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MATH6011: Forecasting

“All models are wrong, but some models are useful.” – George E. P. Box (1919–2013)





About the course

As stated in the module profile, the aim of this course is to (1) introduce the students to time
series models and associated forecasting methods; (2) show how such models and methods can be
implemented on a spreadsheet to analyse time series data; (3) give an appreciation of the different
fields of application of time series analysis and forecasting; and (4) convey the value of such
quantitatively based methods for solving realistic practical problems. Students who complete
the module successfully should be able to (a) formulate time series models and construct Excel
spreadsheet-based versions; (b) use spreadsheet techniques to fit and analyse such models to data;
(c) appreciate both the capabilities and the limitations of such computer based techniques; and (d)
produce well-structured assignment reports describing problem formulation and solution.

There is no pre-requisite for the module, but students who have taken MATH6147 (Spreadsheet
and Database Modelling) and MATH6005 (Visual Basic for Applications) will find the Excel
implementations of the models relatively easy. The material for these modules will be made
available on the Blackboard site of this course. This will allow those of you who are interested to
look at them for further details on Excel (MATH6147) or VBA (MATH6005) to go through them
and possibly learn how to develop their own VBA codes for the algorithms that will be discussed
in the course. Further links and sites for quick references on these tools are also provided on the
blackboard site. Note however that for this course and the related assessment, no programming
skill is required and all the basic tools needed to succeed are provided. It might also be useful to
mention that it would be an advantage to have taken a basic course on statistics. Most of the useful
concepts will be recalled, and further details can be found in any basic book on Statistics, see, e.g.,
Clarke, G.M. and Cooke, D. 2004, A basic course in statistics, 5th Ed., Wiley.

The module uses Makridakis, S., Wheelwright, S.C. and Hyndman, R.J. 1998, Forecasting:
Methods and Applications 3rd Ed., New York: Wiley as text book. Most of the material of these
notes is extracted from there. Also, most of the data sets used in the demonstrations is drawn from
this book. (The full set from the book can also be downloaded under Course Documents, if desired.)
Hyndman, R.J. and Athanasopoulos, G. 2014. Forecasting: principles and practice. Ortexts.com
has recently superseded the latter book. Hence, some of the material of these notes has also been
drawn from there. An additional advantage of the book by Hyndman and Athanasopoulos (2014) is



iv

that it is freely accessible to read online (at https://www.otexts.org/fpp/). A few hard copies of the
book can be found at the Hartley Library. Other interesting references include:

1. Anderson, R.A., Sweeney, D.J. and Williams, T.A. 1994. An Introduction to Management
Science. 7th Edn, West Publishing Co.;

2. Draper, N.R. and Smith, H. 1981. Applied Regression Analysis, 2nd Ed. New York: Wiley;
3. Gilchrist, W.G. 1976. Statistical Forecasting, New York: Wiley;
4. Janert, P.K. 2011. Data Analysis with Open Source Tools. Sebastopol: O’Reilly;
5. Wetherill, G.B. 1981. Intermediate Statistical Methods. London: Chapman and Hall.
All notes and spreadsheets used in the module are available on the course Blackboard site under

Course Documents, where the spreadsheets are grouped by chapter and workshop, respectively.
The notes are meant to be worked through and each chapter is accompanied by a number of
demos associated to the spreadsheets, illustrating the topic or method being discussed. They are
an essential part of the text and must be carefully studied, possibly before the lectures. In the
spreadsheets, the following convention for cells is used:
• Cells with a Yellow background - Headings, incidental Information;
• Cells with a Green background - Input information used in calculations on that sheet;
• Cells with a Blue background - Calculations and results that you should be producing.
Exercises included at the end of each chapter correspond to the worksheet for the workshop of

the corresponding week. They will be worked through during the workshops (computer labs) that
follow the Friday lecture. The workshop exercises follow the same patterns as the demos, and use
the same data sets in some cases, in order to give you the opportunity to get more familiar with the
related material, as focus at lectures will be more on the mathematical aspects of the models.

Assessment: The assessment of the module is 100% by a single coursework assignment. You
will be given the assignment and related instructions in the second week. Further details on the
submission and other key dates of the module activities are given in the table on the next page.

Feedback: A key opportunity to get feedback on your progress in the module will be during the
weekly workshops. To benefit the most from the workshops, you are strongly encouraged to work
on the problem sheets in advance before coming to the workshop. This will help us access where
you are struggling and provide immediate help. It is also the best way for you to get well prepared
for the exercises in your coursework assignment. You are also encouraged to come to my office
hours to discuss any particular aspect of the lectures/material you might be struggling to understand.
No appointment is needed to come to my office hour. I will be able to provide some brief element
of feedback by email (efforts will be made to reply by the next working day after reception) if you
have any quick questions. I have also arranged three voluntary sessions (assignment surgeries),
prior to the coursework submission deadline, where you could ask questions and get feedback on
the module and the coursework preparations; see next page for the dates. The final feedback on
your performance on the coursework will be provided within 4 weeks after the submission deadline.

Acknowledgements: Dr Honora Smith and Prof Russell Cheng are gratefully acknowledged
for the development of previous drafts of the course notes and the related material.

Instructor
Dr Alain Zemkoho
School of Mathematics
Building 54, Room 10027
a.b.zemkoho@soton.ac.uk

PhD Teaching Assistantsa: Zulkipli Hafizah
Binti, Fulin Xie and Yuan Zhang

aThey will join me during the workshops to help
with your questions on the exercises. Please do not
contact them for any assistance related to the course-
work assignment.
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1. Introduction and basic tools

Many companies make use of judgmental forecasting techniques which rely on the knowledge of
experienced employees and managers. Such a qualitative approach is common in the case where
there is no historical data; for example, if one wants to forecast the sales of a new product. A typical
situation where judgemental forecasting can also be crucial is Brexit. As there is no precedent to
this situation, it is almost impossible to accurately identify any historical factor that can be used
to make reliable predictions of its impact on the UK’s economy. Often, qualitative forecasting
is carried out within the framework of fairly formal and regularly scheduled meetings. It can be
augmented by the kind of quantitative techniques discussed in this unit, and this combined approach
has much to commend it. Further details on qualitative forecasting methods can be found in Chapter
3 of the book by Hyndman and Athanasopoulos (2014).

Our focus in this course will be on quantitative forecasting methods. A quantitative approach
relies on sufficient reliable quantitative information being available. An explanatory model is
one that attempts to explain the relationship between the variable to be forecast and a number of
independent variables, e.g., the Gross National Product (GNP) of a country can be obtained as

GNP = f (monetary and tax policies, inflation, capital spending, imports, exports)+ Error,

where f stands for “function of”.
A black-box model is one that simply tries to relate future values of the variable of interest to

previous values, without attempting to explain its behaviour in terms of other variables. A time
series model is one that attempts to relate the value of a variable(s) at one time point with values of
the variable(s) at previous time points, for example,

GNPt+1 = f (GNPt , GNPt−1, GNPt−2, . . .)+ Error.

Here, t denotes the time. Thus “simple” time series models, like the one above, are “black-box”.
More complex time series models are explanatory in that they try to relate the value of the variable
of interest not simply with its previous values but also with previous values of other “explanatory”
variables.
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This module will be concerned with such simple time series models, as well as some explana-
tory modelling (see chapter on regression). The methods that we will discuss are all based on
extrapolation into the future of patterns shown in the past. Confidence in such forecasts is therefore
based on confidence that such patterns will, in future, remain stable.

We begin with the preliminaries to forecasting that enable you to begin to find the best forecast-
ing model to use with a particular time series. Before we start with the basic tools that we will be
using in the course, let us recall that our focus will mostly be on two types of data (time series data
and cross-sectional data) that we are now going to formally define.

Definition 1.0.1 Time series data are data from a unit (or a group of units) observed in several
successive periods, whereas cross-sectional data are data from units observed at the same time
or in the same time period. The latter may be single observations from a sample survey or from
all units in a population.

Though our main focus here will be on the first type, the second will also be of a great use,
especially in Chapter 3. Examples of time series are discussed in Demo 1.1 while an example of
cross-sectional dataset is given in Demo 1.3.

1.1 Graphical and numerical summaries

This course is a practical introduction to the skills of forecasting. To give experience in encoun-
tering a variety of time series, real-life datasets are used, both during the course and for the final
coursework.

1.1.1 Graphical summaries
Time plots
The essence of forecasting models is that patterns are projected forward in time, while random
effects are discarded. The first thing to do when forecasting is therefore to make a time plot and
look for patterns. The following may be observed:
• A trend, which is a long term increase or decrease in the variable of interest.
• A seasonal/periodic pattern appears when a time series is affected by seasonal factors such

as time of the year or the day of the week.
• A cyclical pattern, which is one where there are rises and falls but not of regular period,

generally thought of as longer in time, e.g., several years.
It should be noted that combinations of the above three types of pattern occur frequently. We will
treat trend and cycles together in the following analysis, and will often refer to trend-cycles.

A time series is said to be stationary if the distribution of the fluctuations is not time dependent.
In particular both the variability about the mean, as well as the mean must be independent of time.
A stationary time series therefore has no trend, cycle or seasonality and no patterns that can be used
for forecasting.

Demo 1.1: Using the data sets from the Chapter 1 data folder on Blackboard, make time plots
for the corresponding series: Australian monthly electricity (TimePlotTransformElec.xls), US
treasury bills (TimePlotUstreas.xls), Australian clay brick (TimePlotBricks.xls).
• The first example, Australian monthly electricity production, displays a clear trend and

seasonality. Note that both the seasonal variability as well as the mean show a trend.
• The US treasury bill contracts data shows a trend, but there is less certainty as to whether

this trend will continue.
• The data on Australian clay brick production contains occasional large fluctuations which

are difficult to explain, and hence predict, without knowing the underlying causes.
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Seasonal plots
If an initial inspection of a time plot leads you to suspect that seasonality may exists, then several
methods exist to demonstrate and to give evidence for its existence. A seasonal plot is one where
the time series is cut into regular periods and the time plots of each period are overlaid on top of
one another. It is an effective means of demonstrating seasonality, for example to a client who is
not overly technically minded.

Demo 1.2: Produce the time and seasonal plots for the Australian beer production data provided in
the file with name TimeSeasonalPlotBeer.xls.

If seasonal plots lead you to think that seasonality may exist, then further technical evidence can be
provided by autocovariance and autocorrelations. These concepts are introduced in the next section.
Before going to that, we provide another class of plots that is useful in analyzing bivariate-type
data sets (i.e., data sets based on two variables).

Scatterplots
The graphs discussed so far are useful for time series data. Scatter plots are most useful for
exploring relationships between variables in cross-sectional data.

The automobile data of (19 Japanese cars, see “Data” sheet in BivariateJapaneseCars.xls)
are not a time series. Thus making time or seasonal plots inappropriate for these data. However,
these data are well suited to a scatterplot (see “BivariatePlot” sheet) such as that of price against
mileage. In the figure we have plotted the variable we wish to forecast (price) against one of the
explanatory variables (mileage). Each point on the graph represents one type of vehicle. The
plot shows the relationship between price and mileage: vehicles with high mileage per gallon are
generally cheaper than less fuel-efficient vehicles. (Both price and fuel-efficiency are related to the
vehicle and engine size.) Vehicles with low mileage per gallon are generally priced over a range
from around 12,000 to 25,000.The scatterplot helps us visualize the relationship and suggests that a
forecasting model must include mileage as an explanatory variable.

When there are several potential explanatory variables, it is useful to plot each variable against
each other variable to analyze correlations (see definition below) between them. These plots can be
arranged in a scatterplot matrix; see, e.g., the 4th question of the Exercises of Chapter 3 that will
be discussed at the corresponding workshop.

Demo 1.3: Produce the scatterplot mapping the price of the 19 Japanese cars against their mileage
(BivariateJapaneseCars.xls).

1.1.2 Numerical data summaries
Covariance and correlation
The most commonly used statistic for bivariate data (i.e. when there are two variables) is the
covariance, and the correlation coefficient. If we have n pairs of observations (Xi, Yi) on two
variables X and Y, then the formulas are respectively

CovXY =
1

n−1

n

∑
i=1

(Xi− X̄)(Yi− Ȳ )

and

rXY =
CovXY

SX SY
=

∑
n
i=1(Xi− X̄)(Yi− Ȳ )√

∑
n
i=1(Xi− X̄)2

√
∑

n
i=1(Yi− Ȳ )2

. (1.1)

Here, X is the mean and SX =
√

1
n−1 ∑

n
i=1
(
Xi−X

)
is the (sample) standard deviation. The correla-

tion coefficient rXY , is a standardised version of the covariance and its value is always between
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-1 and 1. Values close to each limit indicate a strong linear relation between the two variables.
EXCEL has several covariance and correlation worksheet functions.

Demo 1.4: Calculate these statistics both using the above formulas and using the Excel Worksheet
functions: 19 Japanese cars (BivariateJapaneseCars.xls). The scatterplot mapping the cars’
prices against the mileage already shows that there is a strong negative correlation between the two
variable. This is confirmed by the calculation in sheet “Bivariate”, which gives a value of −0.72 (a
number strictly below the middle value of −0.50.)

Autocovariance and autocorrelation

The use of covariance and correlation can be extended to a time series {Yt}. We can compare Yt

with the previous lagged value Yt−1. The autocovariance, ck, and autocorrelation at lag k, rk, are
defined by

ck =
1

n−1

n

∑
t=k+1

(Yt − Ȳ )(Yt−k− Ȳ )

and

rk =
∑

n
t=k+1(Yt − Ȳ )(Yt−k− Ȳ )

∑
n
t=1(Yt − Ȳ )2 , (1.2)

respectively. The complete set of autocovariances is called the autocovariance function, and the set
of autocorrelations, the autocorrelation function (ACF).

Demo 1.5: Calculate the ACF for the Australian beer production data (ACFAusBeer.xlsm). Note
that there is a peak at lag 12 and a trough at lag 6, giving further evidence for seasonality. It is
not usual to plot more than n/4 lags, as the number of terms in the summation being relatively
small means that the estimates of the correlations for large lags are correspondingly less reliable. In
ACFAusBeer.xlsm, a VBA macro is used to calculate the ACF. The macro has as input the column
of n observations, and outputs the autocorrelation function up to lag m = n/4.

1.2 Decomposition

If the existence of trend/seasonality in a time series has been demonstrated, then it is possible to
decompose a time series to give estimates of the underlying trend and seasonal parts. It should be
noted that the techniques used are not forecasting methods in themselves, but they can be employed
in actual forecasting in a limited number of situations, see Subsection 1.2.4 for related details.

The basic approach in analysing the underlying structure of a time series is to decompose it as

Yt = f (St ,Tt ,Et), (1.3)

where Yt is the observed value at time t and the variables are defined as follows:
• St is the seasonal component at time t;
• Tt is the trend-cycle component at time t;
• Et is an irregular (random) component at time t.

There are several forms that the functional form f can take. But before we discuss the standard
expressions, we first discuss the estimation of the trend component.
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1.2.1 Trend estimation using moving averages
The first step in the decomposition is to produce an estimate, T̂t , of the trend-cycle. (Here and
in what follows we use a circumflex to denote an estimate.) This is carried out by a smoothing
technique known as moving averages. The basic idea is that values of observations which are close
together in time will have trend-cycle components that are similar in value. Ignoring the seasonal
component for the moment, the value of the trend-cycle component at some particular time point
can then be obtained by taking an average of a set of observations about this time point. Because
the values that are averaged depend on the time point, this is called a moving average.

There are many different forms that a moving average can take. Many have been constructed
using ad-hoc arguments and reasoning. All boil down to being special cases of what is called a
k-point weighted moving average:

Mt =
m

∑
j=−m

a jYt+ j

where m = (k-1)/2 is called the half-width, and the a j are called the weights.
Note that in this definition k must be an odd number. The simplest versions are the cases where

all the weights are the same. This is then called a simple moving average of order k. For example,
if k = 3, then

Mt = (Yt−1 +Yt +Yt+1)/3.

If the weights are symmetrically balanced about the centre value (i.e. about j = 0 in the sum), then
this is called a centred moving average.

Simple moving averages involving an even number of terms can be used, but are then not
centred about an integer t. This can be redressed by averaging a second time only averaging the
moving averages themselves. Thus, for example, if

M2.5 = (Y1 +Y2 +Y3 +Y4)/4 and M3.5 = (Y2 +Y3 +Y4 +Y5)/4

are two consecutive 4-point moving averages, then we can centre them by taking their average

(M2.5 +M2.5)/2 = (Y1 +2Y2 +2Y3 +2Y4 +Y5)/8.

This example is called a 2×4 MA. It is simply a 5-point weighted moving average, with end weights
each 1/8, and with the other three weights being 1/4.

If applied to quarterly data, this 2×4 MA, would give equal weight to all four quarters, as the
1st and last values would apply to the same quarter (but in different years). Thus this smoother
would smooth out quarterly seasonally variation.

Similarly, a 2×12 MA would smooth out seasonal variation in monthly data. Question: What
are the weights of a 2×12 MA smoother?

Demo 1.6: Fit 7MA and 2x12MA to the housing sales data (AddDecompHsales.xls).

There is a problem applying a moving average at the two ends of a time series when we run out of
observations to calculate the complete summation. When fewer than k observations are available
the weights are usually rescaled so that they sum to unity.

An effect of a moving average is that it will underestimate trends at the ends of a time series.
This means that the methods discussed so far are generally unsatisfactory for forecasting purposes
when a trend is present.
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1.2.2 Additive decomposition
We now consider what might be called classical decomposition. These are methods developed in
the 1920’s which form the basis of typical existing decomposition methods. We consider first the
additive case, where (1.3) takes the form

Yt = St +Tt +Et . (1.4)

We assume throughout that the seasonal period is 12. The classical decomposition takes four steps:

Step 1: Compute the centred 2x12 MA. Denote this series by Mt (corresponding to T̂t in (1.4)).
This series estimates the trend-cycle.

Step 2: De-trend the original series by subtraction:

Dt = Yt −Mt = St +Et .

Step 3: Calculate a seasonal index for each month by taking the average of all the values each
month, j:

Ŝ j =
1
n j

n j

∑
k=1

D j+12(k−1).

In this formula, it is assumed that there are n j values available for month j, so that the summation is
over these n j values.

Step 4: The estimated irregularity is obtained by subtraction of the seasonal component from the
de-trended series:

Êt = Dt − Ŝ j(t).

Here Ŝ j(t) denotes the seasonal index for the month corresponding to observation Yt .

1.2.3 Multiplicative decomposition
For the multiplicative model

Yt = St ×Tt ×Et ,

the method is called the ratio of actual to moving averages. There are again four steps:

Step 1: Compute the centred 2x12 MA. Denote this series by Mt (as in the previous case, this
corresponds to T̂t). This step is exactly the same as in the additive model case.

Step 2: Calculate Rt , the ratio of actual to moving averages:

R t =
Yt

Mt
.

Step 3: Calculate a seasonal index for each month by taking the average of all the values each
month, j:

Ŝ j =
1
n j

n j

∑
k=1

R j+12(k−1).

This step is exactly the same as in the additive case except that D is replaced by R.

Step 4: Calculate the error using

Êt =
Rt

Ŝt
=

Yt

Mt Ŝt
.
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R The question arises as to which method of decomposition should be used for a particular
dataset. The multiplicative model assumes that variability is amplified with trend, whereas
constant variability is assumed by the additive model. This can be observed from time series
plots. We will see in the next two demonstrations examples of use of the two models in these
different conditions. An appropriate use of the model is confirmed by the randomness or
otherwise of the remaining error terms (or residuals). For a general perception of the different
patterns that can guide your choice, see Pegels classification in Figure 2.1 in the next chapter.

Demo 1.7: Analyse the house sales data (AddDecompHsales.xls) using the additive model. Plot
the trend-cycle, seasonal and irregular estimates. Note: This demonstrates using a pivot table to
calculate the seasonal adjustments.

Demo 1.8: Analyse the international airline data (AddMultDecompAirlinesalesA.xls) using
the multiplicative model. Plot the trend-cycle, seasonal and irregular estimates.

1.2.4 Decomposition and forecasting

There have been many attempts to develop forecasts based directly on a decomposition. The
individual components are projected into the future and recombined to form a forecast of the
underlying series. Although this may appear a reasonable approach, in practice it rarely works
well. The chief difficulty is in obtaining adequate forecasts of the components. The trend-cycle is
the most difficult component to forecast. It is sometimes proposed that it be modeled by a simple
function such as a straight line or some other parametric trend model. But such models are rarely
adequate. The other components are somewhat easier to forecast. The seasonal component for
future years can be based on the seasonal component from the last full period of data. But if the
seasonal pattern is changing over time, this will be unlikely to be entirely adequate.

One approach that has been found to work reasonably well is to forecast the seasonally adjusted
data using Holt’s method (see next chapter), then adjust the forecasts using the seasonal component
from the end of the data. Makridakis et al. (1982) found that forecasts obtained in this manner
performed quite well compared with several other methods. However, in this course, decomposition
will only be considered as a tool for understanding a time series rather than as a forecasting method
in its own right. Time series decomposition provides graphical insight into the behavior of a time
series. This can suggest possible causes of variation and help in identifying the structure of a series,
thus leading to improved understanding of the problem and facilitating improved forecast accuracy.
Decomposition is a useful tool in the forecaster’s toolbox, to be applied as a preliminary step before
selecting and applying a forecasting method.

1.3 Data preparation

We describe here the adjustments that may be needed to a dataset before it is ready for application
of forecasting models, after preliminary analysis. It should be emphasised that all such adjustments
should be documented and justified as part of the process of analysis.

1.3.1 Length of the times series

Consideration should be given to the length of the time series to be used for calculations of forecasts.
Usually the entire available dataset is used, but sometimes changing conditions can produce radical
changes in observed patterns. Sometimes forecasts cope well with such changes, but sometimes the
methods do not cope well and it is better to truncate a dataset to more recent conditions. However,
it is always necessary to have sufficient data to produce a forecast, and so the forecaster’s judgment
must be applied.



8 Chapter 1. Introduction and basic tools

1.3.2 Missing and erroneous data
Real-life data is liable to contain human errors, most of which cannot be known with certainty
by the forecaster. However, some clear outliers may be considered with high probability to be
erroneous. For example, a missing or extra numeral will produce a resulting number that is ten
times smaller or larger than neighbouring entries in a time series, and could seriously disrupt a
forecast. If the source of the data can be referred to, it might then be possible to correct the error: if
not, an estimate should be made.

If it is considered necessary to add an estimated value where missing or erroneous data is
present, then this has to be carried out with due regard to the time series in question, and clear
justification given. A local average value might be appropriate, but seasonality might also need to
be considered.

1.3.3 Transformations
Sometimes a systematic adjustment of the data will lead to a simpler analysis: mathematical
tranforms may be applied in certain cases. There are two ideas that are helpful in selecting an
appropriate transform.

First, it is usually easier to analyse a time series if the underlying mean varies in a linear way
with time. Thus if the behaviour of the actual data has the form

Yt = at p + et ,

where a and p are constants and ε t is an random ’error’, then the transform

Wt = (Yt)
1/p = (at p + et)

1/p = bt +δt ,

where b = a1/p, makes Wt look more ’linear’ than Yt . Note that the transformed ’error’, δ t , will
depend in a complicated way on et , a, p and t. However in many situations the behaviour of δ t will
remain ’random’ looking and be no more difficult to interpret that the initial error et . The above is
known as a power transform.

Another useful transform is the logarithmic transform:

Wt = loge(Yt).

This can only be used if Yt > 0, as the logarithm of a negative quantity is complex valued.
The second idea is that the random errors are most easily handled if their variability is not time

dependent but remains essentially constant. A good transformation should therefore be variance
stabilizing, producing errors that have a constant variance. For example if

Yt = a(t + et)
p,

where the ε t have a constant variance, then the power transform

Wt = (Yt)
1/p = a1/p(t + et) = bt +δt ,

where b = a1/p and δ t = bet will not only linearise the trend, but will also be variance stabilizing,
as δ t will have constant variance.

Finally note that, though we analyse the transformed data, we are really actually interested in
the original sequence. So it is necessary to back transform results into the original units. Thus, for
example in the last case, we might analyse the Wt and estimate b, by, say b̂, but we would back
transform to estimate a by

â = b̂p.
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An important but somewhat difficult technical issue is that such transforms can destroy desirable
properties like unbiasedness. A well known case concerns a random sample X1, X2, ... Xn, of size n.
Here, the sample variance given by the formula

s2 =
1

n−1

n

∑
i=1

(Xi− X̄)2

is known to be an unbiased estimator for the variance. However, s, the obvious estimator for the
standard deviation is not unbiased. When n is large this bias is, however, small.

Demo 1.9: Plot the Australian monthly electricity (TimePlotTransformElec.xls) data using
the square root and the (natural) log transforms.

1.3.4 Calendar adjustments
If data is for calendar months, then account might have to be taken of the length of a month. The
difference between the longest and shortest months is about (31- 28)/30 = 10%. The adjustment
needed is

Wt =
# of days in an average month

# of days in month i
×Yt =

365.25/12
# of days in month i

×Yt .

Demo 1.10: Make separate time series plots of Yt and Wt for the data on the monthly milk
production (CalAdjustMilk.xls) per cow.

1.4 Exercises
The data files and demonstration spreadsheets are available on the Blackboard site (see Course
Content). Note that in all spreadsheets, allowance will need to be made for the length of the dataset,
in all calculations and plots.

Exercise 1.1: Make time plots of the building materials (buildingMaterials.xls) and cement
production (cementProduction.xls) data sets. Give a title to the graph, dates on the X-axis and
make sure the Y-axis is appropriately labelled (the files include details of the units involved, i.e.
thousands of tonnes.) You can use adjust the colour scheme of the graphs to improve readability.
What trends/cycles or seasonality do you observe?

Exercise 1.2: Produce seasonal plots for buildingMaterials.xls and cementProduction.xls.
What seasonality do you observe?

Exercise 1.3: Calculate the correlation coefficient for the two datasets buildingMaterials.xls
and cementProduction.xls over a suitable time period, using the Excel Worksheet function.
Can a strong linear relationship (positive or negative) be observed?

Exercise 1.4: A VBA macro is used in ACFAusBeer.xlsm to calculate the autocorrelation function
(ACF). The macro has as input the column of n observations, and outputs the ACF up to lag m =
n/4. Make a copy of this spreadsheet and use to calculate the ACF of buildingMaterials.xls.

Exercise 1.5: Fit 7MA and 2x12MA moving averages to buildingMaterials.xls. Which is the
more appropriate for smoothing the data in this case?
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Exercise 1.6: Analyse buildingMaterials.xls using the additive decomposition (see develop-
ment in AddDecompHsales.xls). Plot the trend-cycle, seasonal and irregular estimates.
Note: This demonstrates using a pivot table to calculate the seasonal adjustments. Do the irregular
estimates show independence, and distribution about zero?

Exercise 1.7: Analyse cementProduction.xls using the multiplicative decomposition (see
AddMultDecompAirlinesalesA.xls). Plot the trend-cycle, seasonal and irregular estimates.

Exercise 1.8: Consider the brick deliveries data set, bricksDeliveries.xls:
1. The variance of the time series is decreasing. Can you find a transform that will stabilise it?

Make timeplots of the original and the transformed data.
2. Make calendar adjustments for this time series. Plot these against timeplots of the original

data. Did a calendar adjustment reduce the variance?



2. Basic forecasting methods

This chapter introduces basic forecasting methods based on averaging techniques. The basic
forecasting methods to be considered are conventionally regarded as being divided in two groups:
(i) averaging methods and (ii) exponential smoothing methods. Though it is convenient to follow
this convention, it is important to realise at the outset that this distinction is artificial in that all the
methods in this chapter are based on averages. They are thus all similar to the moving averages
considered in the last chapter. The difference is that the averages are used here for forecasting
rather than for describing past data. This point of potential confusion is made worse by the use
of the name “exponential smoothing” for the second group. These methods are also based on
weighted averages, where the weights decay in an exponential way from the most recent to the
most distant data point. The term smoothing is being used simply to indicate that this weighted
average smoothes the data irregularities. Thus, though the term smoothing here is used in the same
sense as previously, the smoothing is being carried out in a different context from that used in the
previous chapter. Before we start with the discussion of the methods, it is crucial to first present
some tools that can be used to evaluate and compare the performance of forecasting techniques.

2.1 Accuracy analysis
2.1.1 Measures of Accuracy

The forecaster needs to choose the best model to use for forecasting any particular time series.
We discuss here different measures for comparing different forecasting models on the basis of
forecasting errors.

Let Ft be the forecast value and Yt be the actual observation at time t. Then the forecast error at
time t is defined as

et = Yt −Ft . (2.1)

Usually Ft is calculated from previous values of Yt right up to and including the immediate
preceding value Yt−1. Thus Ft predicts just one step ahead. In this case Ft is called the one-step
forecast and et is called the one-step forecast error. Usually we assess error not from one such et

but from n values. Three measures of error are:
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(i) the mean error

ME =
1
n

n

∑
t=1

et ,

(ii) the mean absolute error

MAE =
1
n

n

∑
t=1
|et | ,

(iii) and the mean square error

MSE =
1
n

n

∑
t=1

e2
t .

The mean error is not very useful. It tends to be near zero as positive and negative errors tend to
cancel. It is only of use in detecting systematic under or over forecasting.

The mean square error is a squared quantity so be careful and do not directly compare it with
the MAE. Its square root is usually similar to the MAE.

The relative or percentage error is defined as

PEt =

(
Yt −Ft

Yt

)
×100,

while the mean percentage error is

MPE =
1
n

n

∑
t=1

PEt

and the mean absolute percentage error is

MAPE =
1
n

n

∑
t=1
|PEt | .

We illustrate these error measures in the following demonstration, which is based on two simple
(or naïve) forecasts.

Demo 2.1: Set up forecasts NF1 and NF2 for the Australian beer data (NaiveFAusBeer.xls).
Calculate the ME, MAE, MSE, MPE, MAPE for the Australian beer series data using NF1 and
NF2. NF1 is defined by

Ft = Yt .

This simply takes the present Y value to be the forecast for the next period. The second naive
forecast, NF2 which is defined next, takes into account some seasonal adjustment such that

Ft+1 = Yt −St +S(t−12)+1.

Here the present Y value is adjusted by subtracting Si, the current period’s seasonality, and adding
Si+1, the next period’s seasonality. The seasonality is obtained as

St =
1

m+1
(mSt−12 +Yt) with St = Yt for t = 1, . . . ,12,

where m is the number of complete years of data available. We also set Ft+1 = Yt for t = 1, . . . ,12.
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2.1.2 ACF of forecast error
It is often useful to regard the one-step forecast errors as a time series in its own right, and to
calculate and plot the ACF of this series. This has been done for the Australian beer production
series:

Demo 2.2: The ACF for errors resulting from the naïve forecasts NF1 and NF2 for the Australian
beer data (NaiveFAusBeer.xls) is plotted. Notice that there is pattern in the series and this has
been picked up by the ACF with a high value at lag 12. With such a pattern evident in the errors, it
can therefore be assumed that the forecasting model used here is not completely adequate. Do not
read too much into the other autocorrelations as one should expect departures from zero even for
the ACF of a random series.

2.1.3 Prediction interval
Assuming that the errors are normally distributed, one can usefully assess the accuracy of a forecast
by using

√
MSE as an estimate of the error. An approximate prediction interval for the next

observation is

Ft+1± z
√

MSE, (2.2)

where z is a quantile of the normal distribution. Typical values used are:

z Probability
1.282 0.80
1.645 0.90
1.960 0.95
2.576 0.99

This enables, for example, 95% or 99% confidence intervals to be set up for any forecast.

2.2 Averaging methods
For this and following forecasting methods, we suppose that we are currently at time t and that we
wish to use the data up to this time, i.e. Y1, Y2, ..., Yt−1, Yt , to make forecasts Ft+1, Ft+2,..., Ft+m

of future values of Y. For averaging methods, it is only possible to make a one-step forecast, i.e.
we can forecast only up to Ft+1. In the next chapter, however, we will discuss methods that can
forecast further into the future, for time series with trend and/or seasonality.

The moving average forecast of order k, which we write as MA(k), is defined as

Ft+1 =
1
k

t

∑
i=t−k+1

Yi.

This forecast is only useful if the data does not contain a trend-cycle or a seasonal component. In
other words the data must be stationary, at least in the short term. Data is said to be stationary if Yt ,
which is a random variable, has a probability distribution that does not depend on t.

A convenient way of implementing this forecast is to note that

Ft+2 =
1
k

t+1

∑
i=t−k+2

Yi = Ft+1 +
1
k
(Yt+1−Yt−k+1).

This is known as an updating formula as it allows a forecast value to be obtained from the previous
forecast value by a simpler calculation than using the defining expression.
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The only point of note is that moving average forecasts give a progressively smoother forecast
as the order increases, but a moving average of large order will be slow to respond to real but rapid
changes. Thus, in choosing k, a balance has to be drawn between smoothness and ensuring that this
lag is not unacceptably large.

2.3 Exponential smoothing methods
In this chapter we introduce three exponential smoothing methods of forecasting that may be used
to suit different conditions in a time series, i.e. depending on whether trend and seasonality are
present or not. We start with the simplest form, single exponential smoothing.

2.3.1 Single exponential smoothing
The single exponential forecast or single exponential smoothing (SES) is defined as

Ft+1 = αYt +(1−α)Ft ,

where α is a given weight value to be selected subject to 0 < α < 1. Thus Ft+1 is the weighted
average of the current observation, Yt , with the forecast, Ft , made at the previous time point t − 1.

Repeated application of the formula yields

Ft+1 = (1−α)tF1 +α

t−1

∑
j=0

(1−α) jYt− j,

showing that the dependence of the current forecast on Yt , Yt−1, Yt−2, . . . , falls away in an
exponential way. The rate at which this dependence falls away is controlled by α . The larger the
value of α , the quicker does the dependence on previous values fall away.

SES needs to be initialized. A simple choice is to use

F1 = Y1.

Other values are possible, but we shall not agonise over this too much as we are more concerned
with the behaviour of the forecast once it has been in use for a while.

It should be noted that, as with averaging methods, SES can only produce a one-step forecast.

Demo 2.3: Employ SES for the shampoo data (LESShampoo.xls). Proceed as follows:
1. Set up α in a named cell.
2. Plot the Yt and the SES.
3. Calculate also the MSE of the SES from Y.
4. Try different values of α . Use Solver to minimize the MSE by varying α .

2.3.2 Holt’s linear exponential smoothing
This is an extension of exponential smoothing to take into account a possible (local) linear trend.
The trend makes it possible to forecast m time periods ahead. There are two smoothing constants α

and β , 0 < α , β < 1. The equations are:

Lt = αYt +(1−α)(Lt−1 +bt−1),
bt = β (Lt −Lt−1)+(1−β )bt−1,
Ft+m = Lt +btm.

Here Lt and bt are respectively (exponentially smoothed) estimates of the level and linear trend of
the series at time t, whilst Ft+m is the linear forecast from t onwards.
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Initial estimates are needed for L1 and b1. Simple choices are

L1 = Y1 and b1 = 0.

If however zero is atypical of the initial slope then a more careful estimate of the slope may be
needed to ensure that the initial forecasts are not badly out.

It should be noted that to use this method it is NOT necessary for a series to be completely
linear, but some trend should be present.

Demo 2.4: Employ LES for the shampoo data (LESShampoo.xls). Proceed as follows:
1. Set up α and β in named cells.
2. Plot the Yt and the LES. Create forecasts for m=5 time periods ahead.
3. Calculate also the MSE of the LES from Y.
4. Try different values of α and β . Use Solver to minimize the MSE by varying α and β .

2.3.3 Holt-Winter’s method

This is an extension of Holt’s LES to take into account seasonality denoted as St . There are two
versions, multiplicative and additive that we discuss below. Before, note that to choose between
both approaches, the criteria discussed in Chapter 1 for the decomposition remains valid, i.e., the
multiplicative method should be used when variability is amplified with trend, whereas the additive
approach is more suitable in the case of constant variability. Whenever in doubt, both methods can
be implemented and the best one chosen based on the error it generates.

Holt-Winter’s method, multiplicative seasonality

The equations are

Lt = α
Yt

St−s
+(1−α)(Lt−1 +bt−1),

bt = β (Lt −Lt−1)+(1−β )bt−1

St = γ
Yt
Lt
+(1− γ)St−s,

Ft+m = (Lt +btm)St−s+m,

where s is the number of periods in one cycle of seasons e.g. number of months or quarters in a
year. To initialize we need one complete cycle of data, i.e. s values. Then set

Ls =
1
s
(Y1 +Y2 + ...+Ys)

and to initialize trend we use s + k time periods.

bs =
1
k

(
Ys+1−Y1

s
+

Ys+2−Y2

s
+ ...+

Ys+k−Yk

s

)
.

If the series is long enough then a good choice is to make k = s so that two complete cycles are
used. However we can, at a pinch, use k = 1. Initial seasonal indices can be taken as

Sk =
Yk

Ls
, k = 1, . . . ,s.

The parameters α , β , γ should lie in the interval (0, 1), and can be selected by minimising MAE,
MSE or MAPE.
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Holt-Winter’s method, additive seasonality
The equations are

Lt = α(Yt −St−s)+(1−α)(Lt−1 +bt−1),
bt = β (Lt −Lt−1)+(1−β )bt−1,
St = γ(Yt −Lt)+(1− γ)St−s,
Ft+m = Lt +btm+St−s+m,

where s is the number of periods in one cycle. The initial values of Ls and bs can be as in the
multiplicative case. The initial seasonal indices can be taken as

Sk = Yk−Ls, k = 1, 2, ..., s.

The parameters α , β , γ should lie in the interval (0, 1), and can again be selected by minimising
MAE, MSE or MAPE.

Demo 2.5: Apply the Holt-Winter method to the airline passengers data set contained in the
spreadsheet ExponentialSmoothing.xls:
1. Follow the same procedure as in Demo 2.4, using the three parameters α , β and γ .
2. Compare results for Holt-Winter’s methods with those for LES.

A taxonomy of exponential smoothing methods
An important consideration in dealing with exponential smoothing methods having separate trend
and seasonal aspects is whether or not the model should be additive (linear) or multiplicative
(non-linear). Pegels (1969) has provided a simple but useful framework for discussing these matters
as indicated by the patterns in Figure 2.1.

Figure 2.1: Patterns based on Pegels’ (1969) classification

Clearly, the principle mentioned in the remark in Subsection 1.2.3 is reflected by the patterns in
Figure 2.1; i.e., the multiplicative model assumes that variability is amplified with trend, whereas
constant variability is assumed by the additive model. Pegels’ classification in Figure 2.1 leads to
the following general formulas that would lead to 9 different methods:

Lt = αPt +(1−α)Qt ,
bt = βRt +(1−β )bt−1,
St = γTt +(1− γ)St−s,
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where P, Q, R, and T vary according to which of the cells the method belongs. The table in Figure
2.2 shows the appropriate values of P, Q, R, and T and the forecast formula for forecasting m
periods ahead. Note that cell A-1 describes the SES method and cell B-1 describes Holt’s method.
The additive Holt-Winters’ method is given by cell B-2 and the multiplicative Holt-Winters’ method
is given by cell B-3. To work through an example of one of the other cells, consider cell C-3, which
refers to an exponential smoothing model that allows for multiplicative trend and multiplicative
seasonality. Our focus in this course is on the standard cases of these methods discussed above,
i.e., SES (A-1), LES (B-1), HW-Additive (B-2) and HW-Multiplicative (B-3). Further more recent
extensions and improvements on these methods are discussed in Chapter 7 of the book by Hyndman
and Athanasopoulos (2014).

Figure 2.2: Formulas for calculations and forecasting using the Pegels’ classification scheme

2.3.4 Excel implementation of the exponential smoothing method
The exponential smoothing models introduced in this chapter can easily be implemented within
Excel. See the sample spreadsheet ExponentialSmoothing.xls that you could also use for your
calculations. In case you are using it, please pay attention to the following:
• Make sure you update the length of the observations in the formulae, e.g., MSE.
• As the solver is solving an optimization problem, it takes the current values of your parameters

as starting point and you might run it a few times to get a stable solution.
• For the number of forecasting periods m, needed in the Holt-Winter method’s formulae, do

not forget to update your calculation in Excel when m > s, by reprocessing as from m = s+1.
• As for your curves, if you do not get the right update that you expect from your templates,

you can always copy your data and make your own plots separately.
• Finally, on how to chose between additive and multiplicative Holt-Winter methods, see the

discussion under “A taxonomy of exponential smoothing methods”, especially Figure 2.1.
Ultimately, when you are not sure about the right choice, always do both and compare using
the error, as it is done in ExponentialSmoothing.xls.
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2.4 Exercises
The data files and demonstration spreadsheets are available on the Blackboard site (see Course
Content). Note that in all spreadsheets, allowance will need to be made for the length of the dataset,
in all calculations and plots.

Exercise 2.1: Set up forecasts NF1 and NF2 for the building material (buildingMaterials.xls):
1. Calculate the ME, MAE, MSE, MPE, MAPE for these forecasts. How do you rate the two

forecasts on the basis of these measures?
2. Calculate and plot the ACF of the one-step forecast errors of NF1 and NF2. Is there a pattern

in the series? Are the forecasting models used here completely adequate?

Exercise 2.2: Employ SES to forecast the next month for the employment private services data set
(employmentPrivateServices.xls), as per LESShampoo.xls.

1. Set up α in a named cell. Give an initial value of 0.5.
2. Plot the Yt and the SES.
3. Calculate also the MSE of the SES from Y.
4. Try different values of α . Use Solver to minimize the MSE by varying α .
5. Plot the resulting forecast and the original time series, with dates on the X-axis. Give an

appropriate label to the Y-axis.

Exercise 2.3: Employ LES to forecast the next ten months for employmentPrivateServices.xls
(as per LESShampoo.xls). Note the linear formula for Ft+m, the forecast from time t onwards, i.e.
forecast up to m=10.

1. Set up α and β in a named cells. Start with initial values of 0.5.
2. Plot the Yt and the LES.
3. Calculate also the MSE of the LES from Y.
4. Try different values of α and β . Use Solver to minimize the MSE by varying α and β .
5. Plot the resulting forecast and the original time series, with dates on the X-axis. Give an

appropriate label to the Y-axis.
6. What happens to the forecast if you vary α and β? Especially note what happens for α andβ

taking the values 0 and 1.

Exercise 2.4: Apply LES and Holt-Winter’s forecasting method, both multiplicative and additive,
to the cement production data (cementProduction.xls) as per ExponentialSmoothing.xls.
This time, produce a full 12 months of forecasts with all methods.

1. Follow procedure as for Demo 2.4, this time with 3 parameters α , β and γ , and plot results.
2. Compare results of the methods. What can you say about the residuals? What happens if you

vary α , β and γ? What if these parameters are 0 or 1?
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Forecasting models based on regression are examples of explanatory models constructed under the
assumption that there is a possible relationship between the variable to be forecast and a number of
independent variables.

The term regression refers to a certain type of statistical model that attempts to describe the
relationship of one variable, called the dependent variable and usually denoted by Y, and a number
of other variables X1, X2, ..., Xk , called the explanatory or independent variables. We shall only
consider the case of an additive error, e, where the relationship can be written as

Y = f (X1, . . . ,Xk; bo,b1, . . . ,bp)+ e (3.1)

with f being a given function, known as the regression function. The function will depend on
parameters or coefficients, denoted by b0, b1, ..., bp. The parameters’ values are not known and
have to be estimated. The number of regression parameters r = p+1 is not necessarily the same as
k. Finally there is an additional uncertain element in the relationship, represented by the random
variable e. The probability distribution of e is usually specified, but this specification is not usually
complete. For example the distribution of e is often taken to be normal, N(0,σ2), but with the
variance, σ2, unknown.

Irrespective of the form of e, we assume that its expected value is

E(e) = 0 (3.2)

so that, assuming the explanatory variables are given, then the regression function is the expected
value of Y:

E(Y ) = f (X1, . . . ,Xk;bo,b1, . . . ,bp). (3.3)

The simplest and most important relationship is the linear regression:

Y = bo +b1X1 + . . .+bkXk + e. (3.4)

This is called simple linear regression if there is only one explanatory variable, so that k = 1, i.e.,

Y = bo +b1X1 + e. (3.5)
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When k > 1, the relationship is called multiple linear regression.
The above regression models are completely general and not specifically connected with

forecasting. As an example, consider the Japanese cars data discussed in Demos 1.3 and 1.4, where
the price (Y ) is plotted against the mileage (X), see scatter plot in Figure 3.1. Recall that this data
set does not correspond to a time series; it is instead a cross sectional data set, see Definition 1.0.1.
Using a regression line of the form (3.5), the aim is to find the line that fits best to the data. The
selection of the best line is based on the minimization of these errors, cf. discussion in the next
subsection.

(a) (b)

Figure 3.1: (a) shows two possible lines to establish a linear relationship between price (Y ) and
mileage (X), while in (b), the vertical segments represent the errors resulting from the choice of the
red line.

Forecasting is certainly an area of application of regression techniques, and will be our main
focus in this chapter. We will be examining the use of multiple linear regression (3.4) for forecasting,
with i = t (time). Before considering this application, we summarize the main features of linear
regression as a classical statistical technique. There is a huge literature on linear regression. A good
description at a reasonably accessible level is Wetherill (1981). For a derivation of the results, see
Draper and Smith (1981), for example.

3.1 The model and key statistics

3.1.1 Model description
For convenience, we denote by a column vector the coefficients in (3.4):

b = (bo,b1, . . . ,bp)
>

with the superscript T denoting the transpose. The values are usually unknown and have to be
estimated from a set of n observed values {Yi, Xi1, Xi2, . . . , Xik}, i = 1, 2, ..., n, where k is the
number of explanatory variables. In linear regression, the relationship between the values of Y, and
the X ’s of each observation is assumed to be

Yi = bo +b1Xi1 + . . .bkXik + ei, i = 1, . . . ,n. (3.6)

It is assumed that the explanatory variables Xi j are uncorrelated with the error terms ei. It is also
assumed that the errors ei are uncorrelated with each other, and have a normal distribution with
mean zero.
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It is convenient to write this in the partial vector form

Yi = Xib+ ei, i = 1, . . . ,n, (3.7)

where Xi = (1, Xi1, Xi2, . . . , Xik) is a row vector. The full vector form is
Y1
Y2
...

Yn

=


1 X11 X12 . . .
1 X21 X22 . . .
...

...
... . . .

1 Xn1 Xn2 . . .

X1k
X2k

...
Xnk




b0
b1
...

bk

+


e0
e1
...

en

 . (3.8)

More compactly, this means that we have

Y = Xb+ e. (3.9)

The values of the explanatory variables written in this matrix form is called the design matrix. In
classical regression, this is usually taken to be non random, and not to depend explicitly on time.

R The demonstrations in this chapter are based on the spreadsheet regression.xlms loaded
with the data and analysis of the bank data from Chapter 6 of the book by Makridakis et
al. (1998). Further background details on this data can be found in Section 6/1 of the book.
Further details on the development of regression based forecasts using Excel and how to use
regression.xlms are given in Subsection 3.3.3 below. The workshop corresponding this
chapter, see Section 3.4, will also be based on this spreadsheet.

Demo 3.1: Identify the observations Y and the design matrix X for the bank data example
(Regression.xlsm). Note that this example is typical of situations where regression is used
in forecasting, in that the observations {Yi, Xi1, . . . ,Xik}, i = 1, . . . , t come from a time series. We
have emphasized this here by using t as the subscript indicating the current time point rather than
n. [In this example, k = 3 and n = 53 as we will keep the last 6 observations for each variable for
comparison with forecast results. You will note that the number of items left is approximately 10%
of the total data points available.]

3.1.2 Computing the coefficients of the regression model
To get the coefficients vector, b = (b0, . . . ,bk), of the regression model (3.4), the method commonly
used for its estimation is called least squares (LS) method, where the aim is to find the minimum
sum of squares of the error terms (see Figure 3.1b):

S2 =
n

∑
i=1

e2
i = (Y −Xb)T(Y −Xb) (3.10)

with respect to b. A more statistically satisfactory method is that of maximum likelihood. This
latter technique requires an explicit form to be assumed for the distribution of e, such as the normal,
whereas least squares is distribution free. In the special case where the errors are assumed to be
normally distributed then least squares and maximum likelihood methods are essentially equivalent.

By a basic rule from calculus (i.e., the Fermat rule), b can be obtained from (3.10) by solving
the system of equation ∇bS2 = 0. This gives the value

b̂ = (X>X)−1X>Y.

Following the expression in (3.9), the estimate of the regression function at the ith observed value
X = (1,Xi1, . . . ,Xik) is written as Ŷi, and is calculated as

Ŷi = Xib̂. (3.11)

Before we go into the details on how this formula can be used to concretely forecast (see Section
3.3), we first discuss how the performance of a regression model is evaluated (see Subsection 3.1.3)
and how the explanatory variables can be selected (see Section 3.2).
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3.1.3 Key statistics for model evaluation
When we define an equation relating Y (forecast variable) and X (explanatory variable), we are
assuming that there is an underlying statistical model which we are estimating, cf. previous
subsection. Certain statistical tests can be conducted to test the significance of the overall regression
equation, to test the individual coefficients in the equation, and to develop prediction intervals
for any forecasts that might be made using the regression model. In this subsection, we briefly
introduce these statistics and how they can be used to assess the quality of a model.

The coefficient of determination
To proceed here, recall that Y represents the observed values, Ŷ , the estimate of Y obtained in (3.11)
and Ȳ , the overall mean of the observations of Y , i.e., Ȳ = 1

n ∑
n
i=1Yi. Based on these values, we

respectively defined the following quantities:

SST =
n

∑
i=1

(Yi− Ȳ )2,

SSR =
n

∑
i=1

(Ŷi− Ȳ )2,

SSE =
n

∑
i=1

(Yi− Ŷi)
2.

SST represents the total sum of squares (corrected for the overall mean) while SSR is called the
regression sum of squares. The latter quantity measures the reduction in total sum of squares due
to fitting the terms involving the explanatory variables. As for SSE, it is called the (minimized)
residual or error sum of squares and gives the variance of the total sum of squares not explained by
the explanatory variables. In short, SSR and SSE stand for the explained and unexplained sum of
squares, respectively. And we can easily show that the following relationship is satisfied:

SST = SSE +SSR. (3.12)

The sample correlation, rYŶ , between the observations Yi and the estimates Ŷi can be calculated
from the usual sample correlation formula (1.1) and is called the multiple correlation coefficient.
Its square, usually denoted as R2, turns out to be

R2 = r2
YŶ =

SSR
SST

. (3.13)

This is called the coefficient of determination. R2 is a measure of the proportion of the variance of
the Y’s accounted for by the explanatory variables.

The F-test of overall significance
The sums of squares, SST, SSR and SSE, each have an associated number of degrees of freedom
respectively denoted as dfT, dfR and dfE, defined by

dfT = n−1 (# of observations −1),
dfR = k (# of coefficients −1),
dfE = n− k−1 (# of observations −# of coefficients),

(3.14)

where # stands for number. Similarly to the total sum of squares, dfT, dfR and dfE respectively
represent the total, explained and unexplained degrees of freedom. And we obviously have

d f T = d f R+d f E.
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Based on the values in (3.14), we can respectively define the mean squares as follows:

total: MST = SST/dfT,
explained: MSR = SSR/dfR,
unexplained: MSE = SSE/dfE.

(3.15)

Under the assumption that the errors, ei, are all independent and normally distributed, the distribu-
tional properties of all the quantities just discussed are well known.

It would be helpful to have a statistical test that would aid the forecaster in deciding on the
significance of the relationship between the forecast variable Y and the explanatory variables,
X1, . . . ,Xk. The F-test is such a test. Thus the F statistic is the ratio of two mean squares, i.e.,

F =
MSR (explained MS)

MSE (unexplained MS)
. (3.16)

The numerator refers to the variance that is explained by the regression, and the denominator refers
to the variance of what is not explained by the regression, namely the errors. In fact, the F statistic is
intimately connected to the definition of the coefficient of determination, given that from equations
(3.13)–(3.16), we have

F =
R2/k

(1−R2)/(n− k−1)
.

Most computer packages will also report the P-value along with P-value the F statistic. The
P-value gives the probability of obtaining an F statistic as large as the one calculated for your data,
if in fact the true slope is zero. So, if the P-value is small, then the regression is significant. It is
customary to conclude that the regression is significant if the P-value is smaller than 0.05, although
this threshold is arbitrary.

All the values derived in the current and previous subsection are conventionally set out in the
following analysis of variance (ANOVA) table:

Source Sum of Squares df MS F P
Regression SSR k SSR/k MSR/MSE P-value
Error SSE n− k−1 SSE/(n− k−1)
Total SST n−1

Demo 3.2: Use the Worksheet array function LINEST to calculate the least squares estimates of
the regression coefficients for the Bank data in Regression.xlsm. LINEST will provide SSR,
SSE and F. Use the Excel built-in function FDIST to calculate the P-value. Produce the regression
ANOVA table for the bank data. As in the previous demo, use only the first 53 observations; the
remaining observations will be used for model validation later.

The coefficients of individual significance
Either the coefficient of determination, R2, or the F - ratio gives an overall measure of the signifi-
cance of the explanatory variables. If overall significance is established then it is natural to try to
identify which of the explanatory variables is having the most effect. Individual coefficients can be
tested in the presence of all the other explanatory variables relatively easily.

Let us start by pointing out that in the practical process of estimating the coefficients of the
regression model, b j, j = 0, 1, . . . ,bk, in Subsection 3.1.2, their values pretty much depends on
the values of observations considered. Hence, these values must both be considered as random
variables. In other words, b will fluctuate from sample to sample.
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Hence, assuming again that the errors ei are N(0,σ2) variables, then the covariance matrix of b̂
is given by

Var(b̂) = (X>X)−1
σ

2,

where σ2 can be estimated as the MSE, i.e., σ̂2 = MSE. The best way of describing how much each
estimate fluctuates is in the form of a confidence interval. We can obtain the confidence interval for
each b j as follows

b̂ j± t∗×SE(b̂ j),

where SE(b̂ j), the standard error of b̂ j, has a t-distribution with n− k−1 degrees of freedom. As
for t∗, it is a multiplying factor that depends on the number of observations used in the regression
and the level of confidence required. Possible values for t∗ are given in the table provided in Figure
3.2, see last page of this chapter.

A related idea is the t-test which is a test of whether a parameter is equal to zero. For
j = 0, 1, . . . ,k, the following t-test can be set-up for b j:

t j =
b̂ j

SE(b̂ j)
.

This statistic indicates if the values for b j is significantly different from zero. Precisely, when b j

is significantly different from zero, the value of t j will be large (in either the positive or negative
direction depending on the sign of b j).

Similarly to the F-test, the Excel built-in functions LINEST and TDIST can be combined
to generate P-values of each t-statistic (see next demo below). Each of these P-values is the
probability, Pr(T > |t j|), of obtaining a value of |t j| as large as the one calculated for your data,
if in fact the parameter is equal to zero. So, if a P-value is small, then the estimated parameter is
significantly different from zero. As with F-tests, it is customary to conclude that an estimated
parameter is significantly different from zero (i.e., significant, for short) if the P-value is smaller
than 0.05, although this threshold is also arbitrary.

Demo 3.3: LINEST calculates b̂ j and SE(b̂ j) but not the P-values, Pr(T > |t j |). For the bank data
in Regression.xlsm, calculate these P-values and also the confidence intervals. Use the Excel
built-in function TDIST or TINV.

3.2 Selection of explanatory variables
3.2.1 Adding variables to the initial model

In any regression model, including the ones used with time series, one may consider introducing
additional explanatory variables to explain more of the variability of Y. This is especially desirable
when the error sum of squares, SSE is large compared with SSR after fitting the initial set of
explanatory variables.

One useful type of additional variable to consider are what are called indicator variables. This
often arises when one wishes to include an explanatory variable that is categorical in form. A
categorical variable is one that takes only a small set of distinct values. For example suppose that
we have a categorical variable, W, taking just one of four values Low, Medium, High, Very High. If
the effect of W on Y is predictable then it might be quite appropriate to assign the values 1, 2, 3, 4
to the categories Low, Medium, High, Very High and then account for the effect of W using just
one coefficient a:

Yi = bo +biXi1 + . . .+bkXik +aW + ei, i = 1, . . . ,n.
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However if the effect of each of the different possible values of the categorical variable on Y is
not known then we can adopt the following different approach. If there are c categories then we
introduce (c − 1) indicator variables. In the example we therefore use 4−1 = 3 indicator variables;
i.e., W1, W2 and W3. The observations are assumed to have the form

Yi = bo +biXi1 + . . .+bkXik +a1Wi1 +a2Wi2 +a3Wi3 + ei, i = 1, . . . ,n, (3.17)

where, for j = 1,2,3, we have

Wi j =

{
1 if the data point i corresponds to category j,
0 otherwise.

Note that for each index i , only one component of each of the variables Wi1, Wi2 and Wi3 is equal
to unity, the other two being zero.

R Note also that an indicator variable is not needed for the final category as its effect is absorbed
by the overall constant b0. A typical application is to monthly data in which there is a
seasonal component of uncertain effect. Thus month is the categorical variable. We need an
indicator variable, Di, for the each of 11 months. Note also that the use of indicator variables
to represent the effect of categorical variables can greatly increase the number of coefficients
to be estimated.

Demo 3.4: Introduce 11 monthly indicator variables for the Bank data in Regression.xlsm and
fit the new regression model to the first 53 data points.

3.2.2 Time related explanatory variables
If the observations {Yi, Xi1, . . . , Xik}, i = 1, . . . , t, come from a time series, then the explanatory
variables are in this sense already time related. We may however include time itself as an explanatory
variable, and even its powers. Precisely, for the model (3.17), including i, i2 and i3 as three additional
variables leads to

Yi = bo +b1Xi1 + . . .+bkXik +a1Wi1 +a1Wi2 +a1Wi3 +a4i+a5i2 +a6i3 + ei, i = 1, . . . , t.

Demo 3.5: Introduce i as an explanatory variable well as the 11 monthly indicator variables for the
Bank data in Regression.xlsm and fit the new regression model to the first 53 data points.

3.2.3 Subset selection
When the number of explanatory variables is large, then the question arises as to whether some
of the explanatory variables might be omitted because they have little influence on Y . Many ways
have been suggested for selecting variables, including the following ones:

(i) Best subset selection;
(ii) Forward stepwise regression;

(iii) Backward stepwise regression.
Makridakis et al. (1998) and Draper and Smith (1981) discuss this in more detail. Most packages
offer routines to proceed with this. We do not discuss this further here. An important point is that
when the design matrix is non-orthogonal, as invariably will be the case when the explanatory
variable values arise from time series, then the rank order of significance of the coefficients as
given by the P-values is not invariant, but depends on which coefficients happen to be included
in the model. Thus any statement about the significance of a coefficient, is always conditional on
which other coefficients have been fitted. Nevertheless an initial assessment can be made simply
by ordering the coefficients according to their P-value. Based on this ranking, variables with large
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P-values can usually be omitted straight away.

Demo 3.6: Assess which explanatory variables are important for the bank data in the spreadsheet
Regression.xlsm, including in the assessment the time variable, i, as well as the 11 monthly
indicator variables 53 data points.

3.3 Multiple linear regression for forecasting
Suppose that the current time point is t, and that we have observations {Yi, Xi1, . . . ,Xik}, i = 1, . . . , t
up to this point. We now wish to forecast Y for time points i = t +1, . . . , t +m. However rather
than use one of the forecasts of Chapter 2, such as Holt’s LES forecast on Y directly, we might feel
that the estimate of E(Yi) for i = t +1, . . . , t +m, obtained from the multiple regression model of Y
using X1, . . . ,Xk as explanatory variables, will be a better forecast.

To be able to do this we need forecasts

Gi = (Gi1, . . . ,Gik) of Xi = (Xi1, . . . ,Xik), for i = t +1, . . . , t +m.

We can then use each of these forecasts in the predictor, Ŷ , as the forecast of E(Y), i.e.,

Fi = Ŷi = Gib̂ for i = t +1, . . . , t +m.

The forecasts Gi can be obtained in a number of ways, possibly exploiting relationships between
the X1, . . . ,Xk themselves. We shall not consider these possibilities in any detail. Instead we
shall assume that the X j behave independently of one another, and can therefore each be forecast
separately using a method like Holt’s LES method, Holt-Winter method or whichever method is
best suited to the time series in question.

We can however an estimate of the accuracy of these forecasts, using the standard error of the
predictor Ŷi. Given Gi, we have

SE(Ŷi) = σ

√
1+Gi(XTX)−1GT

i for i = t +1, . . . , t +m,

where we can estimate σ using σ̂ =
√

MSE. Note that SE(Ŷi) does not give a true measure of the
total variability of Ŷi as it only expresses the variability of Ŷi given the value of Gi, and does not
take into account the variability in Gi itself.

Demo 3.7: Produce forecasts for D(EOM) for the time periods i = 54, . . . ,59 for the bank data
in Regression.xlsm (include as explanatory variables selected additional variables from the 11
monthly indicator variables) as follows: (a) Use Holt’s LES method to forecast the values of the
explanatory variables for i = 54, . . . ,59 and (b) in sheet “template”: use the multiple regression
model fitted in Demo 5.5 to predict the corresponding Yi and give confidence intervals for your
forecasts of Yi.

3.3.1 Assumptions made and the validity of tests and forecasts
Multiple linear regression makes a number of assumptions, as listed below. If these are not correctly
made, the above F and t-tests are not strictly valid, and forecast estimates may be unreliable.
Consideration of the following should therefore be made for any particular dataset:

(i) Model form. A linear relationship between the variables is assumed, but other relationships
might be more appropriate; see, e.g., Section 8/6 of Makridakis et al. (1998) or Section 5/6
of Hyndman and Athanasopoulos (2014) for a description on polynomial or more general
non-linear regression models.
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(ii) Independence of residuals. This is shown up by patterns in the ACF and PACF as well as by
visual inspection. This may be improved by the addition of extra variables, as in Subsections
3.2.1 and 3.2.2. A complete approach to solving this problem is beyond the scope of this
course, but may be achieved using a combination of regression with ARIMA (see Section 8/1
of the book by Makridakis et al. 1998).

(iii) The model assumes that the residuals have the same variance, σ2, throughout the time series,
a condition known as “homoscedasticity”. This may be corrected using a mathematical
transformation; cf. Subsection 1.3.3.

(iv) A normal distribution of error terms is assumed: violation affects the tests but not the ability
to forecast. A mathematical transformation may also solve the problem.

3.3.2 Multicollinearity

Inspection should be made for multicollinearity between the explanatory variables X1, . . . ,Xk, as it
can cause problems. Multicollinearity exists if there is perfect or near perfect correlation between
the variables, or a linear combination of the variables. It does not affect the ability of a model to
predict, but it can give computational problems. Multicollinearity also affects interpretation of the
model results, in that the coefficients of the variables affected cannot be reliably interpreted. The
effect of one variable on its own could also not be extracted. Scatterplots can be examined to look
for such correlations: this method, however, is not guaranteed to find all multicollinearity, as linear
combinations would not be discovered. (Principal component analysis could be applied, but the
method is not included on this module.)

3.3.3 Using Regression.xlsm to forecast

In principle, using the following process, forecasts can be calculated based on the regression method
described in this chapter:

Step 1: Use the following Excel built-in functions (details on the syntax and application of these
commands can be found in any up to date manual on Microsoft Excel or by using the search option
on the office support website, https://support.office.com) to develop the statistics for overall
and individual significance : (a) LINEST: computes the regression coefficients b̂ and generates the
first 4 columns of the ANOVA table; cf. Demo 3.2 and the analysis sheets of Regression.xlsm;
(b) FDIST: derives the last column of the ANOVA table, i.e., the P-value to test overall significance;
and (c) TDIST/TINV: derives the P-values for the individual significance; cf. Demo 3.3 and the
analysis sheets of Regression.xlsm.

Step 2: Calculate the forecasts of the independent/explanatory variables (X1, . . . ,Xk); cf. sheet
“F’CastLES” of Regression.xlsm.

Step 3: The values of b̂ from Step 1 can be used to generate the forecast based on formula (3.11)
(i.e., F ≡ Ŷ ); cf. rows B62–B67 of sheet “F’CastLES” of Regression.xlsm.

Step 4: Use the formula in (2.2) to calculate the confidence intervals if necessary, see, e.g., sheet
“FfullPlot” of Regression.xlsm.

It can be quite a lengthy process to repeat these steps for each dataset, especially for very large
data sets, problems with many explanatory variables or when forecasting for many periods ahead.
You might want to develop your own code doing them at one go. This process has been automated
in a number of software packages, e.g., R. As we are using Excel in this course, a VBA macro has
been prepared with the “template” sheet of Regression.xlsm and can directly be used to generate
forecast results and the corresponding graph, cf. sheet “LESF’castPlot” of Regression.xlsm. The
the bank data within this workbook is for illustration purpose only. You could use this template to
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develop your own forecasts. To proceed, the following points can be useful:
• First note that you do not have to do the difference on your data as it is the case for the EOM

and 3to4 variables in this example. These were technical considerations specific for the Bank
data example discussed in class.
• Pay attention here on the input on the top left of the main sheet “template”:

Here, NumObns is the number of observations in your data, NumPars, the number of your variables,
including the indicator variables, if you consider using them. NumFcasts is the number of periods
to be forecast. Also update the other parameters if your number of variables is different from
the one in the current sheet: XYStartPosn is the position from where the variables (including
Y) are listed, it is B9 in the current example. CIStartPosn indicates the cell where the lower
estimate column starts (R9 in the current example), while ANOVAStartPosn gives the cell where
the ANOVA table statistics start to be listed (U9 in the bank data example).

3.4 Exercises
As for the previous workshops, the data files and demonstration spreadsheets are available on the
Blackboard site (see Course Content). Note that in all spreadsheets, allowance will need to be
made for the length of the dataset, in all calculations and plots.

The aim of this assignment is to allow you to familiarise yourself with Regression.xlsm, as
you could use the template included to develop your regression forecasts. The spreadsheet can be
downloaded from the Chapter 3 data folder on blackboard. The file contains the bank data in the
“data” sheet. The following questions are strongly connected to Demos 3.1 – 3.7:

1. Identify the observations Y and the design matrix X for each of the models built.
2. How are the forecasts calculated?
3. Use sheet “template” to produce confidence intervals.
4. Produce scatterplots of each of the data sets DEOM, AAA, 3to4 and D3to4 against each

other and address the following points:
(a) What relationships can you observe between the observations Y and the design matrix X?
(b) What relationships can be observed between the different explanatory variables?
(c) How should such relationships be taken into account in the forecasting process?

5. A number of different regression models are included in the spreadsheet. Which model do
you think is the most satisfactory, and why?

6. Calculate forecasts and confidence intervals using the “template” sheet for a different model.
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Appendix of Chapter 3 – Table of critical values for t

Figure 3.2: Table of critical values for t statistics from Makridakis et al. (1998), page 621





4. The ARIMA method

Unlike in the previous chapter, we come back to a black-box method by considering a particular
set of models used in advanced forecasting and time series analysis: AutoRegressive Integrated
Moving Average (ARIMA) models. Box and Jenkins (1970) and more recently Box, Jenkins and
Reinsell (1994) present the theoretical basis for these models. This type of method is based on
the autocorrelation function (ACF), which was introduced in Chapter 1, see precisely (1.2). This
provides a more refined method of forecasting than, for example, a moving averages method.

As with other forecasting methods, different phases of activity can be distinguished when using
the Box-Jenkins method. These phases are described in Figure 4.3. The use of ARIMA models
requires further preliminary analysis techniques, in addition to those already considered in the
previous chapters. This chapter proceeds with descriptions of such advanced techniques, before
describing ARIMA models and their selection.

4.1 Preliminary analysis
We begin by considering analyses of correlations: techniques that can be used in Phase 1 analysis
and Phase 2 testing of ARIMA models; cf. Figure 4.3.

4.1.1 The partial autocorrelation function
Partial autocorrelations are used to measure the degree of association between observations at times
t and t−k, Yt and Yt−k, when the effects of other time lags, 1, . . . ,k−1, are removed. The usefulness
of partial autocorrelations may be understood in the following example. Suppose there is significant
autocorrelation between Yt and Yt−1. This implies that there is also significant correlation between
Yt and Yt−2, since they are one time step apart. There is therefore significant autocorrelation
between Yt and Yt−2, because they are both correlated with Yt−1. However, it can only be known if
there is an independent relationship between Yt and Yt−2 if the effect of Yt−1 can be partially out.

Partial autocorrelations calculate true correlations between Yt and Yt−1,. . . , Yk using a regression
equation known as an autoregression (AR):

Yt = b0 +b1Yt−1 +b2Y t−2 + ...+bkYt−k.
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Clearly this formula expresses a multiple linear regression as discussed in the previous chapter.
Hence, the partial autocorrelation coefficients, bi, i = 1, . . . ,k, are estimated using the same tech-
nique described there; cf. Subsection 3.1.2.

Demo 4.1: Examine the ACF and PACF of the Dow Jones data using the “data” sheet of
ARIMA.xlsm. What patterns do you see?

The PACF together with the ACF introduced in Section 1.1.2 have many applications; in
particular, within this chapter we will use this concepts to determine whether a time series is white
noise, stationary or seasonal. The definitions of white noise and stationarity together with related
illustrations are provided below. Also, the ACF and PACF can be useful in identifying ARIMA
models, in particular the pure AR and MA ones; see Subsections 4.2.1 and 4.2.2, respectively for
further details.

4.1.2 A white noise model
When testing for suitability, a forecasting model is deemed to be sufficiently well suited to a
particular application if the forecast errors are purely random. The residuals are then described as
white noise. A simple example of a white noise model is given by

Yt = c+ et ,

where c represents a constant overall level and et is a random error component.
Theoretically, all autocorrelations coefficients for series of random numbers must be zero.

But as we have finite samples, each of the sample’s autocorrelation will not be exactly zero. It
has been shown that, if a time series is white noise, both autocorrelation coefficients and partial
autocorrelation coefficients are approximately independent and normally distributed with mean
zero and standard deviation 1/

√
n, where n is the number of observations in the series. Hence, it

is useful to plot the ACF and PACF with range ± 1.96/
√

n, when analysing what coefficients are
significant or to determine whether data are white noise. If any coefficients lie outside this range,
the data are probably not white noise.

Demo 4.2: Use a spreadsheet to generate “white noise” models as above, making time plots of your
results. Use the Rand() Excel built-in function to create a uniformly-distributed model, followed by
the Norminv function for a normally-distributed model; see ARIMAWhiteNoiseDemo.xls, for an
example. Examine the ACF and PACF of the white noise model. Are they truly white noise?

4.1.3 Stationarity
The first step in the model selection process of an ARIMA model is to ensure that the time series
at hand is stationary. If this is not the case, some action, namely differencing (see the next two
subsection below), would have to be performed to make sure that we have stationarity.

Before we discuss some approaches to recognize that a time series is non-stationary, let us
recall that a stationary time series is one whose properties do not depend on the time at which the
series is observed. So time series with trends, or with seasonality, are not stationary–the trend and
seasonality will affect the value of the time series at different times. On the other hand, a white
noise series is stationary–it does not matter when you observe it, it should look much the same at
any period of time.

Some cases can be confusing–a time series with cyclic behaviour (but not trend or seasonality)
is stationary. That is because the cycles are not of fixed length, so before we observe the series we
cannot be sure where the peaks and troughs of the cycles will be.
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In general, a stationary time series will have no predictable patterns in the long-term. Time
plots will show the series to be roughly horizontal (although some cyclic behaviour is possible)
with constant variance.

Figure 4.1: Timplots for time series to illustrate stationarity–Source: Page 214 of Hyndman

and Athanasopoulos (2014)

Consider the nine series plotted in Figure 4.1. Obvious seasonality rules out series (d), (h) and
(i). Trend rules out series (a), (c), (e), (f) and (i). Increasing variance also rules out (i). That leaves
only (b) and (g) as stationary series. At first glance, the strong cycles in series (g) might appear to
make it non-stationary. But these cycles are aperiodic they are caused when the lynx population
becomes too large for the available feed, so they stop breeding and the population falls to very low
numbers, then the regeneration of their food sources allows the population to grow again, and so on.
In the long-term, the timing of these cycles is not predictable. Hence the series is stationary.

Plots of the ACF and PACF of a time series can also give clear evidence of non-stationarity.
The autocorrelations of stationary data drop to zero quite quickly, while those for non-stationary
data can take a number of time lags to become zero. The PACF of a non-stationary time series will
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typically have a large spike close to 1 at lag 1. This can clearly be observed in Figure 4.2, where the
the left and right pictures correspond to the time series in pictures (a) and (b), respectively. Further
details the data and ACF and PACF of the Dow Jones data can be found in the next demo.

Figure 4.2: The ACF of the Dow-Jones index (left) and of the daily changes in the Dow-Jones
index (right)–Source: Page 215 of Hyndman and Athanasopoulos (2014)

Demo 4.3: Look again at the ACF and PACF of the Dow Jones data using the “data” sheet of
ARIMA.xlsm. Is the series stationary or not?

R One way to determine more objectively if differencing is required is to use a unit root test.
These are statistical hypothesis tests of stationarity that are designed for determining whether
differencing is required. The unit root test is out of the scope of the course, but those interested
can look at Subsection 7/2/3 of the book of Makridakis et al. (1998).

Removing non-stationarity: the method of differencing
It is important to remove trends, or non-stationarity, from time series data prior to model building,
since such autocorrelations dominate the ACF. One way of removing non-stationarity is through the
method of differencing. The differenced series is defined as the change between each observation
in the original time series:

Y ′t = Yt −Yt−1

Occasionally, such taking of first differences is insufficient to remove non-stationarity. In that case,
second-order differences usually produce the desired effect:

Y ′′t = Y ′t −Y ′t−1.

Demo 4.4: Apply first order differencing to the Dow Jones data. Again using the “data” sheet of
ARIMA.xlsm, examine the ACF and PACF. What do the new ACF and PACF tell you about the
data? (See also ARIMA1stDiffdemo.xls).

Seasonality and seasonal differencing
In this subsection we discuss seasonal differencing as a method to remove seasonality from a
non-stationary time series. Before we proceed, let us recall that in Section 1.1, we introduced time
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and seasonal plots as two possible steps to demonstrate that a time series is seasonal. Before, we
introduce seasonal differencing, we would to like to mention that ACF and PACF can also be used
to further confirm that a time series is seasonal. This can seen in the first part of Demo 4.2 below,
where the corresponding spreadsheet illustrates seasonality with period s = 12. Clearly, the similar
pattern repeats itself after every 12 time lags; in particular, in the ACF, spikes appear at the 12th,
24th, etc., time lags.

A seasonal difference is the difference between an observation and the corresponding observa-
tion from the previous year, quarter or month as appropriate, where s is the number of time periods
back. For example, with monthly data, s = 12 and the seasonal difference is obtained as

Y ′t = Yt −Yt−12.

Seasonal differencing can be repeated to obtain second-order seasonal differencing, although this is
rarely needed. It can happen that both seasonal and first differences are applicable: in this case,
it makes no difference to the result which is done first. Seasonal differences can be more easily
observed after first differencing, especially in the case of a strong trend.

Demo 4.5: Consider the Australian monthly electricity production data set and proceed with the
following steps (see ARIMASeasonalDiffDemo.xls):

1. Produce the ACF and PACF of the series. Then apply seasonal differencing and see the changes.
2. Apply both seasonal and first differencing to the series. Does white noise result?

Backshift notation
The backshift notation is commonly used to represent ARIMA models. It uses the operator B,
which shifts data back one period:

BYt = Yt−1.

Two applications of B shift the data back two periods:

B(BYt) = B2Yt = Yt−2.

For monthly data, we can use the notation B12 to “shift back to the same month last year”:

B12Yt = Yt−12.

In general, Bs represents “shift back s time periods”. Note that a first difference is represented by
1−B given that we have

Y ′t = Yt −Yt−1 = Yt −BYt = (1−B)Yt .

Likewise, a 2nd order difference is given by (1 – B)2.
The “backshift” notation is convenient because terms can be multiplied together to see the

combined effect. For example, a seasonal difference followed by a first difference can be written as:

(1−B)(1−Bs)Yt = (1−B−Bs +Bs+1)Yt = Yt −Yt−1−Yt−s +Yt−s+1

In the next section, we will use the backshift notation to describe a multitude of ARIMA models
that can possibly be used.

4.2 ARIMA models
Here, we provide the main classes of the ARIMA model, starting from pure autoregression and
moving average ones.
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4.2.1 Autoregression (AR) models
Models that use the AR equation as described in Section 5.1.1 are termed AR models. They are
classified by the number of time lags, p, used in the autoregression. In general, a pth order AR
model, or AR(p) model, is written as:

Yt = c+φ1Yt−1 +φ2Y t−2 + ...+φpYt−p + et ,

where c is a constant, φ j are parameters to be determined and et is the error term. There are
constraints on the allowable values of ϕ j:
• For p = 1, −1 < φ1 < 1.
• For p = 2, −1 < φ2 < 1, φ2 +φ1 < 1 and φ2−φ1 < 1.
• For p ≥ 3, more complicated conditions hold.

An example of an AR(1) model is

Yt = 3+0.7Yt−1 + et ,

where et is normally distributed with mean 0 and variance 1.

Demo 4.6: Build this AR(1) model, make a timeplot and look at the ACF and PACF. Try varying
the variance to 0.1 and see the results (see ARIMA_AR1Demo.xls).

For an AR(1) model, typically the ACF shows autocorrelations dying down to zero, while there
is only one peak in the PACF at lag 1. With real-life or empirical data, random effects will give a
more varied picture, as shown by the higher variance example above.

The general expression of the AR model can be rewritten in backshift notation as

(1−φ1B− ...−φpBp)Yt = c+ et .

4.2.2 Moving Average (MA) models
As well as regressing on the observations at previous time lags, as in AR models, we can also
regress on the error terms at previous time lags. Such models are called Moving Average (MA)
models. (Nothing to do with the moving average described in Chapter 2.) Again, an MA model is
classified by the number of time lags, q, used in the regression. A general MA(q) is written as:

Yt = c+ et −θ 1et−1− ...−θqet−q,

where c is constant, θ j are parameters to be determined and et are the error terms.
As with AR models, there are restrictions on the allowable values of θ j:
• For q = 1, −1 < θ1 < 1.
• For q = 2, −1 < θ2 < 1, θ2 +θ1 < 1 and θ2−θ1 < 1.
• For q ≥ 3, more complicated conditions hold.

An example of an MA(1) model is:

Yt = 10+ et −0.7et−1,

where et is normally distributed with mean 0 and variance 1.

Demo 4.7: Generate this MA(1) model, make a timeplot and look at the ACF and PACF. Again, try
varying the variance to 0.1 and see the results (see ARIMA_MA1Demo.xls).

For an MA(1) model, typically the ACF shows only one peak in the ACF at lag 1, while the
PACF shows partial autocorrelations dying down to zero. With real-life or empirical data, random
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effects will give a slightly more varied picture, as with the higher variance example above. Thus it
can be seen that the MA(1) model is a mirror image of the AR(1) model, as far as the ACF and
PACF are concerned.

The general expression of the MA model in the can be written backshift notation as

Yt = c+(1−θ1B− ...−θqBq)et .

4.2.3 ARIMA (p, d, q) models
AR and MA models can be combined with taking differences to give a wide variety of effects.
These are known as the ARIMA(p, d, q) series of models. These combine:
• AR(p) autoregression to time lag p;
• I(d) differences of order d;
• MA(q) regression on errors to lag q.

In other words, p is the number of autoregression terms, d is the number of nonseasonal differences
needed for stationarity and q is the number of lagged forecast errors in the prediction equation. As
example, note that ARIMA(1, 1, 1) can be written as

Yt = c+(1+φ1 )Yt−1− φ1Yt−2 + et − θ1et−1,

which is equivalent to the following equation in backshift notation:

(1−φ1B)(1−B)Yt = c+(1−θ1B)et .

The general expression of the ARIMA(p, d, q) model in the can be written backshift notation as

(1−φ1B− . . .−φpBp)(1−B)dYt = c+(1−θ1B− . . .−θqBq)et ,

where φi, θi are parameters to be determined.

4.2.4 ARIMA(p, d, q)(P, D, Q)s models
The above models can (finally) be combined also with seasonal differences of order s. Just as
consecutive data points might show AR, MA or mixed ARIMA properties, so might data separated
by a whole season show the same properties. The ARIMA notation is extended to such seasonal
components thus:

ARIMA(p,d,q)(P,D,Q)s,

where s is the number of time periods per season, with
• seasonal autoregression to time lag P;
• seasonal differences of order D;
• seasonal regression on errors to lag Q.

P, D and Q can be further described in a way similar to the corresponding terms in the nonseasonal
framework. The mathematical expression of this model in terms of the backshift notation can be
written as

(1−φ1B−·· ·−φpBp)(1−Φ1Bs− . . .−ΦpBsP)(1−B)d(1−Bs)DYt

= (1−θ1B− . . .−θqBq)(1−Θ1Bs− . . .−ΘQBsQ)εt .
(4.1)

To conclude this section, let us recall that the (Box-Jenkins) ARIMA models provide a powerful
approach to time series analysis that pays special attention to correlation between observations, a
feature ignored by the more basic forecasting models. However, the simpler techniques should not
be ignored. A large and careful study carried out by Makridakis seems to show that, very often,
the simpler techniques described in this module are just as powerful. There is a good reason for
this. The SES, LES and Holt-Winter’s Additive methods are equivalent to special (simple) cases of
ARIMA models. These simple models may fit many data sets quite well.
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• How to detect ARIMA models in the general case, i.e., no-AR or MA-type models which
cannot be identified with ACF abd PACF?

4.3 Model selection and forecasting

The process of model selection and forecasting can be subdivided into three phases, as described in
the Figure 4.3 provided below; i.e., model identification, parameters estimation and testing, and
forecasting. Next, we respectively provided details on how each of these steps is conducted.

Figure 4.3: The three phases of the ARIMA method

4.3.1 Phase 1: Identification

Here, we suggest an approach to identify which type of ARIMA model is appropriate for the data
set being studied.

1. Make a timeplot. Look out for patterns or unusual features. Decide if it’s necessary to
stabilise the variance and if so, apply a power transformation (see Subsection 1.3.3).

2. Consider whether the time series is now stationary, using the timeplot as well as ACF and
PACF. Have you got “white noise” or not?

3. If the time series is non-stationary, try differencing. If there are seasonal effects, take
seasonal differences first. If non-stationarity still remains, take first differences, and second
if necessary.

4. When stationarity has been achieved, look at the ACF/PACF of what remains. Do the patterns
suggest AR or MA models, seasonal or not?

In the next demo, we illustrate the model itendification with an example of a seasonal time series.
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Demo 4.8: Load the printing and writing paper sales data into the “data” sheet of ARIMA.xlsm.
Run the ACF and PACF programs. (See also ARIMASeasonalDemo.xls.) What do you observe
in the graphs? Spikes in the ACF at time lags 12, 24, 36 suggest seasonality, so apply seasonal
differencing of 12 months. Now, looking at the ACF, stationarity has not yet been achieved: the
correlations do not die down quickly. Apply first differencing and look at the results. Something
like the MA(1) pattern can be seen with a spike in the ACF at lag 1 and partial correlations slowly
dying down in the PACF. Also, something similar could be happening seasonally, with a spike in
the ACF at lag 12, and annual partial correlations dying down from lag 12. So, a seasonal MA(1)
model is also suggested. Hence we get a possible identification of a model for the data as

This model is known as the “airline model” as it was first applied to airline data by Box and Jenkins
(1970). It is one of the most commonly used seasonal ARIMA models.

R The identification of higher order models, with parameters p, q, P, Q ≥ 2, is a difficult task
needing much experience. It is beyond the scope of this course to provide such experience
in ARIMA forecasting. However, Section 7/3 of the book by Makridakis et al. (1998) gives
some insights into higher order models.

4.3.2 Phase 2: Parameters estimation and testing

As shown in Section 4.2, ARIMA models can be written in what is called backshift notation, which
is described in Subsection 4.1.3. There, we can observe that the complete model ARIMA(p, d, q)(P,
D, Q)s can then be written using the parameters

φ1,φ2, ...φp,Φ1,Φ2, ...ΦP, θ1,θ2...,θq,Θ1,Θ2, ...,ΘQ,σ , (4.2)

where σ is the standard deviation of the errors, et . You can easily check that the ARIMA models
(4.1) can be expressed as a form of multiple linear regression where the independent variables
correspond to the values of the time series at different time lags. With such an equation, it is
possible to calculate the values of the parameters (4.2) by least squares methods in the previous
chapter; cf. Subsection 3.1.2.

For the parameter estimation in this course, we will use the X-12-ARIMA program (which
we will refer to as X12A for short) to estimate the parameters of ARIMA models, for testing and
for forecasting. Instead of the LS approach, X-12-ARIMA estimates the parameters (4.2) using
maximum likelihood method (MLE), which finds the values of the parameters which maximize
the probability of obtaining the data that we have observed. Despite this difference between the
two approaches, they will generate the same results for many models, e.g., the regression models
discussed in the previous chapter.

X-12-ARIMA was developed by US Census Bureau and has undergone a number of changes
recently, but we will be using a slightly older version which is enough for this class and that you can
use in your coursework. Details on how to use the application for model selection and forecasting
are provided in Subsection 4.3.4 below. For those who are interested in the technical details of the
code, see the Appendix on the last two pages of this chapter.
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Selecting the best model using the AIC
It may happen that several ARIMA models give a good fit to the data. In fact, a better fit can always
be gained simply by increasing the number of parameters in a model. However, this could mean
that just randomness is being modelled, rather than innate characteristics. It is therefore helpful
when comparing models to use a measure of good fit that penalises overfitting. One such measure
is Akaike’s Information Criterion (AIC) (Akaike 1974):

AIC =−2logL+2m,

where L is the likelihood, and m = p+q+P+Q. X12A generates the AIC for each ARIMA model
processed. By varying the choices of p, q, P and Q, the lowest attainable AIC is thus sought.

Portmanteau tests for white noise
Instead of examining each individual autocorrelation coefficient to test whether white noise is
achieved, “portmanteau” tests can be used which consider the coefficients taken together. One such
test is the Ljung-Box test (Ljung and Box, 1978), which employs the Q∗ statistic, output by X12A:

Q∗ = n(n+2)
h

∑
k=1

(n− k)−1r2
k ,

where n is the number of observations and h is the maximum time lags considered. If the residuals
from a model are white noise, Q∗ has a chi-square (χ2) distribution with (h -m) degrees of freedom,
where m is the number of parameters in the model. (When applied to raw data, no parameters
having been fitted, the value m = 0 is used.) If the Q∗ statistic lies in the right-hand 5% tail of the
χ2 distribution (i.e. with a P-value of < 0.05), it is normally concluded that the data are not white
noise. However, it is recommended that the evidence of such a test should not be used alone to
accept a model, as some poorly fitting models may not thereby be rejected.

4.3.3 Phase 3: Forecasting using the ARIMA model
Although there are many software tools that can be used to generate forecasts based on the
ARIMA models introduced above, it remains important to have a general understanding on how the
aforementioned steps finally lead to the results. The process can follow the following three steps:

1. Expand the ARIMA formula so that Yt is expressed in the form of a conventional regression
equation; i.e., with Yt on the left hand side and all other terms are on the right.

2. Rewrite the equation by replacing t by T +h, where T represent the current time and h stands
for the number of periods ahead for which forecasts should determined.

3. On the right hand side of the equation, replace future observations by their forecasts, future
errors by zero, and past errors by the corresponding residuals.

To illustrate this, we consider the airline model ARIMA(0,1,1)(0,1,1)12 discussed in Demo 4.8.
It follows from the seasonal ARIMA model in (4.1) that its backshift notation is

(1−B)(1−B12)Yt = (1−θ1B)(1−Θ1B12)et .

Step 1 above leads to the following expression of Yt :

Yt = Yt−1 +Yt−12−Yt−13 + et −θ1et−1−Θet−12 +θ1et−13. (4.3)

As for step 2, if we want to calculate the forecast at time t +1 (one period ahead), which means
taking T = t and h = 1, we replace t by t +1 in (4.3) and get

Yt+1 = Yt +Yt−11−Yt−12 + et+1−θ1et −Θet−11 +θ1et−12. (4.4)
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The term et+1 will not be known because the expected value of future random errors has to be taken
as zero, but from the fitted model it will be possible to replace the values et , et−11, and et−12 by
their empirically determined values; i.e., the residuals for times t, t−11 and t12, respectively. Of
course, as we forecast further and further ahead, there will be no empirical values for the e terms
after a while, and so their expected values will all be zero.

For the Y values, at the start of the forecasting process, we will know the values Yt , Yt−11 and
Yt−12. After a while, however, the Y values in equation (4.4) will be forecasted values rather than
known past values.

Given that the values of the parameters θ1, and Θ1 can be obtained using the regression method
discussed in the previous chapter, replacing them in (4.4) will lead to the values of the desired
forecast at a desired period.

4.3.4 Using ARIMA.xlsm to forecast

All the three phases of the ARIMA method described above (see Figure 4.3) can be implemented for
within the ARIMA.xlsm template. This file can be found in the zip file X12A.zip, which contains a
number of spreadsheets with VBA macros that handle the process of running X12A. It should be
noted that to run X12A, all files in X12A.zip should be saved in an unzipped folder physically on
the computer from which you will run the program (not just on a network drive).

The identification step (phase 1) is conducted via the process of checking stationarity using ACF
and PACF plots to identify the values of the parameters p,d,q,P,D and Q. This step can be done
using the “data” sheet. The values of p,q,P and Q can then be refined while looking at improving
the value of the AIC in the sheet “X12AXP”. The latter sheet simultaneously proceeds with phases
2 and 3. Forecasting of a given number of steps ahead is included, with a probability level for
confidence intervals on forecasts. New sheets can be created within ARIMA.cls to make further
analysis if necessary. Next, we provide a more precise description on how to use ARIMA.xlsm.

Data sheet: Data is entered on the “Data” worksheet in the green column headed “Dow Jones”.
The number of observations, i.e. the length of the dataset, is entered in C11 on that sheet. Press
on “Clear iteration info” to clear the previous values before you calculate the ACF. Then press the
control button “calculate ACF” will then calculate the ACF and PACF.

OrigData sheet: The sheet “OrigData” is for your own purposes, e.g. differencing. When
you are carrying out differencing, enter the result in the green column of ‘Data’, to see the effects.
However, when you have finished the preliminary analysis, and want to try out an ARIMA model,
remember to re-enter the original data in the green column of “Data” (the differencing will be
incorporated in the model you choose). X12A reads the green column of “Data” for input data.

X12AXP sheet: In this sheet, you have to update the parameters accordingly. Add “log” or
“sqrt” if you wish to apply logarithmic or square root transforms to stabilise variance. The green
box marked “prob level” is used to adjust confidence limits on the resulting forecasts. Watch the
effect of different levels, e.g. 0.5, 0.95. If there is seasonality, “Period” stands for the corresponding
number of periods, s. “Forecast: Numsteps Ahead” to provide the number of period for which the
forecasts have to be produced. “NumLags of LBQ” for the number of lags where the values of
the Q-statistics should be provided. “Start” indicates the moment where the original time series
starts. Finally, enter these values values of p,d and q (respectively P,D and Q in the seasonal case)
obtained from the analysis in “Data” in the corresponding cells, i.e., C8, D8 and E8 (respectively in
cells F8, G8 and H8 for P,D and Q – seasonal case). After entering all these parameters, the results
can be obtained with the following steps:

1. Click on “clear results” to clear the current data
2. “Make Specfile” to read the items in the green cells.
3. Then “Run X12AXP” to proceed with the estimates of the parameters and the forecasts.
4. The “Get the estimates” to generate the results on the sheet.
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If you receive any error messages, you are probably not working from files in an unzipped folder
that is physically on the computer on which you are working.

To produce a more complete forecast plot (including the estimates of the forecasts in the
historical part), you could copy the values of the times series (Yt) and the errors (see Residual(t)
column) and use the following expression from (2.1) to generate all the forecast values:

Ft = Yt − et .

The prediction interval can also be incorporated in the new graph by using the values in columns N
and M, rolling down to respectively find “LoFCast” and “HiFCast”.

Demo 4.9: Using the spreadsheet ARIMA.xlsm, analyse the time series below and test the models
provided. Then try out some other similar models with the same differencing, and find the best one
(based on the AIC) that passes the Ljung-Box tests.

(a) Dow Jones (DJ.DAT): The data for this example is already set up in the template ARIMA.xlsm,
with the ARIMA(2,1,1)(2,1,1)12 model ready for testing.

(b) Writing (WRITING.DAT): Try the model ARIMA(0,1,1)(0,1,1)12 identified in Demo 4.10.
Look at the P-values for the Ljung-Box statistics. Are the P-values sufficiently high to suggest that
white noise residuals have been achieved? Are the ACF values within the range required for white
noise? If so, the modelling is complete!

(c) Pollution (POLLUTN.DAT): Apply the log transformation to the data first. Try the model
ARIMA(2,1,0)(1,0,0)12.

4.4 Exercises
The aim of this assignment is to allow you to familiarise yourself with ARIMA.xlsm, as you
could use the templates included to develop your ARIMA forecasts. To get started, follow the
instructions in Subsection 4.3.4 on how to save X12A.zip to your computer and use ARIMA.xlsm.
The questions below are closely related to the demos in this chapter, but the dataset used here is the
building material (buildingMaterials.xls) and cement production (cementProduction.xls)
ones. For each of these data sets, do the following:

1. Examine the timeplot of the building material data set. Would it be appropriate to apply a
transform to stabilise the variance?

2. Try out the square root and log transforms. (See Subsection 1.3.3 of the lecture notes,
TimePlotTransformElec.xls).

3. Examine the ACF and PACF of the time series, using the Data sheet of ARIMA.xlsm. What
patterns do you see? Is it stationary?

4. Apply first order differencing (as per Demo 4.4, ARIMA1stDiffdemo.xls). You could also
use ARIMA.xlsm here.

5. There is evidence for seasonality, with peaks in the ACF and PACF at the 12th time lag.
So apply both seasonal and first differencing. Does white noise result? (cf. Demo 4.5,
ARIMASeasonalDiffDemo.xls). You could also use ARIMA.xlsm here.

6. Now to consider likely ARIMA models (see Demos 4.6–4.8). Look at the resulting ACFs and
PACFs from differencing. Is an AR or MA model suggested? (See ARIMA_AR1Demo.xls

and ARIMA_MA1Demo.xls.) Decide on a likely ARIMA model as a starting point.
7. Putting the original data back into the Data sheet, run this ARIMA model using X12A (see

Demo 4.9), and note the AIC and Ljung-Box results. Does the model pass the Ljung-Box
tests? Try out some other similar models with the same differencing, and find the best one
that passes the Ljung-Box tests. Draw plots of the forecast with suitable confidence intervals.
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Appendix of Chapter 4 – The X-12 ARIMA program

The US Census Bureau provides an application program, X-12-ARIMA (which we will refer to as
X12A for short), that carries out the estimation using MLE. (In fact the application does consid-
erably more; full details are provided in the general guide FINALPT1.pdf.) The application and
accompanying information is downloadable from http://www.census.gov/srd/www/x12a/.

For convenience, a bundled, zipped, version including a simple example used in these notes can
be downloaded: X12AXP.zip (X-12-ARIMA). The zipped file contains:
• X12AXP.EXE: This is the executable application program that does the fitting
• X12A.MDL: A text file used by X12AXP when it is being used to fit a number of different

models.
• TEST.SPC: An example of a specification file (This is simply a text file but with extension

.SPC, rather than .TXT, containing the timeseries DJ.DAT and which contains the instruc-
tions for the model ARIMA(2,1,1)(1,1,0)12 to be fitted to this timeseries. The output is
placed in the file TEST.OUT. A log file called TEST.LOG is also created. The estimates are
also separately output to the file TEST.EST. Error messages are put in the file TEST.ERR
(TEST.ERR is always generated, but will not contain anything of note if errors were not
encountered.)

Detailed instructions are contained in three guides (including the previously mentioned FINALPT1.pdf),
which are bundled in the zipped file Omegapdf.exe.

In brief, the application X12AXP.EXE has to be run under DOS, using a specification file, such
as TEST.SPC, as input. Thus the commandline:

X12AXP TEST

is used to analyse the TEST example. (Note that neither file extension .EXE nor .SPC is needed in
the commandline) The text output files TEST.OUT, TEST.EST, TEST.LOG and TEST.ERR, giving
the results (and any errors) are then all produced and can be examined.

Note that all files generated by the application will have the same name as the specification file,
TEST in this case, with different extensions to indicate what each contains.

The example specification file is very simple, and takes the form
series{

title="Dow Jones"

start=1963.01

period = 12

data=(

562.674

599.000

668.516
...

993.733

)
}
arima { model = (2,1,1)(1,1,0)12}
estimate {save = (est)}
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It contains just three of the instructions that X12A understands: series, arima, and estimate. The
series instruction contains details of the timeseries to be analysed, The arima instruction contains
the model to be fitted in the format (p,d,q)(P,D,Q)s. The estimate instruction simply instructs for
the estimates to be output to a separate text file called TEST.EST.

The text file TEST.OUT is always generated and contains very detailed output.
It is possible to run the application from Windows using an MSDOS batch text file, i.e. a text

file, but with the extension .BAT � TEST.BAT, say. This file needs only contain the text line

x12axp test

The batch file is run simply by clicking on it. This sends the text line as a command instruction
to DOS which then runs the X12A application, producing all the output files.

The instructions contained in TEST.SPC can be extended. The user guides provide full details.
As an example try replacing the estimate instruction

estimate{save = (est)

by
estimate{ save = (est rsd) savelog =(aic)}

This instructs the estimates to be saved in the file TEST.EST but also the residuals of the fitted series
to be saved in TEST.RSD. The savelog component instructs the Akaike statistic AIC to be saved in
the log file TEST.LOG.

Two other instructions understood by X12A are check and forecast. Examples of their use are:

check{savelog = (lbq) }

This instructs the Ljung-Box statistic to be saved in TEST.LOG also.
The line

forecast {maxlead=24 probability=0.9 save=(fct)}

instructs forecasts for the next 24 time periods to be calculated, with upper and lower limits for a
90% confidence interval, and saved in the file TEST.FCT.
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