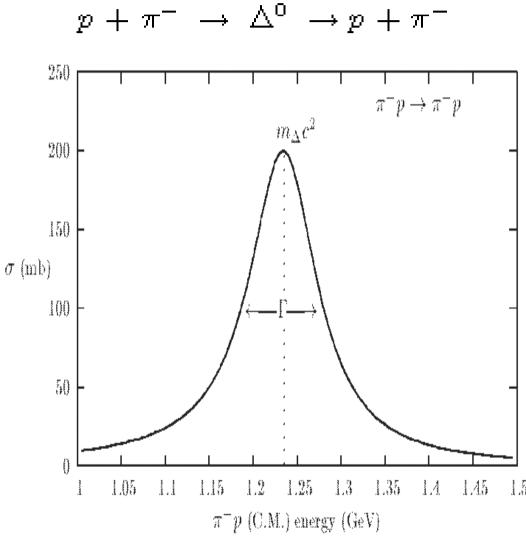
Fixed target: $s = \left(E_{LAB} + mc^2\right)^2 - \mathbf{p}_{LAB}^2 c^2 =$

$$E_{LAB}^2 + m^2c^4 + 2mc^2E_{LAB} - \mathbf{p}_{LAB}^2c^2 = 2m^2c^4 + 2mc^2E_{LAB}$$

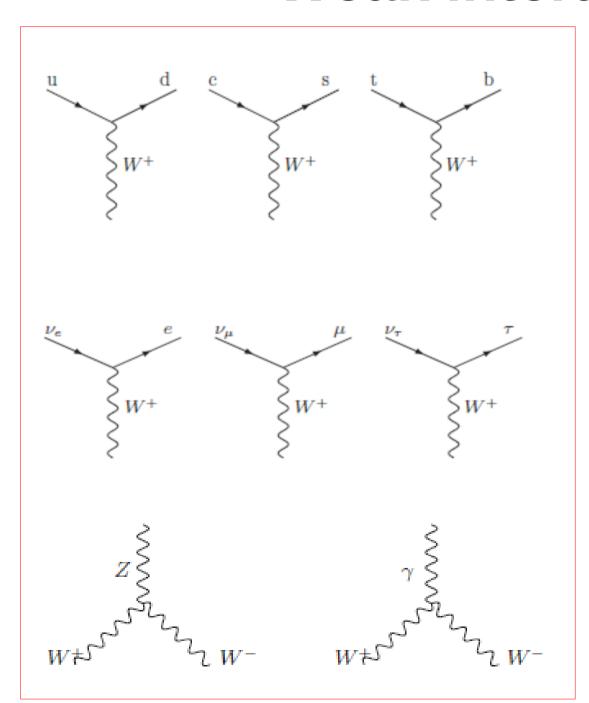

5 Fundamental Interactions (Forces) of Nature

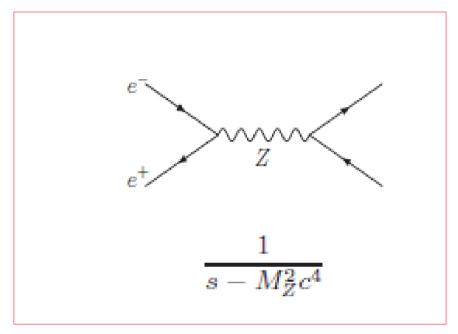

Interaction	Gauge Boson	Gauge Boson Mass	Interaction Range
	(Force carrier)		
Strong	Gluon	0	short-range (a few fm)
Weak	W^{\pm}, Z	$M_W=80.4~{ m GeV/c^2}$	short-range ($\sim 10^{-3}$ fm)
		$M_Z=$ 91.2 GeV/c 2	
Electromagnetic	Photon	0	long-range
Gravity	Graviton	0	long-range

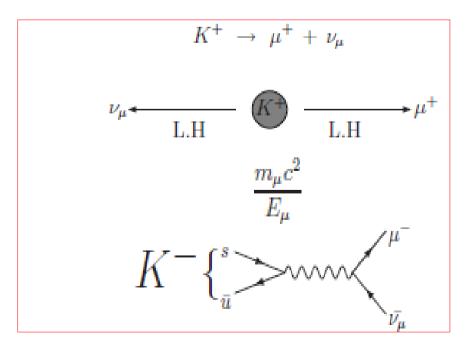
Leptons			Electric Charge
$ u_{\rm e}$	$ u_{\mu}$	$\nu_{ au}$	0
e	μ	τ	-1

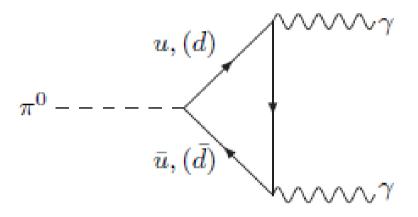

Symbol	Flavour	Electric charge (e)	Isospin	\mathbf{I}_3	$ m Mass~Gev/c^2$
u	up	$+\frac{2}{3}$	$\frac{1}{2}$	$+\frac{1}{2}$	≈ 0.33
d	down	$-\frac{1}{3}$	$\frac{1}{2}$	$-\frac{1}{2}$	≈ 0.33
G	charm	$+\frac{2}{3}$	0	0	≈ 1.5
n	strange	$-\frac{1}{3}$	0	0	≈ 0.5
t	top	$+\frac{2}{3}$	0	0	≈ 172
b	bottom	$-\frac{1}{3}$	0	0	≈ 4 .5

CMS DETECTOR

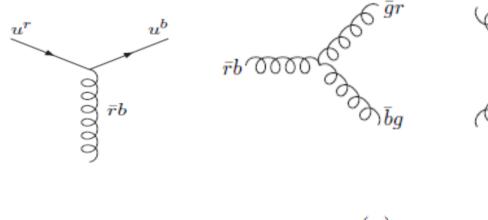


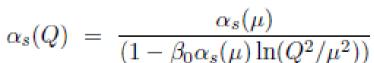



$$\frac{1}{(s - m_{\rho}^2 c^4 + i m_{\rho} \Gamma_{\rho} c^2)}$$


Weak interactions

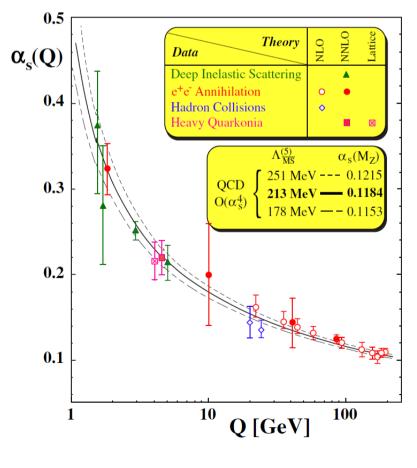
Electromagnetic Interactions


$$R = \frac{\sigma(e^+e^- \to \text{hadrons})}{\sigma(e^+e^- \to \mu^+\mu^-)} = 3\left(Q_u^2 + Q_d^2 + Q_s^2\right) = 3\left(\left(\frac{2}{3}\right)^2 + \left(\frac{-1}{3}\right)^2 + \left(\frac{-1}{3}\right)^2\right) = 2$$


QCD

$$\Delta^{++}$$
 (uuu)

$$\frac{1}{\sqrt{6}} \left(|f_1^R f_2^G f_3^B\rangle + |f_1^B f_2^R f_3^G\rangle + |f_1^G f_2^B f_3^R\rangle - |f_1^B f_2^G f_3^R\rangle - |f_1^R f_2^B f_3^G\rangle - |f_1^G f_2^R f_3^B\rangle \right)$$


$$|\pi^{+}\rangle = \frac{1}{\sqrt{3}} \left(|u^{R}\overline{d^{R}}\rangle + |u^{G}\overline{d^{G}}\rangle + |u^{B}\overline{d^{B}}\rangle \right)$$

$$\beta_0 = -\frac{1}{4\pi} \left(11 - \frac{2}{3} n_f \right)$$

$$\alpha_s(M_Zc) = 0.12$$

Summary of Conservation laws

• Baryon number: baryons=+1, antibaryons=-1, mesons, leptons=0.

• Lepton number:

```
- electron number: e^-, \nu_e = 1, e^+, \overline{\nu_e} = -1
```

- muon number: μ^- , $\nu_\mu = 1$, μ^+ , $\overline{\nu_\mu} = -1$

 $-\tau$ number: $\tau^-, \nu_\tau = 1, \tau^+, \overline{\nu_\tau} = -1$

	Strong Interactions	Electromagnetic Interactions	Weak Interactions
Baryon number	yes	yes	yes
Lepton number (all)	yes	yes	yes
Angular momentum	yes	yes	yes
Isospin	yes	no	no
Flavour	yes	yes	no
Parity	yes	yes	no
Charge conjugation	yes	yes	no
CP	yes	yes	almost