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Abstract

Recent scandals in science have brought attention to the problem of detecting fraud and

attributing punishment in the context of increasingly large research teams. We examine the

problem theoretically and consider the socially optimal scheme for assigning culpability. We

consider the simplest possible environment with two scientists, only one of whom is capable

of committing fraud. Our theoretical analysis shows that a regime of group accountability

that incentivises researchers to monitor other members of the group achieves the best social

outcomes. Given this regime, the model yields the counter-intuitive prescription that pun-

ishing non-culpable members of the team for participating in a fraudulent project is the most

promising tool for increasing the fraction of research that is honest.
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1 Introduction

The problem of scientific misconduct has recently attracted great attention, with the resignation of

leading scientists who held top administrative positions at renowned institutions, following serious

concerns about their research practices. In behavioural sciences, serious controversies surround

allegations of systematic fraud and misconduct by world-famous researchers (Thorp, 2023). Many

interventions have been proposed to tackle such problems, but their rigorous evaluation is difficult,

due to the complexity of social systems for which Randomized Control Trials may be infeasible.

Still, mathematical modelling of scientific institutions using game theory is a very promising avenue

for simulating the effects of even such complex interventions (Gall et al., 2017). The issue of how to

detect and deter misconduct is intimately related to the fact that research production takes place

within teams, rather than individually. Accordingly, in designing scientific institutions robust to

misconduct, one needs to combine the careful study of individual incentives with an understanding

of the structure of scientific teams and its implications for individual incentives.

The importance of studying incentives for misconduct within a team setting is amplified by

another important development in science: the constantly increasing average size of research teams,

where larger teams are associated with more impact (Larivière et al., 2015). For instance, Poldrack

et al. (2017) note that in genetics, neuroscience and other areas, larger consortia are needed to

address the problem of low power of individual studies. This tendency may be beneficial for

discovery, but it also raises new problems. Hall et al. (2018) argue that “. . . rapid increases in the

demand for scientific collaborations have outpaced changes in the factors needed to support teams in

science, such as institutional structures and policies, scientific culture, and funding opportunities.”

The issues of authorship, credit and accountability, and the consequences of an increasing average

size of research teams for the prevalence of misconduct come to the forefront.

The problem of accountability in science relates to the ancient problem of attributing pun-

ishment for misconduct when it is known that the perpetrator belongs to a social group, but

their identity is costly to reveal. The question is whether the group should have some sort of

joint responsibility, and this issue has been related to law enforcement since antiquity (Miceli and

Segerson, 2007). The main ethical concern is whether punishment of the innocent is acceptable

as means to induce internal monitoring by other team members. Should collaborators of research
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fabricators be held accountable? Would that decrease fraudulent research? What will happen to

the production of honest research?

In terms of actual policy, the scientific community is considering different approaches in assign-

ing group responsibility in science (Helgesson and Eriksson, 2018; Hussinger and Pellens, 2019).

Overall, the main approaches can be categorized as follows:

• A group accountability regime, where everyone in the team is responsible for any misconduct.

• A partial group accountability regime, where anyone in the team is responsible as long as

they knew about the misconduct.

• Individual accountability, where only the persons committing misconduct are responsible.

• A guarantor regime, where an overall coordinator of the project is accountable for all aspects

of a research paper.

Our main focus will be to study the optimal regime for the allocation of accountability in the

case of wrongdoing in scientific projects, utilizing the categories of Helgesson and Eriksson (2018)

and Hussinger and Pellens (2019). Our model focuses on an environment with two scientists (for

tractability) who are asymmetric. Scientist 1 may cheat to improve the chances of publication of

the final article, whereas Scientist 2 may choose to monitor Scientist 1 and to abort the project in

the case of suspicious evidence appearing.1 Our objective is to study the rate at which the research

is conducted under the different regimes, and the degree to which this research is fraudulent.

For each regime that we study we shall assume that the enforcer pre-commits to a certain type of

punishment, regardless of how unfair the punishment may look after the fact. Such proportionality

considerations can be addressed at the design stage, but given an established regime, we assume

1This asymmetry stems from the fact that Scientist 1 is interpreted as a junior researcher and Scientist 2 as a
senior one. This assumption corresponds to many environments of scientific collaboration. For instance, there is a
current tendency to use a contributorship model, where the task for each team member is declared in the scientific
article. In this context, junior scientists are usually assigned tasks in which scientific fraud is possible (running
experiments, data management, etc.) while senior scientists are assigned tasks for which fraud is not an issue
(conceiving the study, revising the paper, etc). Accordingly, our setting applies to a general set of environments. Of
course, in a different setting, where all researchers have the opportunity to cheat as well as to monitor others, the
players would also face coordination issues with regards to their levels of cheating, which could create interesting
equilibria. Modelling such an environment would require capturing asymmetric incentives and levels of power
between coauthors.
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that there is commitment. In addition, we shall assume that the punishment of collaborators

principally depends on the established formal policies and regimes.2

Our model yields interesting results on the social benefits of alternative institutional and policy

schemes. In cases of scientific misconduct with asymmetric researchers, the problem of deterrence

arises as long as society’s maximum penalty to fraudsters is bounded (e.g. career termination). In

the absence of uncertainty about the identity of the perpetrator, our model reveals that the problem

would be easily resolved as long as a sufficient punishment for the perpetrators was established.

However, junior researchers with ‘little to lose’ will not be deterred by their potential punishment

alone. The problem of deterrence remains as long as society is reluctant to punish further, e.g. by

criminal prosecution.

Our model then shows that regimes that go beyond individual accountability may achieve bet-

ter social outcomes. While the punishment may not be enough to deter potential fraud, group

accountability may induce more senior collaborators to monitor and abandon projects that raise

‘red flags’. Given the institution of group accountability, we show that the best policy for max-

imising the fraction of research that is honest is to maximally punish the non-culpable collaborator

for participating in a fraudulent project.

Our results raise interesting questions regarding the tradeoff between the fairness and pro-

portionality of punishment and the end outcomes for society. For societies unwilling to heavily

(e.g. criminally) punish perpetrators but who would tolerate group punishment, a regime of group

accountability is better in terms of its final outcomes. We should note that our model shows the ad-

vantages of group accountability even in the absence of the problem of identifying the perpetrator.

If this problem exists, there may be further benefits by the group accountability regime.

The problem of scientific misconduct has attracted increasing attention in the last two decades

across scientific disciplines (Fanelli, 2009; John, Loewenstein and Prelec, 2012), and several factors

have been associated to it, such as academic culture as well as structural and psychological factors

(Fanelli et al., 2015). The economics response to this problem (Lacetera and Zirulia, 2011) involves

2Our approach also abstracts from the problem of identifying the culprit of a revealed misconduct – and associated
‘detection costs’ (as in Miceli and Segerson, 2007). Accordingly, we do not consider the fact that the accountability
regime may increase incentives to provide information for identification of the perpetrator after misconduct has
been confirmed. However, it is worth pointing out that in many domains there are very weak incentives to reveal
a perpetrator (Vie, 2020).
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the study of relevant incentive structures, and in particular the effects of policies for regulating

and punishing such behaviors, in the spirit of the classical economics of crime literature (Becker,

1968). In fact, evidence indicates that such policies may have a primary role in explaining the

existing evidence with regards to misbehavior (Fanelli et al., 2015).

Marx and Squintani (2009) provide a model of individual accountability in teams, assuming

group punishment is not possible. Like our model, they assume that delegated monitoring does not

have an informational advantage. Their model shows that delegated monitoring can be efficiency-

enhancing – even in the absence of group penalty – as long as the monitoring requirement is included

in worker’s job assignments. Miceli and Segerson (2007) model the problem of determining under

which conditions group punishment is preferred to individual punishment. Unlike our model, they

consider the informational advantages of group punishment and explicitly model the social cost

of punishing the innocent. Surprisingly, they find that if the goal of punishment is retribution

(ex post fairness of punishment) group punishment is preferred to individual random punishment.

Kiri et al. (2018) examine incentives to conduct verification activities in science, as opposed to

producing novel research. Like our study, they find that (as long as any research is produced) a

positive fraction of low-quality research characterizes any equilibrium of the game. As a result,

society needs to tolerate some level of misbehaviour or low quality research as part of the normal

functioning of science.

The microfinance literature has considered the problem of individual vs. joint liability for a

long time. Ghatak and Guinnane (1999) review the literature, considering the advantages of group

borrowing in the context of developing countries, where borrowers typically lack collateral. They

illustrate how joint liability can affect the formation of teams, when different agents have different

types (which could be interpreted in our model as the propensity to conduct misbehaviour). Joint

liability can utilize local information and weed out the bad types. On the other hand, joint liability

does not ameliorate moral hazard in this model, since players do not incorporate the effects of their

own action on their partner’s action. Similar to our model, joint liability improves welfare. This

happens under certain conditions, associated with social sanctions that are effective enough or

low monitoring costs. Karlan (2007) consider how social connections facilitate the monitoring and

enforcement of loans in a setting of group liability. Moreover, De Quidt et al. (2016) show that, for

high levels of social capital, group lending under individual liability can outperform joint liability.
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Figure 1: Game Tree

2 The Model

Consider an environment with two scientists who may collaborate on a joint project. The two

scientists differ with respect to the payoffs they may receive from the project. Moreover, one

of them, scientist S1 (he) may commit fraud to improve the outcome of the project. Scientist

S2 (she) is aware of this possibility, but cannot observe directly whether fraud has taken place.

Nevertheless, S2 has the option of monitoring S1 by using a costly and imperfect monitoring

mechanism. We model this using a dynamic game between S1 and S2. The detailed game tree is

presented in Figure 1.

First, S1 decides whether to commit fraud or be honest, i.e. the action set of player S1 is
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A1 := {F,H}. Accounting also for mixed strategies, the strategy of S1 can be summarized by the

probability p ∈ [0, 1] with which he commits fraud.

Subsequently, without observing the choice of S1, scientist S2 decides whether to walk away

from the project, proceed without monitoring, or proceed with monitoring. Thus, the action set

of S2 is A2 := {WA,NM,M} and a (mixed) strategy of S2 can be summarized by the pair of

probabilities (q1, q2), where q1 := P(WA) and q2 := P(NM). Obviously, the remaining probability

1− q1 − q2 = P(M), while q1, q2 ≥ 0 and q1 + q2 ≤ 1.

If S2 decides to monitor, then she also chooses the precision of monitoring, z ∈ (0, 1/2]. Namely,

conditional on S2 having chosen to monitor, S2 performs a costly investigation. Monitoring

precision z implies that the outcome of the investigation is correct with probability 1/2 + z.

That is, S2 observes an investigation outcome in {f, h} such that P(f |F ) = P(h|H) = 1/2 + z.

Monitoring is costly, with the cost of choosing monitoring precision z being c(z) = 1
2
z2. After

observing the signal, S2 can decide the walk away from the project at this point (WA) or to

proceed with the project (P ).

Notice that, if S2 decides to monitor, but does so with a very low intensity, then the signal

would be largely uninformative, thus no realization would be able to alter her choice. Thus,

following the investigation’s suggestion would be suboptimal for S2. However, as we show in

detail in Section 3, the costly nature of monitoring implies that any strategy in which S2 monitors

but does not follow the signal obtained by the investigation is strictly dominated. This allows us

to consider a simplified version of the game, which shares the same equilibrium outcomes as the

original game, while also being handy in the subsequent analysis. Namely, we consider that S2

commits to always comply with the recommendation of the investigation, which in our model is

equivalent to committing to follow the signal she receives.3 On an intuitive level, the reduced model

in which S2 commits to follow the investigation’s suggestion allows us to consider accountability

regimes in which S2 is willing to participate in a project that might end up being fraudulent, only

as long as she can claim plausible deniability if fraud gets detected later on.

Once the players have made their choices, payoffs are realized. If the project is abandoned

because S2 walks away – either immediately, or after observing the signal – then the players

3Alternatively, this modeling choice regarding monitoring can also be seen as an economical way to capture the
existence of a fixed cost in monitoring (i.e. independent of the monitoring intensity).
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obtain the payoff of some outside option u1 and u2, respectively. If the project is completed, then

the expected payoffs for the two players depend on whether S1 has committed fraud or not, on the

regulatory regime, and in some cases on whether or not S2 knew about the fraud. If S1 has been

honest, then the payoffs from completing the project are R1 and R2, respectively. On the other

hand, if he has committed fraud the outcomes are either R̂1 and R̂2 if the fraud is not caught,

or R1 − τ1 and R2 − τ2 if it is caught by the external authority. We assume that the external

authority works with a monitoring technology which identifies a fraud with π success rate, and

never makes false accusations, i.e. never identifies honest research as fraudulent by mistake. Using

these parameters, the expected payoffs from fraudulent research are R1 = (1− π)R̂1 + π(R1 − τ1)

for S1, and R2 = (1− π)R̂2 + π(R2 − τ2) for S2.

For simplicity, we assume that u1, R1, and R1 are all different from each other, and u2, R2,

and R2 are all different from each other. Furthermore, we assume that fraudulent research has the

potential to make both researchers better off in case it is not caught, that is R̂1 > R1 and R̂2 > R2.

We also set lower bounds of the punishment at τ1 ≥ R1 and τ2 ≥ R2, assuming that when fraud is

caught the value of the research is lost, even if there is no further sanction.

Under some regulatory regimes it is possible that the punishment for S2 if there is a fraud

depends on whether or not she knew about it. To cover these cases we enrich our notation such

that the outcome for S2 from fraudulent research is RNM
2 if she did not attempt to monitor at all,

RMh
2 if she monitored but the signal suggested honest research, and RMf

2 if she monitored and got

signal of fraudulent research, that is, if she knew about the fraud.

3 Equilibrium Analysis

In this section we specify the parameters in case of each regulatory regime and solve for the equi-

librium.4 We focus on the cases where u1 < R1 < R1, that is when S1 has an incentive to commit

fraud even under the threat of punishment.5 We depart from the individual accountability regime

4The natural equilibrium notion to consider here is Perfect Bayesian Equilibrium. Yet, in two of the regimes,
we consider a simplified version of the game, which makes it essentially a simultaneous move game. To avoid
unnecessary complications, we describe the equilibria referring only to the equilibrium strategy profile.

5In case it was possible for the social planner to set such high punishment for S1 that R1 < R1, then the analysis
would trivially lead to the first-best outcome of no fraud. The threshold for this high enough punishment would
be τ1 > 1−π

π (R̂1 − R1). However, we assume that such high punishment is not possible, for example, because the

reward from a fraudulent research R̂1 is too high, or the monitoring accuracy π is too low.
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and show that under the former assumption the social planner has no policy tool to prevent fraud.

Then, we continue with the partial group accountability regime, arguably a morally defensible

option. However, we can quickly conclude that it is still not compatible with economic incentives,

and the threat of punishing S2 in this scheme does not increase internal monitoring or discourage

fraudulent research. Therefore, we explore alternative regulatory regimes; the group accountability

and guarantor regimes. Throughout the analysis we will assume (without loss of generality) that

the outside option is normalized at u1 = u2 = 0.

3.1 Individual Accountability Regime

Under the individual accountability regime we assume that the punishment for S2 is merely the

loss of the value of the project: τNM
2 = τMh

2 = τMf
2 = R2, therefore R2 = RNM

2 = RMh
2 = RMf

2 =

(1− π)R̂2. Since R2 > 0, Walk Away is strictly dominated by Not Monitor. Similarly, Monitor is

strictly dominated by Not Monitor, because in case of fraudulent research R2 is larger than any

possible outcome after monitoring, either −c(z) or R2 − c(z), and in case of honest research R2

is larger than any outcome after monitoring, either −c(z) or R2 − c(z). Knowing that S2 will

not monitor, S1 chooses to commit fraud with probability 1. Therefore, the unique equilibrium

is (Fraud, Not Monitor), which is presumably the worst of all outcomes from the social planner’s

perspective.6

3.2 Partial Group Accountability Regime

In the partial group accountability regime the scientist who commits fraud is responsible for his

actions, and additionally, the other scientist who is in the position to monitor is also culpable, but

only if she knew about the fraud. In terms of our model, we assume that the punishment for S1

is larger than the minimal: τ1 > R1. S2 faces a larger-than-minimal punishment only in case she

monitors and gets a signal about the fraud: τMf
2 > R2. If she does not monitor, or if she monitors

but does not detect the fraud, she merely loses the value of the project: τNM
2 = τMh

2 = R2. Her

6We postpone the formal introduction of the objective of the social planner until Section 4, where we assume
that the planner’s aim is to minimize fraudulent research and maximize honest research.
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expected payoff from the latter case is RNM
2 = RMh

2 = (1 − π)R̂2 > 0, which also means that

RNM
2 = RMh

2 > RMf
2 .

Since RNM
2 > 0, Walk Away is strictly dominated by Not Monitor. Similarly, Monitor is strictly

dominated by Not Monitor, because in case of fraudulent research RNM
2 is larger than any possible

outcome after monitoring: −c(z), RMf
2 − c(z), or RMh

2 − c(z), and in case of honest research R2

is larger than any outcome after monitoring, either −c(z) or R2 − c(z). Knowing that S2 will not

monitor, S1 chooses to commit fraud with probability 1, hence the unique equilibrium is (Fraud,

Not Monitor), just like in the individual accountability regime.

We conclude that the policy maker does not gain from partial group accountability compared

to individual accountability. This result is driven by the fact that S2 can get away from the

punishment by simply not trying to monitor. Therefore, we need to investigate further regimes in

which S2, the scientist who is capable of internal monitoring, is unconditionally culpable.7

3.3 Group Accountability Regime

In this regime, we work with the general case where both S1 and S2 are culpable, regardless of

S2’s choice of monitoring and the observed signal. However, the sizes of the punishments for the

two scientists are not necessarily equal, we only specify that τ1 > R1 and τNM
2 = τMh

2 = τMf
2 > R2

and therefore RNM
2 = RMh

2 = RMf
2 = R2. Furthermore, we assume that R2 < 0 < R2.

8 The

equilibrium in this case depends on the exact parameter choices.

3.3.1 Preliminaries

Before proceeding with the detailed analysis, we shall make a few observations. First, we show

that any strategy in which S2 does not follow her signal is strictly dominated:

7Assuming an alternative environment where there is imperfect capacity of the external authority to identify
cases where monitoring has taken place, the incentives of S2 to monitor would be stronger than before, yet still
not sufficient to improve over Not Monitor.

8If this assumption is violated S2 never has an incentive to monitor. If R2 > 0 we would get a trivial solution,
similar to the individual and partial group accountability regime, where S2 never monitors and S1 always commits
fraud. Thus, the group accountability regime is only effective in promoting monitoring and preventing fraud when
the punishment is large enough to make S2 worse off staying in a fraudulent project rather than walking away.
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Figure 2: Reduced Game Tree under Group Accountability

1. The pooling strategyWalk Away after either f or h signal which yields payoff −c(z) is strictly

dominated by Walk Away without monitoring which yields 0.

2. The pooling strategy Proceed after either f or h signal which yields payoff pR2+(1−p)R2−

c(z) is strictly dominated by Not Monitoring which yields pR2 + (1− p)R2.

3. The separating strategy Walk Away after h and Proceed after f which yields expected payoff

p(1/2+z)R2+(1−p)(1/2−z)R2−c(z) is dominated by the separating strategy Proceed after

h andWalk Away after f which yields expected payoff p(1/2−z)R2+(1−p)(1/2+z)R2−c(z).

Since we eliminated the strategies where S2 does not follow her signal, we can reduce the game as

shown in Figure 2.

Second, the reduced game has a single subgame, where the action set of S2 regarding the

precision of monitoring is a whole interval. Yet, the problem can be simplified substantially.
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Observe that the expected utility of S2 conditional on having chosen to monitor (M) and on

believing that S1 has committed fraud with probability p is given by the following expression:

EU2(z|p,M) = p

[(
1

2
− z

)
R2

]
+ (1− p)

[(
1

2
+ z

)
R2

]
− 1

2
z2 (1)

It is straightforward to observe that the above function is strictly concave in z for all z ∈ (0, 1/2],

and thus it attains a unique maximum within that range, which may not be interior.

Therefore, we can simplify the game by substituting, for each belief p, the optimal monitoring

intensity z∗(p) to the expected utility of S2 if she chooses to monitor.9 Namely, for scientist S2,

we obtain:

EU2(M |p) = p

[(
1

2
− z∗(p)

)
R2

]
+ (1− p)

[(
1

2
+ z∗(p)

)
R2

]
− 1

2
[z∗(p)]2

EU2(NM |p) = pR2 + (1− p)R2 (2)

EU2(WA|p) = 0

whereas for S1 we obtain:

EU1(H|q1, q2, z) = q2R1 + (1− q1 − q2)

(
1

2
+ z

)
R1

EU1(F |q1, q2, z) = q2R1 + (1− q1 − q2)

(
1

2
− z

)
R1

(3)

Note that the reduced game can be seen as a simultaneous move game, and an equilibrium would

then be characterized by a triplet (p∗, q∗1, q
∗
2) and by z∗(p∗).10 We also define the following quanti-

ties: (i) a := −R2 > 0, which is the loss S2 incurs by remaining involved in a fraudulent project,

(ii) b := R2 > 0, which is the gain S2 enjoys by remaining involved in an honest project, and (iii)

k = 1
2

R1−R1

R1+R1
, which is a parameter that measures S1’s relative gain from committing fraud.

9Of course, this expected utility is no longer going to be linear in p.
10Formally, the notion of equilibrium in the original game to be used would be Perfect Bayesian Equilibrium,

where the equilibrium beliefs of S2 in both information sets would be derived from p∗ using Bayes rule. Therefore,

the posterior belief after signal f is pf = p∗(1/2+z)
p∗(1/2+z)+(1−p∗)(1/2−z) , and after signal h is ph = p∗(1/2−z)

p∗(1/2−z)+(1−p∗)(1/2+z) .

In the final stage, the action of S2 would be WA after signal f and P after signal h.
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Note that k ∈ [kmin, kmax] ⊂ (0, 1/2), where kmin is defined by the maximum punishment

τmax
1 the social planner could impose on S1, which, by our assumption, is still not enough to fully

eliminate his incentive to commit fraud: Rmin
1 = (1−π)R̂1+π(R1−τmax

1 ) > R1. On the other hand,

the minimum punishment for S1 is to lose the value of the project, therefore kmax takes place when

τ1 = τmin
1 = R1. We also assume that a ∈ [amin, amax] ⊂ (0, 1/2) and b ∈ [bmin, bmax] ⊂ (0, 1/2).

3.3.2 Best Responses and Equilibrium Characterization

We start by calculating the optimal monitoring precision S2 chooses upon deciding to monitor.

∂EU2

∂z
= pa+ (1− p)b− z ⇒ z∗(p) = pa+ (1− p)b

Notice that for a, b ∈ (0, 1/2), z∗(p) ∈ (0, 1/2) for every p ∈ [0, 1].

Given the optimal precision of monitoring calculated above, the expressions in (2) regarding

S2’s expected utility can be rewritten as follows:

EU2(M |p) = 1

2
[−pa+ (1− p)b] +

1

2
[pa+ (1− p)b]2

EU2(NM |p) = −pa+ (1− p)b (4)

EU2(WA|p) = 0

We can now calculate the best-responses of S2 for all p. The detailed calculations can be found

in the Appendix. An important observation is that S2’s best response can be split into three

areas depending on p. Namely, S2 stays in without monitoring (chooses NM) when p is small,

stays in and monitors (chooses M) when p is moderate, and walks away (chooses WA) when p

is high. These three regions are determined by two thresholds p∗1 and p∗2, as shown on Figure 3.

Both thresholds can be explicitly calculated (see Expression 6 in the Appendix) and are shown to

be between 0 and 1 and such that p∗1 < p∗2. This also means that randomization may occur only

between NM and M for p = p∗1, or between M and WA for p = p∗2.

Let us now calculate the best response of S1 for each (q1, q2) and z. Using the quantity

k = 1
2

R1−R1

R1+R1
, we find that the optimal decision of S1 depends on whether the incentives to commit
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Figure 3: Strategy of S2

fraud are sufficiently high given (q1, q2) and z, which depends on the sign of the expression 2q2k+

(1− q1 − q2)(k − z).

Having described the best responses of the two players, we can proceed to obtain the equilibria

of the game. Proposition 1 presents all equilibria of the game, with the respective parameter

conditions in which each equilibrium exists. The parameter conditions are not mutually exclusive,

thus there are parameter values for which the game has multiple equilibria.

Proposition 1 For a ∈ [amin, amax] ⊂ (0, 1/2), b ∈ [bmin, bmax] ⊂ (0, 1/2), and k ∈ [kmin, kmax] ⊂

(0, 1/2) the game has the following types of equilibria:

[1] (∀ a, b, k): p∗ ∈ [p∗2, 1], (q
∗
1, q

∗
2) = (1, 0), z∗ = p∗a+ (1− p∗)b.

[2] (a ̸= b and k−b
a−b

∈ [p∗1, p
∗
2]): p∗ = k−b

a−b
, (q∗1, q

∗
2) = (0, 0), z∗ = k.

[3a] (a ̸= b and k−b
a−b

= p∗2): p
∗ = p∗2, (q

∗
1, q

∗
2) = (q̂, 0) for q̂ ∈ (0, 1), z∗ = k.

[3b] (a = b = k): p∗ = p∗2, (q
∗
1, q

∗
2) = (q̂, 0) for q̂ ∈ [0, 1), z∗ = k.

[4a] (a > b and k−b
a−b

≤ p∗1): p∗ = p∗1, (q
∗
1, q

∗
2) =

(
0,

p∗1a+(1−p∗1)b−k

p∗1a+(1−p∗1)b+k

)
, z∗ = p∗1a+ (1− p∗1)b.

[4b] (a < b and k−b
a−b

≥ p∗1): p∗ = p∗1, (q
∗
1, q

∗
2) =

(
0,

p∗1a+(1−p∗1)b−k

p∗1a+(1−p∗1)b+k

)
, z∗ = p∗1a+ (1− p∗1)b.

[4c] (a = b ≥ k): p∗ = p∗1, (q
∗
1, q

∗
2) =

(
0, a−k

a+k

)
, z∗ = a.
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From this result, we can get some useful observations. First of all, irrespective of the parameter

values, there is always an equilibrium in which S2 walks away (eqm. 1), because S1 commits fraud

with sufficiently high probability. This equilibrium captures the case in which there is lack of trust

between the two players. There is also an equilibrium in which S2 mixes between monitoring and

walking away (eqm. 3), but this can be sustained only for very specific combinations of parameter

values, thus it is of limited use.

In addition to the above, there are two equilibria that involve monitoring by S2. There is one

equilibrium (eqm. 2) in which S1 commits fraud with a probability between p∗1 and p∗2 and for

which S2 always monitors. There is also one equilibrium (eqm. 4) in which S1 commits fraud with

a probability exactly equal to p∗1 and for which S2 mixes between monitoring and non-monitoring.

Both of these types of equilibria are preferred by both players compared to the equilibrium in

which S2 always walks away, which yields payoff 0 to both players. This happens because a payoff

equal to zero could always be achieved for both players with certainty if S2 were to walk away.

The fact that S2 does not do so in equilibrium implies that she shall expect a higher payoff.

What about the other two sensible equilibria (the one with certain monitoring and the one

with mixing between monitoring and non-monitoring)? Interestingly, in the parameter conditions

for which both of them exist, the equilibrium with probabilistic monitoring yields higher payoffs

for both players.

Corollary 1 For a > b and k−b
a−b

∈ (p∗1, p
∗
2), the game has three equilibria: 1, 2, and 4. Within this

range, among the three equilibria, eqm 4 yields the highest expected payoff to both players.

For S2 this happens because the equilibrium with certain monitoring is associated with a higher

probability of fraud, which is detrimental for S2’s payoffs, given that EU2(M |p) decreases in p.

For S1 the result is driven by two facts. On the one hand, fraudulent projects (that are likely to

be stopped if monitored) are monitored less often when monitoring is probabilistic. On the other

hand, honest projects are less often abandoned because of an incorrect signal, because equilibrium

precision z∗ is higher when monitoring is probabilistic.

To summarise, eqm. 1 involves the uninteresting case where S2 always walks away and mutual

trust between players fails. On the other hand, eqm. 3 obtains for very specific parameters and is
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therefore of limited relevance. Finally, eqm. 4 dominates eqm. 2 in terms of efficiency. Therefore,

given its welfare advantage, from now on we will focus on the analysis of eqm. 4, which involves

probabilistic monitoring.

3.4 Guarantor Accountability Regime

In the guarantor accountability regime only S2 is held responsible for any fraud (which only S1

can commit), and her punishment is τNM
2 = τMf

2 = τMh
2 > R2, while the punishment for S1 is

τ1 = R1. This case can be seen as a special case of the group accountability regime. The conditions

R1 ≥ R1 ≥ 0 and R2 ≤ 0 ≤ R2 from the main part are met for a range of different parameters.

Therefore, the equilibria found in Proposition 1 still hold, and the preferred equilibrium is eqm. 4

by Corollary 1. The only difference compared to the analysis of the group accountability regime is

that k is fixed at its maximum value in this case, which will be a relevant distinction in comparative

statics and policy application.

4 The Quantity and Quality of Produced Research

In this section, we turn our attention to the impact of scientific fraud on research from a social

point of view. In line with the features of our model, we focus on the effect of the parameter values

on research output, namely on the expected quantity of honest and fraudulent research. The

parameters of interest are a, b, and k, among which a and k are associated with the punishment

of fraudulent research, thus are affected by the accountability regime.

In general, and in absence of any constraints, a planner would like to design these incentives

so as to both maximize the production of honest research (henceforth called HR), and, at the

same time, minimize the production of fraudulent research (henceforth called FR). Yet, in the

presence of constraints, these two goals may require conflicting choices, thus generating trade-offs

in the planner’s policy settings. To capture these trade-offs, we consider that the planner intends

to maximize the difference between the two quantities, i.e. maximize HR-FR. This assumption

implies that the planner cares equally about the two objectives. Nevertheless, it will become

apparent that the result would be qualitatively similar for more general functions that are linear

combinations of the two quantities.
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4.1 Comparative Statics

To provide a more general understanding, we begin this section by providing some comparative

statics, regarding the effects of the parameters of the model on each measure of research output.

Throughout this section, and based on the results of the previous section, we focus on the mixed

Monitor/Not Monitor equilibrium of the Group Accountability Regime (Equilibrium 4 in Propo-

sition 1). We are interested both in the level of total research output, as well as in the level of

fraudulent research that is eventually published. The following expressions quantify equilibrium

levels of total research (TR), fraudulent research (FR), and honest research (HR) as functions of

a, b, and k, where a and b appear implicitly in the expressions through p∗1 and z∗:

TR = q∗2 + (1− q∗2)

(
p∗1

(
1

2
− z

)
+ (1− p∗1)

(
1

2
+ z

))
= z∗

1 + 2k(1− 2p∗1)

z∗ + k

HR = (1− p∗1)

(
q∗2 + (1− q∗2)

(
1

2
+ z∗

))
= z∗(1− p∗1)

1 + 2k

z∗ + k

FR = p∗1
z∗(1− 2k)

z∗ + k

Proposition 2 In the space of parameters (a, b, k) where the mixed equilibrium of the Group Ac-

countability Regime (Equilibrium 4 of Proposition 1) exists, the following results hold:

1. For all a, b, Total Research (TR), Honest Research (HR), and Fraudulent Research (FR)

decrease in k.

2. For all a, b, the ratio HR/TR increases in k.

3. For all b, k, TR and HR increase in a.

4. For all b, (i) for all k >
√
29−3
10

, FR decreases in a, whereas (ii) for all k <
√
29−3
10

, there exists

â(b) ∈ (0, b) such that FR increases in a for a < â and decreases for a > â.

5. For all b, k, the ratio HR/TR increases in a.

6. For all a, k, FR increases in b.

7. For all a, k, the ratio HR/TR decreases in b.
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The comparative statics presented in Proposition 2 provide interesting insights regarding the

impact of the parameters on the equilibrium quantities of interest. First, the measure of the incen-

tive to commit fraud denoted by k is inversely related to the punishment level of S1. Importantly,

an increased incentive for S1 to commit fraud does not necessarily have a detrimental effect. As

long as k remains sufficiently small compared to a and b (so as not to preclude the existence

of the mixed equilibrium), an increase in the value of k is internalized by S2, in the form of a

higher equilibrium probability of monitoring. This leads to a decrease in both FR and HR, but

fraudulent research decreases proportionally more. Nevertheless, if the incentives to commit fraud

become too high, S2 cannot counterbalance them through monitoring, which breaks down the

mixed equilibrium and leads her to walk away from the project.

Second, there appears to be a more clearly detrimental effect from an increase in the value of b,

which captures the value of a legitimate project to S2. An increase in b leads to more fraudulent

research in absolute terms and to a lower share of honest research to total research. This happens

because an increase in b leads both to less monitoring (albeit more accurate) and to a higher

equilibrium probability of S1 committing fraud.

On the contrary, a decrease in the expected payoff of S2 from being involved in a fraudulent

project (i.e. an increase of a) has a clearly positive effect. It leads to higher levels of total research,

which arise essentially exclusively from an increase in honest research, because more often than

not fraudulent research decreases. This is due to the fact that a higher punishment leads to lower

equilibrium levels of fraud and to a higher monitoring accuracy (albeit monitoring occurs less

often).

Having said the above, it is interesting to observe that a and b have an opposite effect in

the equilibrium probability of fraud (p∗1), despite the fact that both affect monitoring accuracy

positively (z∗) and monitoring frequency negatively (1− q∗2).

Overall, it seems that a promising tool to achieve the planner’s objectives is to make the

participation in a fraudulent project less appealing for S2. Note that the payoffs from participating

to a fraudulent project implicitly depend on the probability of being detected by an external

monitor (not a collaborator), and the accompanying punishment. Hence, this variable can to some

degree be affected by norms and policies in the given scientific domain.
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4.2 Optimizing Quantity and Composition of Research

We now turn our attention to the aggregate production of research. Namely, we would like to

understand which values of the parameters would allow the social planner, who cares about max-

imizing honest research and minimizing fraudulent research, to achieve their goal most effectively.

Having said the above, the first-best outcome for such a social planner would be to implement

an accountability policy (i.e. values of a and k) for which S1 never commits fraud and S2 always

participates in the project without monitoring. Yet, note that this is not possible within the

parameter range we have been studying, as it becomes apparent from Propositions 1 and 2. In

fact, this could only be achieved if the incentives of S1 to commit fraud were completely eliminated,

i.e. if R1 > R1 or equivalently k < 0. Thus, if a planner would be able to eliminate those incentives,

then the problem under study would be solved. In what follows, we assume that the planner is

not able to eliminate the incentives of S1 to commit fraud.11

Importantly, also, as long as the incentives of S1 to commit fraud (k > 0) are not completely

eliminated, the only equilibrium in which no fraudulent research takes place is the one in which

S2 always walks away, so that in general no research is conducted. Therefore, the social planner

is somewhat bound to tolerate some level of fraudulent research.

Given this observation, as described above, we consider the optimal choice of a planner who

intends to maximize the difference between honest and fraudulent research, i.e. HR-FR. Note

that the form of the objective function induces a tradeoff both for k (given that both HR and FR

decrease in k) and for a, given that for some values of k and b both HR and FR increase in a.

Proposition 3 In the space of parameters (a, b, k) where the mixed equilibrium of the Group Ac-

countability Regime (Equilibrium 4 of Proposition 1) exists, there exists some b̂ ∈ (0, 1/2) such

that HR-FR is maximized for

• (a, k) = (amax, kmin) if b ≤ b̂, and

11Intuitively, this means that in our environment there is a non-trivial problem only as long as society cannot
impose a very large punishment to junior researchers who commit fraud. This is a reasonable assumption given the
fact that reputation costs of juniors are low, and the termination of a career is the maximum penalty. Interestingly,
even if fraudsters are punished under civil law, since juniors have not accumulated high earnings from fraud, the
level of punishment seems limited. The question remains whether criminal law should be used more frequently in
cases of scientific misconduct.
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• (a, k) = (amax, kmax) if b > b̂.

The result stems from the observation that HR − FR is never maximized for intermediate

levels of k, while for all k the objective function is increasing in a.

The result yields an important takeaway. Namely, it is always beneficial for the planner to

induce the maximum allowed punishment to the scientist who is responsible for monitoring, i.e.

S2. By doing so, the planner leads S2 to increase her effort of preventing fraud, while still

participating in the project, which in turn leads S1 to commit fraud with a smaller probability.

The optimal punishment for S1 is less intuitive and less clear. In fact, in some cases, it may be

optimal to eliminate completely the punishment for S1. Arguably, such a policy may raise ethical

concerns, as it leaves unpunished the person who is primarily responsible for fraud.

Note that in our terminology of accountability regimes, Proposition 3 suggests that for low

rewards of S2 (low b’s) the group accountability regime is optimal with the maximum possible

punishment for both scientists. However, when the rewards are high enough for S2, the guarantor

regime yields the best outcome. Intuitively, in our setting imposing the highest punishment on

the person who is in position to monitor is always necessary, and it is also sufficient if this person

has high enough stakes in the game; punishing the perpetrator in this case does not increase the

social planner’s objective further.

At this point, it is important to notice that the choice to maximize HR−FR implicitly assumes

that the social planner cares equally about the two quantities. Yet, this need not always be the case.

One could consider a more general version of this objective function of the form λHR− (1−λ)FR.

In light of the above result, the outcome would be qualitatively similar to the previous one. It

would still be optimal to target a = 1/2, and optimal k would depend on b, but also on λ, with

high λ favoring low k and low λ favoring a high k.

Furthermore, so far we have assumed that the social planner faces no restriction on how to

allocate culpability, other than the restrictions on the parameters’ range imposed by the model.

However, there may be other restrictions, constraining further the options of the planner, for in-

stance due to the monitoring mechanisms available to the social planner herself. For example,

creating mechanisms able to capture fraudulent research with very high probability would require
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a large amount of resources, which may be both expensive and inefficient. On the other hand,

imposing really severe punishments to offenders may be inconsistent with more general legal prac-

tices. For instance, how severe a case of academic fraud would have to be for a court to justify

imposing jail time to the offender? Such additional restrictions would likely affect the policy impli-

cations suggested by our analysis and they could be incorporated in the model. Our model serves

as a benchmark for future research and further analysis.

5 Conclusion

The problem of scientific misbehaviour is attracting increasing attention given the alleged cred-

ibility crises in several disciplines, and is exacerbated by the increasing size of scientific teams.

Several sets of rules have been suggested for the allocation of responsibility in case of scientific

fraud. The literature has identified four different options: a group accountability regime, an in-

dividual accountability regime, a guarantor regime, and a partial group accountability regime. In

terms of a purely ethical approach, the best solution is punishing the individuals who committed

fraud, or at most those who knew about the fraud. However, our analysis shows that society may

have to bear with a trade-off between ethical principles and efficiency of incentives. The reason

is that, generally, the best outcomes for society are attained when the whole scientific team is

responsible for scientific fraud (group accountability regime). This is driven by the fact that this

scheme provides incentives for internal monitoring of other team members. We further show that

the policymaker has to accept some level of fraud in order to facilitate any amount of joint projects.

It should be noted that only if the punishment level of the perpetrators can be arbitrarily

high, then the first best outcome, all research being honest, is achievable and it does not require

group accountability. However, social norms may prevent the policy-maker from setting such high

individual punishment. We have assumed throughout that such limitations exist and necessitate

alternative schemes of allocating accountability.

Our findings in the main analysis suggest that as long as S1 has an incentive to commit fraud,

but S2 has no incentive to be involved in a fraudulent project, the game theoretic equilibrium

is either not to start any joint research project, or to let S1 to have a mixture or fraudulent

and honest research projects, while S2 monitors randomly a fraction of these projects, with an
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imperfect monitoring strategy. While the first equilibrium is clearly undesirable, in the second one

the output consists of some honest research, some fraudulent research that was not caught during

the internal and external monitoring processes, and some honest research which was abandoned

by mistake due to the imperfection of the internal monitoring process. The evaluation of the

combination of these various outcomes depends on the policy maker’s objectives. However, the

main alternative schemes (individual accountability and partial group accountability), achieve a

clearly worse outcome, because they fail to provide incentives for internal monitoring. Accordingly,

the team member who has the opportunity to cheat does so with probability 1.

Our results inform the discussion about optimal institutions in science. Our mathematical

simulation allows us to analyse a complex institutional problem that cannot be examined with

the experimental method. Our results suggest that internal monitoring in science can play a

crucial role in limiting misbehaviour. It is worth emphasizing that we obtain this result without

assuming that there is uncertainty regarding the identity of the perpetrator. In such an enhanced

setting, the benefits of group accountability would likely be reinforced. Our analysis assumes

only two researchers, whereas some of the key challenges involve increasingly large research teams.

Accordingly, our approach would yield additional interesting insights if it was generalized to the

case of multiple researchers. We leave such analysis for further work.

Appendix

Calculations and Proofs

Best Response of S2: We need to consider separately the cases where a = b and a ̸= b.

Let us first consider the case a = b. In this case, we can simplify the expressions of the expected

utilities as follows: EU2(M |p) = (1−2p)a+a2

2
, EU2(NM |p) = (1− 2p)a, EU2(WA|p) = 0.

EU2(M |p) ≥ EU2(NM |p) ⇔ a2 ≥ (1− 2p)a ⇔ p ≥ 1− a

2

EU2(M |p) ≥ EU2(WA|p) ⇔ (1− 2p)a+ a2 ≥ 0 ⇔ p ≤ 1 + a

2
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From the two expressions, and given that 0 < 1−a
2

< 1+a
2

< 1 for a ∈ (0, 1/2), we obtain the

best-response of S2 when she believes that S1 commits fraud with probability p to be as described

in Expression (5) with p∗1 =
1−a
2

and p∗2 =
1+a
2
.

Let us now turn our attention to the case a ̸= b. Let us first compare EU2(NM |p) with EU2(M |p).

EU2(M |p) ≥ EU2(NM |p) ⇔ [pa+ (1− p)b]2 ≥ −pa+ (1− p)b ⇔

⇔ p2(a− b)2 + p(2ab− 2b2 + a+ b) + (b2 − b) ≥ 0

The inequality is always true when −pa + (1− p)b is negative (i.e. p > b
a+b

), thus it is enough to

focus on what happens in the remaining cases (for p ≤ b
a+b

).

Solving the quadratic equation p2(a − b)2 + p(2ab − 2b2 + a + b) + (b2 − b) = 0 with respect

to p gives us two real roots:
2b(b−a)−(a+b)+

√
(a+b)2−8ab(b−a)

2(b−a)2
and

2b(b−a)−(a+b)−
√

(a+b)2−8ab(b−a)

2(b−a)2
. It is

straightforward to verify that the discriminant (a+ b)2−8ab(b−a) is strictly positive for all values

of (a, b) ∈ (0, 1/2)2. Moreover,
2b(b−a)−(a+b)−

√
(a+b)2−8ab(b−a)

2(b−a)2
is strictly negative for all values of

(a, b) ∈ (0, 1/2)2. For 2b(b− a) > (a+ b) one should observe that

2b(b− a)− (a+ b)−
√
(a+ b)2 − 8ab(b− a) < 0 ⇔ (b− a)2(b− 1)b < 0

which is true for all (a, b) ∈ (0, 1/2)2 such that a ̸= b, whereas for 2b(b − a) − (a + b) ≤ 0 the

result is readily obvious. Similarly, it readily follows that
2b(b−a)−(a+b)+

√
(a+b)2−8ab(b−a)

2(b−a)2
is strictly

positive for all (a, b) ∈ (0, 1/2)2. Finally, turning our attention back to the inequality, given that

(a− b)2 > 0, the polynomial is positive outside of the roots and negative inside. Thus, overall, we

obtain the following result

EU2(M |p) ≥ EU2(NM |p) ⇔ p ≥ p∗1 :=
2b(b− a)− (a+ b) +

√
(a+ b)2 − 8ab(b− a)

2(b− a)2

with equality holding only at p = p∗1.
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Let us now compare EU2(M |p) with EU2(WA|p).

EU2(M |p) ≥ EU2(WA|p) ⇔ [pa+ (1− p)b]2 ≥ pa− (1− p)b ⇔

⇔ p2(a− b)2 + p(2ab− 2b2 − a− b) + (b2 + b) ≥ 0

Solving the quadratic equation p2(a − b)2 + p(2ab − 2b2 − a − b) + (b2 + b) = 0 with respect

to p gives two real roots:
2b(b−a)+(a+b)−

√
(a+b)2+8ab(b−a)

2(b−a)2
and

2b(b−a)+(a+b)+
√

(a+b)2+8ab(b−a)

2(b−a)2
, where it is

straightforward to verify that (a + b)2 + 8ab(b− a) is always strictly positive in (a, b) ∈ (0, 1/2)2.

We can also show that the second root is larger than one.

2b(b− a) + (a+ b) +
√
(a+ b)2 + 8ab(b− a) > 2(b− a)2 ⇔√
(a+ b)2 + 8ab(b− a) > 2a(a− b)− (a+ b) ⇔

[if rhs positive] (a+ b)2 + 8ab(b− a) > (2a(a− b)− (a+ b))2 ⇔

2ab(b− a) > a2(a− b)2 − a(a2 − b2) ⇔

1 > a

If the rhs of the third inequality is negative, then the result is trivially true. Similarly, it follows that
2b(b−a)+(a+b)−

√
(a+b)2+8ab(b−a)

2(b−a)2
is smaller than one. As far as it concerns the sign of the inequality,

as (a− b)2 > 0 the polynomial is positive outside the roots and negative inside. Thus, overall

EU2(M |p) > EU2(WA|p) ⇔ p ≤ p∗2 :=
2b(b− a) + (a+ b)−

√
(a+ b)2 + 8ab(b− a)

2(b− a)2

with equality holding only for p = p∗2.

The final step is to compare p∗1 with p∗2.

p∗1 < p∗2 ⇔

2b(b− a)− (a+ b) +
√
(a+ b)2 − 8ab(b− a)

2(b− a)2
<

2b(b− a) + (a+ b)−
√
(a+ b)2 + 8ab(b− a)

2(b− a)2
⇔√

(a+ b)2 − 8ab(b− a) +
√

(a+ b)2 + 8ab(b− a) < 2(a+ b) ⇔√
1− 8ab(b− a)

a+ b
+

√
1 +

8ab(b− a)

a+ b
< 2
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which holds for all (a, b) ∈ (0, 1/2)2 such that a ̸= b. To show that the last expression holds, let us

first consider the case b > a. Let x = 8ab(b−a)
a+b

and observe that, given (a, b) ∈ (0, 1/2)2, for b > a

we have x ∈ (0, 1). Then, it is straightforward to see that the function f(x) =
√
1− x +

√
1 + x

is strictly decreasing in (0, 1) and f(0) = 2. Therefore, for all x ∈ (0, 1), f(x) < 2. Thus,√
1− 8ab(b−a)

a+b
+

√
1 + 8ab(b−a)

a+b
< 2 as well. The case of a > b is identical, simply observing that

the expression can be rewritten as
√

1 + 8ab(a−b)
a+b

+
√

1− 8ab(a−b)
a+b

< 2.

Therefore, considering together the expressions: (a) EU2(M |p) ≥ EU2(NM |p) ⇔ p ≥ p∗1,

(b) EU2(M |p) ≤ EU2(WA|p) ⇔ p ≤ p∗2, and (c) p∗1 < p∗2, we obtain the best response of S2 as

a function of p to be as described in Expression (5) with p∗1 =
2b(b−a)−(a+b)+

√
(a+b)2−8ab(b−a)

2(b−a)2
and

p∗2 =
2b(b−a)+(a+b)−

√
(a+b)2+8ab(b−a)

2(b−a)2
.

Overall, the best-response of S2 to each p is as follows:

(q∗1, q
∗
2) =



(0, 1), if p < p∗1

(0, 0), if p ∈ (p∗1, p
∗
2)

(1, 0), if p > p∗2

(0, q∗2 ∈ [0, 1]), if p = p∗1

(q∗1 ∈ [0, 1], 0), if p = p∗2

(5)

where

p∗1 =


2b(b−a)−(a+b)+

√
(a+b)2−8ab(b−a)

2(b−a)2
, if a ̸= b

1−a
2
, if a = b

p∗2 =


2b(b−a)+(a+b)−

√
(a+b)2+8ab(b−a)

2(b−a)2
, if a ̸= b

1+a
2
, if a = b

(6)

Best Response of S1: The expected utilities of the S1 for each choice are the following:

EU1(H|q1, q2, z) = q2R1 + (1− q1 − q2)

(
1

2
+ z

)
R1

EU1(F |q1, q2, z) = q2R1 + (1− q1 − q2)

(
1

2
− z

)
R1
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From the above, it is straightforward to observe that the best-response of S1 for each (q1, q2) and

z is as follows:

p =


1 if q2(R1 −R1) + (1− q1 − q2)

(
1
2
(R1 −R1)− z(R1 +R1)

)
> 0

0 if q2(R1 −R1) + (1− q1 − q2)
(
1
2
(R1 −R1)− z(R1 +R1)

)
< 0

[0, 1] if q2(R1 −R1) + (1− q1 − q2)
(
1
2
(R1 −R1)− z(R1 +R1)

)
= 0

(7)

The expression can be rewritten with respect to k = 1
2

R1−R1

R1+R1
as follows:

p =


1 if 2q2k + (1− q1 − q2)(k − z) > 0

0 if 2q2k + (1− q1 − q2)(k − z) < 0

[0, 1] if 2q2k + (1− q1 − q2)(k − z) = 0

(8)

Proof of Proposition 1: We test all possible equilibria and find which ones can be sustained

and for which parameter values:

1. (p∗ = 0:) If p∗ = 0 ⇒ q∗2 = 1 and z∗ = b. If q∗2 = 1 then p∗ = 1. This leads to a contradiction.

No equilibrium can be sustained with p∗ = 0.

2. (p∗ = 1:) If p∗ = 1 then q∗1 = 1 and z∗ = a. If q∗1 = 1 then p∗ ∈ [0, 1]. Therefore, for p∗ = 1,

the following equilibrium can be sustained:

p∗ = 1, (q∗1, q
∗
2) = (1, 0), z∗ = a

3. (p∗ ∈ (0, 1) and q∗1 = 1:) If q∗1 = 1 then p∗ ∈ [0, 1], but for q∗1 = 1 to be a best response

for S2 it must hold that p∗ ∈ [p∗2, 1]. Moreover, for S1 to be fully mixing it must hold that

2q∗2k + (1 − q∗1 − q∗2)(k − z∗) = 0, which holds for (q∗1, q
∗
2) = (1, 0). Therefore, the following

family of equilibria can be sustained:

p∗ ∈ [p∗2, 1), (q
∗
1, q

∗
2) = (1, 0), z∗ = p∗a+ (1− p∗)b

The equilibria of cases 2 and 3 combined give part 1 of the proposition.
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4. (p∗ ∈ (0, 1) and q∗2 = 1:) If q∗2 = 1 then p∗ = 1, which leads to a contradiction.

5. (p∗ ∈ (0, 1) and q∗1 = q∗2 = 0:) If (q∗1, q
∗
2) = (0, 0) then p∗ ∈ (0, 1) can be a best response

only if z∗ = k. Thus, p∗a + (1 − p∗)b = k, which holds if and only if a = b = k or a ̸= b

and p∗ = k−b
a−b

(if its value is admissible). Moreover, (q∗1, q
∗
2) = (0, 0) is a best response when

p∗ ∈ [p∗1, p
∗
2]. Thus, the following equilibrium can be sustained

p∗ =
k − b

a− b
(q∗1, q

∗
2) = (0, 0) and z∗ = k

as long as a = b = k, or a ̸= b and k−b
a−b

∈ [p∗1, p
∗
2].

6. (p∗ ∈ (0, 1), q∗1 ∈ (0, 1), and q∗2 = 0:) For q∗1 ∈ (0, 1) and q∗2 = 0 to be (jointly) a best response

it must be the case that p∗ = p∗2. For p∗ = p∗2 to be the best response when q∗1 ∈ (0, 1) and

q∗2 = 0 it must also be true that z∗ = k. But then this means that k = p∗2a+(1− p∗2)b, which

holds only when a = b = k or a ̸= b and p∗2 =
k−b
a−b

. Therefore, the following equilibrium can

be sustained:

p∗ = p∗2, (q∗1, q
∗
2) = (q̂, 0) for q̂ ∈ (0, 1), and z∗ = k

as long as a = b = k, or as long as a ̸= b and k−b
a−b

= p∗2.

7. (p∗ ∈ (0, 1), q∗1 = 0, and q∗2 ∈ (0, 1):) For q∗1 = 0 and q∗2 ∈ (0, 1) to be (jointly) a best

response it must be the case that p = p∗1. For this to be a best response it would then be

required that 2q∗2k + (1 − q∗2)(k − z∗) = 0, or equivalently q∗2 = z∗−k
z∗+k

=
p∗1a+(1−p∗1)b−k

p∗1a+(1−p∗1)b+k
as long

as k ≤ p∗1a+ (1− p∗1)b. In this case, the following equilibrium can be sustained:

p∗ = p∗1 (q∗1, q
∗
2) =

(
0,

p∗1a+ (1− p∗1)b− k

p∗1a+ (1− p∗1)b+ k

)
and z∗ = p∗1a+ (1− p∗1)b

as long as k ≤ p∗1a+ (1− p∗1)b

Proof of Corollary 1: For S2 the result is readily observable from the fact that EU2(M |p) is

strictly decreasing in p – since ∂EU2(M |p)
∂p

= −a− b+ 2(a− b)(pa+ (1− p)b), where pa+ (1− p)b ∈

(0, 1/2). Given this, observe that the expected payoff for S2 in equilibrium 4 (mixed, between

Monitor and Not Monitor) is equal to EU2(M |p∗1), whereas for equilibrium 2 (pure, always Monitor)

it is equal to EU2(M |p∗) for some p∗ ∈ (p∗1, p
∗
2), thus smaller than EU2(M |p∗1), and for equilibrium
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1 (pure, always Walk Away) it is equal to 0, which is by construction also equal to EU2(M |p∗2),

thus again smaller than EU2(M |p∗1).

For S1, in both equilibria 2 and 4 player S1 uses a mixed strategy, thus both pure strategies

yield him the same expected payoff, so it is sufficient to compare his payoffs when honest. In both

equilibria, these payoffs are trivially higher than 0 – which is the payoff in equilibrium 1 – given

that R1 > 0. Between the other two, we need to show that
(
1
2
+ k

)
R1 <

z∗1−k

z∗1+k
R1+

2k
z∗1+k

(
1
2
+ z∗1

)
R1,

where z∗1 = p∗1a+ (1− p∗1)b.

(
1
2
+ k

)
R1 <

z∗1−k

z∗1+k
R1 +

2k
z∗1+k

(
1
2
+ z∗1

)
R1 ⇔

(
1
2
+ k

)
(z∗1 + k) < z∗1 + 2kz∗1 ⇔

(
1
2
+ k

)
(z∗1 − k) > 0

Hence, it is enough that z∗1 > k or equivalently p∗1a + (1− p∗1)b > k which is true whenever a > b

and p∗1 >
k−b
a−b

, i.e. in the parameter range in which both equilibrium 1 and equilibrium 4 exist.

Proof of Proposition 2: Let us first present the results regarding the effect of a change in

k. The result is immediately obtained by differentiating the respective quantities, recalling that z∗

and p∗1 are independent of k. Thus, first, ∂TR
∂k

= z∗
2z∗(1−2p∗1)−1

(z∗+k)2
< 0 because z∗ < 1/2, 1− 2p∗1 < 1.

Second, ∂HR
∂k

= (1 − p∗1)z
∗ 2z∗−1
(z∗+k)2

< 0, again because z∗ < 1/2. Third, ∂FR
∂k

= −p∗1z
∗ 1+2z∗

(z∗+k)2
< 0.

Finally, HR
TR

= 1− p∗1
1−2k

1+2k(1−2p∗1)
. Thus, ∂(HR/TR)

∂k
= 4p∗1

1−p∗1

[1+2k(1−2p∗1)]
2 > 0.

Subsequently, we are interested in the derivatives of the relevant quantities with respect to a

and b. To obtain the sign of these derivatives, we need some intermediate results, which we prove

below.

Lemma 1

• ∂p∗1
∂a

< 0, ∂z∗

∂a
> 0, and

∂q∗2
∂a

> 0

• ∂p∗1
∂b

> 0, ∂z∗

∂b
> 0, and

∂q∗2
∂b

> 0

Proof of Lemma 1: Let us first prove that
∂p∗1
∂a

< 0. It is helpful to consider the implicit

form of obtaining p∗1, i.e. the equation EU2(M |p∗1) = EU2(NM |p∗1) or equivalently p∗1a − (1 −

p∗1)b + [p∗1a+ (1− p∗1)b]
2 = 0. If we differentiate this expression implicitly with respect to a we
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get
∂p∗1
∂a

{a+ b+ 2(a− b) [p∗1a+ (1− p∗1)b]}+ p∗1 [1 + 2p∗1a+ 2(1− p∗1)b] = 0. Thus, given that both

1 + 2p∗1a+ 2(1− p∗1)b > 0 and a+ b+ 2(a− b) [p∗1a+ (1− p∗1)b] > 0,12 it follows that
∂p∗1
∂a

< 0.

Similarly, we shall use the same expression to show that
∂p∗1
∂b

> 0. Namely, by implicitly

differentiating p∗1a − (1 − p∗1)b + [p∗1a+ (1− p∗1)b]
2 = 0 with respect to b we get the following

expression:
∂p∗1
∂b

{a+ b+ 2(a− b) [p∗1a+ (1− p∗1)b]} + (1 − p∗1) [2p
∗
1a+ 2(1− p∗1)b− 1] = 0. From

this, note that 2p∗1a + 2(1 − p∗1)b − 1 < 0 for all (a, b) ∈ (0, 1/2)2, which combined with the fact

that a+ b+ 2(a− b) [p∗1a+ (1− p∗1)b] > 0, which was proven before, implies that
∂p∗1
∂b

> 0.

Let us now prove that ∂z∗

∂a
> 0. To do so, it is useful to observe that if we combine p∗1a−(1−p∗1)b+

[p∗1a+ (1− p∗1)b]
2 = 0 and z∗ = p∗1a+(1−p∗1)b, we can obtain the equation: z∗+(z∗)2−2(1−p∗1)b = 0.

If we differentiate this expression implicitly with respect to a, and after some rearrangements, we

get that ∂z∗

∂a
= − 2b

1+2z∗
∂p∗1
∂a

> 0, given that we have already shown that
∂p∗1
∂a

< 0.

Similarly to this, expression z∗+(z∗)2−2(1−p∗1)b = 0 can be rewritten as 2p∗1a−z∗+(z∗)2 = 0.

Differentiating this implicitly with respect to b we get that ∂z∗

∂b
= 2a

1−2z∗
∂p∗1
∂b

> 0, given that we have

already shown that
∂p∗1
∂b

> 0.

Finally,
∂q∗2
∂a

=
∂
(

z∗−k
z∗+k

)
∂a

= 2k
(z∗+k)2

∂z∗

∂a
> 0 and

∂q∗2
∂b

=
∂
(

z∗−k
z∗+k

)
∂b

= 2k
(z∗+k)2

∂z∗

∂b
> 0, given that ∂z∗

∂a
> 0

and ∂z∗

∂b
> 0 respectively.■

Let us now look at the derivatives with respect to a. First, regarding total research, we

observe that ∂HR
∂a

= (1 + 2k)
[

k
(z∗+k)2

(1− p∗1)
∂z∗

∂a
− z∗

z∗+k

∂p∗1
∂a

]
> 0 given that

∂p∗1
∂a

< 0 and ∂z∗

∂a
> 0.

Second, regarding fraudulent research, recalling that ∂z∗

∂a
= − 2b

1+2z∗
∂p∗1
∂a

we observe that ∂FR
∂a

=

(1−2k)
[

k
(z∗+k)2

p∗1
∂z∗

∂a
+ z∗

z∗+k

∂p∗1
∂a

]
= (1−2k)

(z∗+k)2(1+2z∗)

∂p∗1
∂a

[z∗(z∗ + k)(1 + 2z∗)− 2bkp∗1]. Let us now focus

on the term z∗(z∗ + k)(1 + 2z∗)− 2bkp∗1. If we use the expression z∗ + (z∗)2 − 2(1− p∗1)b = 0 that

we obtained above, we can rewrite this expressions as 2(z∗)3+(3k+1)(z∗)2+2kz∗−2bk. Knowing

that ∂z∗

∂a
> 0, this expression increases in a and thus changes sign at most once as a increases.

Let us first see what happens at a = 0. Therefore, for a = 0, p∗1 = 1 and z∗ = 0, the expression

becomes equal to −2bk < 0. On the other hand, for a = b, p∗1 =
1−b
2

and z∗ = b, so the expression

becomes equal to 2b3 + (3k + 1)b2 > 0. Hence, there exists some â(b) ∈ (0, b) such that ∂FR
∂a

> 0

for a < â(b) and ∂FR
∂a

> 0 for a > â(b).

12To see that a+ b+ 2(a− b) [p∗1a+ (1− p∗1)b] > 0 observe that the expression increases in p∗1, thus it is enough
to show that it is positive for p∗1 = 0, where the expression becomes a+ b+2(a− b)b. This increases in a, thus it is
enough to check for a = 0, where this becomes b− 2b2, which is strictly larger than 0 for all b ∈ (0, 1/2).
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Yet, it still remains unclear whether this threshold falls within the parameter region in which

the mixed equilibrium exists, i.e. where z∗ ≥ k. Therefore, we need to check for which values

of k, the inequalities z∗ ≥ k and z∗(z∗ + k)(1 + 2z∗) − 2bkp∗1 ≤ 0 hold simultaneously for some

values of a and b. This is the case when k ∈
[

(z∗)2(1+2z∗)
2bp∗1−z∗(1+2z∗)

, z∗
]
, as long as z∗ ≥ (z∗)2(1+2z∗)

2bp∗1−z∗(1+2z∗)
or

equivalently z∗(1 + 2z∗) ≤ bp∗1 ⇔ a ≤ 3b
√
9+40b−b(7+8b)
4(1+8b)

. The maximum z∗ for which the inequality

holds is equal to
√
29−3
10

. Thus, for all k > k̂ =
√
29−3
10

the two inequalities never hold together, which

in turn means that the threshold always falls outside the parameter region in which the mixed

equilibrium exists. On the contrary, for all b, as a tends to zero, the lower bound (z∗)2(1+2z∗)
2bp∗1−z∗(1+2z∗)

tends to zero. Hence, for all k ∈ (0, k̂), for all b ∈ (0, 1/2), there exist a for which both inequalities

hold simultaneously.

Third, ∂TR
∂a

= ∂HR
∂a

+ ∂FR
∂a

= k
(z∗+k)2

[(1 + 2k)(1− p∗1) + (1− 2k)p∗1]
∂z∗

∂a
− 4k z∗

z∗+k

∂p∗1
∂a

> 0 given

that ∂z∗

∂a
> 0,

∂p∗1
∂a

< 0, and (1 + 2k)(1− p∗1) + (1− 2k)p∗1 > 0.

Finally, ∂(HR/TR)
∂a

= − (1−2k)(1+2k)

[(1+2k)−4kp∗1]
2

∂p∗1
∂a

> 0, because
∂p∗1
∂a

< 0.

Looking now at the derivatives with respect to b, we get the following results. Regarding FR,

∂FR
∂b

= (1− 2k)
[

k∗

(z∗+k)2
p∗1

∂z∗

∂b
+ z∗

z∗+k

∂p∗1
∂b

]
> 0, given that ∂z∗

∂b
> 0 and

∂p∗1
∂b

> 0. The impact of b on

HR and TR is less clear, but not for the ratio HR/TR. Namely, observe that HR
TR

=
1+2k−(1+2k)p∗1

1+2k−4kp∗1
.

Thus, ∂(HR/TR)
∂b

= − (1+2k)(1−2k)

(1+2k−4kp∗1)
2

∂p∗1
∂b

< 0, given that
∂p∗1
∂b

> 0.

Proof of Proposition 3: First, we show that HR − FR increases in a for any k and b. It

holds, because HR − FR = TR
(
2HR
TR

− 1
)
and recall from Proposition 2 that TR and HR/TR

increase in a, while FR/TR decreases in a. Therefore, the objective is maximized at the maximum

value of a.

For the optimal k, let us rewrite the objective function as follows: HR−FR = z∗

z∗+k
(1 + 2k − 2p∗1).

Analyzing the monotonicity of this quantity with respect to k, we observe that the optimal k de-

pends on the values of a and b, but in any case it is either equal to kmin or to kmax. More specifically,

∂(HR−FR)
∂k

= z∗

(z∗+k)2
(2z∗ − 1+ 2p∗1), which for any a ∈ (0, 1/2) is negative for b = 0 and positive for

b = 1/2. Thus, for each (a, b) it is either positive for any k or negative for any k, and there is a

threshold b̂ which separates the two domains.

Therefore, we obtain that for low values of b, the function is maximized at (a, k) = (amax, kmin),

whereas for high values of b, it is maximized at (a, k) = (amax, kmax).
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