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Abstract

In communication games with multiple senders, I refer to babel as

a setting in which the receiver cannot attribute messages to speci�c

senders. This captures features of election campaigns and other public

debates, where some senders may bene�t from sabotaging the shared

message. A binary model with threshold utility functions is both rich

and relatively tractable. While best-response dynamics is often cycli-

cal, pure-strategy equilibria exist when senders are small and there

is a common order of signals. Even when senders strongly disagree

over outcomes, partial communication compromises can emerge. Con-

versely, when preferences are nearly aligned in outcomes, communi-

cation behavior can exhibit runaway divergence: either one sender

contributes only noise, or the other one attempts to contribute full

information.
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�Department of Economics, University of Southampton. E-mail: m.kwiek@soton.ac.uk
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(...) You just have to �ood a country's public square with enough
raw sewage. You just have to raise enough questions, spread
enough dirt, plant enough conspiracy theorizing that citizens no
longer know what to believe.

Barak Obama1

The point of modern propaganda isn't only to misinform or push
an agenda. It is to exhaust your critical thinking, to annihilate
truth.

Garry Kasparov2

1 Introduction

Visitors to Tate Modern in London may come across a room containing an
installation by Brazilian artist Cildo Meireles: a large circular tower made
of approximately 800 second-hand analogue radios. Each radio is tuned to
a di�erent station and played at low volume, producing a mix of overlap-
ping voices, music, and static. Occasionally, a distinct fragment of a song
or broadcast becomes audible before fading back into the overall buzz. Ti-
tled Babel 2001, the piece evokes the di�culties of communication in an
environment saturated with information sources and competing signals.3

I study a model of Bayesian persuasion with multiple senders and a single
receiver. The key assumption is that the receiver cannot tell who said what,
creating confusion about individual voices in public discourse�a situation I
refer to as babel.

Anonymity is common on modern social media, but public discourse has
long been shaped by back-channels, gossip, and anonymous tips. Today,
intermediaries such as AI-driven news aggregators or anonymous bots that
relay others' messages make the problem worse. The same role can be played
by indoctrinated but otherwise ordinary individuals. When sources cannot be
identi�ed, any sender can steer the conversation, either increasing or reducing

1�Disinformation Is a Threat to Our Democracy� at https://barackobama.medium.com
2Twitter, Dec 13, 2016
3Tate Modern audio description: https://www.tate.org.uk/art/artworks/meireles-

babel-t14041/audio-description-babel
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its informativeness. This contrasts with much of the literature, where senders
can add information but not subtract from it.

Since there is an incentive to undermine the other sender's messages,
�ooding public square with this kind of noise�as Barak Obama eloquently
put it in the initial quote�is a common feature of equilibrium. One might at-
tribute this behavior to information-processing costs or capacity limits which
can be strategically exploited by senders who prefer the public to remain in
the dark. However, this paper assumes neither is present. Instead, the op-
portunity to contaminate discourse stems from the senders' anonymity.

Electoral example. As a concrete application, I adapt the prosecutor
example from the seminal paper by Kamenica and Gentzkow (2011) to an
electoral setting with two senders. Imagine a representative voter deciding
whether to punish an incumbent politician suspected of corruption. The
voter's belief about the probability of corruption may shift over the course
of the electoral campaign. If the belief remains low, the voter reelects the
politician. If it rises moderately, the voter removes the politician from o�ce
but allows them to remain active in politics. If it becomes very high, the
voter not only votes the politician out but also ends their prospects for a
future political career.

In this setting, the voter plays the role of the receiver, and the electoral
outcome depends on how her belief about corruption is shaped by the mes-
sages of two political groups, who act as senders and attempt to in�uence
perceptions of corruption during the campaign.

The senders have misaligned objectives, and I consider two distinct sce-
narios. In the �rst, both senders oppose the politician, but with di�erent
levels of intensity. Sender A is pragmatic, focused only on defeating the
politician in the upcoming election. Sender B, driven by a deeper antipathy,
aims to raise the belief of corruption high enough to force the politician out
of public life entirely.

The second scenario is di�erent: while sender B continues to seek perma-
nent removal, sender A is now a supporter, hoping to secure the politician's
reelection.

I analyze pure-strategy Nash equilibria in both scenarios, treating the
campaign as a simultaneous-move game between two senders who strategi-
cally shape their informational policies. Despite the model's binary structure
and simple threshold utility functions, its behavior is rich, yielding clear and
interpretable results.

Results. In the �rst scenario, both senders oppose the politician, but
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they di�er in how much information they wish to reveal. Their preferred
levels of disclosure follow a clear order. This leads their behavior to diverge
in equilibrium, setting o� a kind of runaway process: one sender provides in-
formation, the other responds by adding noise, prompting the �rst to counter
with even more informativeness, and so on. With no individual cost to this
escalation, the process continues until one of the senders hits a boundary,
either trying to reveal everything or �ooding the discourse with noise.

The results are di�erent in the second scenario, where the senders' pref-
erences over information are not mutually ordered. One sender supports the
politician while the other seeks their removal, yet both may still share an
interest in informing the voter, even as each tries to shift beliefs in their own
direction. In the most symmetric equilibria, neither resorts to �ooding the
public square with noise, but their e�orts partially cancel each other out.

Implications for debate design. Formal models of debate design are
rare in the literature, and even describing the tools available to a designer is
not straightforward. For instance, requiring a moderator to �lter arguments
and block obstructionist ones might seem helpful in theory, but in practice
it is prone to abuse. By contrast, measures that reduce anonymity can be
incorporated into the design more naturally, since they do not appear to
handicap either side in advance.

Consider two examples. First, society addresses divisive issues through
various mechanisms such as referendums or citizen assemblies. A referendum
is typically preceded by public debate in traditional and social media, much
of it mediated and unattributed. A citizen assembly, by contrast, involves
structured discussion, with expert input and full transparency. While the
two mechanisms di�er in many ways, the degree of anonymity is among
key distinctions. Second, competition among social media platforms, such as
Twitter and Bluesky, can be seen as a contest over debate design: some allow
anonymous trolling in reply sections, while others promote transparency by
providing tools such as robust blocking features.

We can evaluate the debate's performance by using the Blackwell informa-
tiveness as a normative benchmark and assess the role of senders' anonymity.
It turns out that relying on conventional measures of �balance� in debates
may lead counter-intuitive conclusions.

In the �rst scenario, a sender can sustain a high level of informative-
ness even when challenged by an obstructionist entrant, provided the former
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has some room to counter the latter and the latter is not too prevalent.4

To an external observer, such as an analyst, media overseer, or parliamen-
tary commission, this may look like an unbalanced public square: one side
provides information while the other �oods it with noise. By contrast, the
public square in the second scenario might appear more vibrant and sym-
metric, since each sender, though pulling beliefs in their preferred direction,
does provide some information. Yet even minimal participation by a sec-
ond sender strictly reduces equilibrium informativeness. In the limit, as this
scenario converges to a zero-sum game, no information may be revealed at
all.

The marketplace of ideas is an alluring concept5, but the details of its de-
sign matter. For example, solutions aimed at preventing echo chambers, such
as by exposing the audience to many senders, may inadvertently encourage
anonymity, and paradoxically reduce the quality of debate.

Literature. Several papers modify the basic Bayesian persuasion frame-
work of Kamenica and Gentzkow (2011) by adding multiple senders: Gentzkow
and Kamenica (2017a), Gentzkow and Kamenica (2017b), Ravindran and Cui
(2022). In those extensions, several senders simultaneously design their sig-
nals, but in all of them the signal aggregation technology implies that each
sender can only add to informativeness of the signal of other senders and
can add any more informative signal. The current paper departs from this
assumption in both ways: �rst, because individual signals are not observable,
senders can reduce the intended informativeness of signals of others; second,
the information environment is not Blackwell-connected, meaning individual
senders cannot unilaterally achieve any outcome that is more informative for
a given behavior of other senders. Li and Norman (2018) provide examples
in which departing from assumptions of Gentzkow and Kamenica (2017a,
2017b) can lead to less informativeness. Ravindran and Cui (2022) study
an environment with multiple senders choosing information independently�

4Conversely, when a public square is joined by an informative sender, the quality of
debate may not improve initially as the existing noisy senders counter the e�orts of that
entrant. The new sender will start to have a positive e�ect when she becomes su�ciently
prevalent.

5The marketplace of ideas is the belief that open discourse allows truth to
prevail through the competition of diverse viewpoints. This alluring metaphor
is attributed to Justice Holmes dissenting in the Abrams v. United States
(1919): �(...) the best test of truth is the power of the thought to get it-
self accepted in the competition of the market (...)�, https://tile.loc.gov/storage-
services/service/ll/usrep/usrep250/usrep250616/usrep250616.pdf
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like in the current paper�and they focus on zero-sum games. Their result
is sharp: under some conditions, full information is provided in equilibrium.
By contrast, in the anonymous sender environment of this paper, equilibria
in zero-sum limit reveal bounded amount of information and in some cases
none.

Mylovanov and Zapechelnyuk (2024) study obfuscation in debates. They
consider a sequential Bayesian persuasion game in which the second sender
can augment or obfuscate the information structure chosen by the �rst sender.
They treat this as an exogenous feature of the environment and study its ef-
fect on equilibrium disclosure. In contrast, the current paper analyzes a
simultaneous-move game designed to capture the long-run equilibrium perfor-
mance in a public debate. More importantly, disclosure and obfuscation are
not exogenously imposed but instead emerge endogenously from the model's
parameters, particularly from the preferences of the two senders.

Apart from the most relevant literature mentioned above, there are other
papers which study multi-sender environments.6

2 Model

I begin by outlining the baseline Bayesian persuasion model with multiple
senders, following the approach of Gentzkow and Kamenica (2017a, 2017b).

A state of nature is denoted ω ∈ Ω. The prior belief is common knowledge,
µ ∈ ∆(Ω), with µ (ω) denoting the probability of state ω.

There is one receiver and a �nite set N of senders. Senders know the
state of nature and have access to the same set of signal realizations, S.
Each sender i ∈ N selects a signal (an informational policy, information
structure, experiment), represented by πi : Ω → ∆(S), where πi (s|ω) is the
probability that i announces interim signal realization s ∈ S, given state ω.
An observer who can see realization s updates the prior belief to an interim
posterior given by

xsi (ω) =
µ (ω) πi (s|ω)∑
ω′ µ (ω′) πi (s|ω′)

(1)

The receiver is initially uninformed about the state of nature which nev-
ertheless determines her optimal action. She bene�ts from learning from
the senders, but she learns a public signal realization, rather than interim

6E.g. Atakan et al. (2024), Gilligan and Krehbiel (1989)

6



signal realizations which remain hidden. I explain how the interim signal
realizations determine the public one in a few paragraphs.

After observing the public signal realization r, the receiver updates the
prior belief µ to a public posterior belief yr ∈ ∆(Ω) and on this basis chooses
an action, thereby determining an outcome that matters to the senders.

The game's timing is this: The senders �rst simultaneously commit to
their strategies, πi (later we will represent strategies by means of posteri-
ors rather than these conditional distributions). The receiver observes these
strategies. Then, the state of nature is realized and the interim signal re-
alizations are drawn, which in turn determine the public signal realization.
The receiver updates her prior belief and subsequently chooses an action.7

The receiver is treated as a black box�what matters is that the pub-
lic posterior belief induced by the signal realization r determines senders'
payo�s. This can be captured by assuming that sender i's utility depends
directly on the receiver's belief, represented by the function ui : ∆ (Ω) → R.
Since the receiver's action is mechanistic, this entire interaction reduces to a
simultaneous-move game between the senders.

Most of the analysis will be conducted under the binary assumption: two
states of nature Ω = {0, 1}, with scalar µ denoting the probability of state
1, two possible signal realizations called low and high, S = {L,H}, and two
senders, labeled A and B, namely N = {A,B}.

Babel communication. The last part of the model yet to be explained
determines how the interim signal realizations generate the public signal re-
alization. Each time interim signal realizations are drawn, nature randomly
selects one of them to reveal to the receiver without disclosing which sender
it came from.

Let αi denote the exogenous probability that sender i's interim signal
realization is observed by the receiver, where

∑
i αi = 1. That is, if si ∈ S is

an interim signal realization for sender i, then the public signal realization is
r = si with probability αi.

7The assumption that the sender can commit to a signaling strategy πi is open to criti-
cism, especially here, where anonymity rules out reputation-based justi�cations. Here, the
choice of signal is understood to be a long-term and infrequent decision. A propagandist
might hire journalists, columnists, and in�uencers, training them with carefully crafted
materials. She may indoctrinate them so that they go on to distort the public discourse
according to some specious script. In more modern context, senders might deploy bots,
�ne-tune aggregation algorithms, or use arti�cial intelligence to shape the information
environment without continuous oversight.
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This feature of the model is its key innovation, capturing the idea of
babel�individual voices remaining indistinguishable except through indirect
inference of the overall buzz. This assumption introduces an externality
in communication strategies, as sender i's signal directly interferes with or
distorts the informational content of sender j's signal. In doing so, it departs
from the common assumption in other multi-sender models that information
provided by sender i remains intact regardless of j's actions.

To summarize, µ, xsi and ys describe the same thing�the probability
belief about the state of nature�but at di�erent histories:

1. Common prior probability belief µ (ω) is the belief of ω before observing
any signal realization.

2. Interim posterior probability belief of ω conditional on sender i's an-
nouncement s is given by (1). This hypothetical posterior is unavailable
to the receiver because she cannot observe i's interim signal realization.
In addition, we can de�ne psi =

∑
ω µ (ω) πi (s|ω) to be the uncondi-

tional probability that sender i sends signal realization s.

3. Public posterior probability belief of ω after observing the public signal
realization s is8

ys (ω) =
µ (ω)

∑
i αiπi (s|ω)∑

ω′ µ (ω′)
∑

i αiπi (s|ω′)
. (2)

The probability of the receiver seeing this public signal realization is
ps =

∑
i αip

s
i .

Finally, the Bayesian plausibility constraints state that the expected posterior
for every state must be equal to the prior. They must hold for all interim as
well as public posteriors:

µ (ω) =
∑
s

psix
s
i (ω) (3)

µ (ω) =
∑
s

psys (ω)

Common-order assumption. There are di�erent ways to interpret
communication, and the choice matters for the analysis. The fully �exible

8Public signal realizations were denoted r previously, but since they come from the
same set as senders' signal realizations, we can index them as s.
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approach treats signal realizations as messages without any natural meaning,
allowing senders complete freedom in selecting the probability distributions
πi (·|ω). Alternatively, signal realizations may have an inherent meaning
resembling information disclosure: while senders have considerable �exibility
in shaping the distribution of signal realizations, they cannot construct one
that reverses its natural meaning.

To formalize this restriction for the binary case S = {L,H}, let signal
realization H be allowed to only weakly increase the posterior:

Assumption 1. (Common order) xLi ≤ µ ≤ xHi for all i.

To emphasize, relabeling of signal realizations will not allow us to some-
how bypass this assumption. It is not about inequalities going in this par-
ticular direction, but about them going in the same direction for all senders.
This imposes a common order on signals.

Benchmark analysis will be conducted assuming a common order, but the
assumption will be examined in some detail in section 6.

Equilibrium concept. The solution concept generalizes the standard
pure-strategy Nash equilibrium.

Assumption 2. (Small sender) The solution concept is local pure-strategy
Nash equilibrium (LPSNE).

The quali�er local indicates that only small deviations are considered.
That is, a strategy pro�le may be an LPSNE even if there exists a pro�table
deviation, but this deviation must be of a size bounded away from zero.

At �rst glance, it may seem unnatural to rule out large deviations in a
game involving two large senders, as in the setting described above. However,
the preferred interpretation of the babel game is that it involves a public
square populated by a large number of small senders, each exerting only a
minor in�uence on the aggregate outcome.9

Technically, one can de�ne a K−replica economy, in which N represents
the number of sender types rather than individual senders, and each sender
type consists of K identical individuals, each of which may be selected with
equal probability. AsK approaches in�nity, the in�uence of any single sender
on the aggregate outcome becomes in�nitesimal. In this framework, a large
deviation by one of the two original senders corresponds to a coordinated

9Incidentally, this perspective also supports the realism of the babel assumption, namely
that individual voices are indistinguishable.

9



µ

t

xLi xHi

Figure 1: KG concavi�cation of ui (·)

deviation by an entire sender type in the K−replica game, which is assumed
away in a non-cooperative setting. By contrast, if a strategy pro�le fails
to satisfy the conditions of a local Nash equilibrium in the original game,
then even a single sender in the K−replica game for arbitrary large K could
pro�tably deviate.

Rather than modeling the K−replica game explicitly, I adopt the simpler
approach of analyzing local Nash equilibria in the base game. The implica-
tions of relaxing Assumption 2 will be addressed in section 5.

Single-sender benchmark. Here, I brie�y recall the binary framework
of Kamenica and Gentzkow (2011) with a single-sender, which is the polar
case of the multi-sender environment I consider below, when αi = 1.

The step function with threshold at t on Figure 1 depicts utility of the
single sender as a function of the probability belief of corruption induced in
the voter. If the sender succeeds in rising this belief from the prior µ to a
posterior equal to t or higher, the voter removes the politician, leading to
utility one for the sender; otherwise, the voter reelects the politician and
sender's utility remains zero.

With the single sender,10 the interim posterior is also the public posterior,
and, with two states and signals, it can be denoted as xi =

(
xLi , x

H
i

)
. For

xHi ̸= xLi , probability p
s
i is pinned down by Bayesian plausibility constraint (3)

which simpli�es to
µ = pLi x

L
i +

(
1− pLi

)
xHi . (4)

If xHi = µ = xLi , the probability p
s
i is free.

10In this section, index i is redundant, but it is not removed to keep notation consistent.
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Figure 1 shows a possible con�guration of posteriors on the horizontal
axis. Each signal realization generates a utility level according to the utility
curve. Graphically, the expected utility is the value reached by the dotted
chord at µ, because this is what expected posterior must be, by (4).

Clearly, in this example, the sender can do better by lowering both xLi
and xHi , moving to the dashed chord as indicated by arrows, and increasing
expected utility.

3 Bayesian inference in a babel

This section begins the formal analysis of the multi-sender model. It intro-
duces relationships derived purely from Bayes' rule, which apply regardless
of the senders' preferences. Since senders' payo�s depend only on the public
posterior, understanding how sender i can in�uence it is essential for analyz-
ing incentives in the game between senders.

The following lemma states that public posterior de�ned in (2) as a func-
tion of senders' choices πi can alternatively be stated as a function of (x

s
i , p

s
i ).

Lemma 1. The public posterior belief after observing public signal realization
s is given by:

ys (ω) =
∑
i

λsix
s
i (ω) (5)

where

λsi =
αip

s
i∑

j αjpsj
. (6)

It is tempting to view the public posterior in (5) as a linear function
of interim posteriors. However, the weights λsi , which are the probability
that a given signal realization s is sent by sender i,11 depend not only on the
exogenous frequency of senders, αi, but also on the endogenous probability of
messages senders use, psi . This latter component means that λsi may depend
on xsi through the Bayesian plausibility constraint (3).12

Strategies. Instead of πi, I will take the strategy of sender i to be
the pair of interim posteriors and signal realizations (xsi , p

s
i )s∈S satisfying

Bayesian plausibility (3).

11Note the di�erence with psi , which is the probability that a given sender i sends s.
12Ravindran and Cui (2022) study a similar persuasion model, with the key di�erence

that the independent senders are non-anonymous. Suppose the receiver observes a pair
of signal realizations r = (sA, sB). In the current notation, the public posterior in their
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In a single sender case, we can drop the second component because it is
either determined by Bayesian plausibility, or if it is not, it is irrelevant. For
instance, in the binary example, there are many values of pLi consistent with
posteriors being equal to the prior, but this is immaterial, as the expected
utility remains ui (µ) in this case.

This is no longer true if there is more than one sender. Speci�cally, even
though i's interim posteriors may be equal to the prior, sender i may choose
many di�erent probabilities of signal realizations and in this way a�ects the
public posterior ys.13

I will say that i attempts to provide full information if xsi = 1 for some
s. Sender i will provide no information if xsi = µ for some psi ∈ [0, 1].

Public e�ect of individual choice. When sender i changes one of her
interim posteriors for a given signal realization and state, the Bayesian plausi-
bility condition (3) must still hold. This requires a corresponding adjustment
to another component of her strategy. The next two lemmas examine how the
public posterior changes under di�erent assumptions about which element is
adjusted. The analysis focuses on the two-signal case, where s, z ∈ {L,H},
s ̸= z.

In the �rst result, probabilities of signal realizations are adjusted and
remaining interim posterior are kept constant:

Lemma 2. Let the set of signals be {L,H}. Fix the strategies of all senders
except for sender i. Suppose sender i increases her interim posterior xsi ̸= µ,
and adjusts (psi , p

z
i ) according to Bayesian plausibility constraint (4), so that

xzi ̸= µ remains constant. Then public posteriors react as follows:

1. The same-signal e�ect: ys increases (i.e., dys

dxs
i
> 0) if and only if

(xzi − µ)

(
αi (x

z
i − µ) +

∑
j ̸=i

αjp
s
j

(
xzi − xsj

))
> 0 (7)

model can be derived to be

yr (ω) =

1
µ(ω)x

sA
A (ω)xsB

B (ω)∑
ω′

1
µ(ω′)x

sA
A (ω′)xsB

B (ω′)
.

13Only if xH
i ̸= xL

i when psi is determined by the Bayesian plausibility constraint, I may
skip mentioning it as part of the strategy.
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2. The cross-signal e�ect: yz increases (i.e., dyz

dxs
i
> 0) if and only if

(xzi − µ)
(
xz−i − xzi

)
> 0, (8)

where xz−i is the public posterior after signal z, computed from the in-
terim posteriors of all senders as if sender i was absent:

xz−i =

∑
j ̸=i αjp

z
jx

z
j∑

j ̸=i αjpzj
.

Under the common-order Assumption 1, the same-signal e�ect is unam-
biguously positive.14

The cross-signal e�ect is less straightforward, as it depends on the interim
posterior of the other sender. In essence, the e�ect is positive if and only if
the opposite-signal interim posterior of the other sender is more extreme, i.e.
further from the prior. For example, with two senders, the condition (8)
simpli�es to (xzi − µ)

(
xzj − xzi

)
> 0. Increasing sender i's low-signal interim

posterior (i.e. s = L, z = H), thus moving it closer to the prior, makes her
high signal realization less likely, by Bayesian plausibility constraint. As a
result, sender j's high-signal interim posterior gains more weight in shaping
public belief. If it is higher than sender i's�in other words more extreme�it
pulls the public posterior upward, and the e�ect is positive. If it is lower then
it pulls the public posterior downward, and the e�ect is negative.

In the previous lemma, we increased xsi while holding x
z
i constant, which

required adjusting psi to satisfy Bayesian plausibility. We now consider a
di�erent approach: keeping psi �xed while varying xzi instead.

Lemma 3. Let the set of signals be {L,H}. Fix the strategies of all senders
except for sender i. Suppose sender i increases her interim posterior xsi ̸= µ,
and adjusts xzi ̸= µ to maintain (psi , p

z
i ) constant, according to Bayesian

plausibility constraint (4). Then public posteriors react as follows:

1. The same-signal e�ect: dys

dxs
i
= λsi > 0

2. The cross-signal e�ect: dyz

dxs
i
= −λzi

psi
pzi
< 0.

14If s = L and z = H then xz
i − µ > 0 and xz

i − xs
j > 0, con�rming (7) is positive. If

s = H and z = L then these terms are negative but the whole expression is still positive.
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This lemma is simple to prove, given that weights λsi are �xed by as-
sumption. For example, an increase in xLi < µ while keeping psi constant
translates into a decrease of informativeness in the interim posterior sense;
by the Lemma, informativeness decreases also in the public posterior sense.

Finally, let us record a simple result that if sender A is su�ciently likely,
she has a non-common-order strategy that �undoes� any attempt by sender
B to inform the receiver.

Lemma 4. Let αi ≥ 1/2. For any pure strategy of sender j such that xsj ≤
µ ≤ xzj , sender i can respond with a non-common-order strategy xzi ≤ µ ≤ xsi
such that the public posterior is the same as the prior, ys = µ = yz.

4 Local equilibria in electoral scenarios

This section leverages the structure of threshold utility functions in the binary
case to characterize equilibria under assumptions 1 and 2. While the formal
statements may appear tedious due to many cases, I summarize their key
insights after presenting them.

Recall the electoral environment sketched up in the Introduction. The
voter reelects the politician if her corruption belief is less than tA, and oth-
erwise votes the politician out of power. Moreover, if the belief reaches an
even greater threshold tB, the politician permanently crashes out of politics.

In the �rst scenario, both senders oppose the politician, with sender A
aiming only to ensure the politician's defeat in the election, while sender B
prioritizing ending the politician's future career. Their preferences can be
represented by an increasing threshold utility function of the public proba-
bility belief that the politician is corrupt, de�ned as follows:

ui (y
s) =

{
0 if ys < ti

1 if ys ≥ ti

where ti represents the corresponding receiver's critical threshold for the level
of belief. All our examples assume tA < tB.

Scenario 1. Senders' utility functions have a threshold form with ti, and
they are both increasing.

Figure 2 illustrates the utilities of the two senders as functions of the
probability belief of corruption. The left panel shows the case when the prior
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yHxLi = yL xHA

uA

uB

xHB

tA µ tB

uA

uB
tAµ tB

yHxLi = yL xHA xHB

Figure 2: Some scenario 1 cases.

probability belief falls between the thresholds, tA < µ < tB, while the the
panel on the right depicts µ < tA < tB. In either case, the public posterior
that sender B considers ideal is too informative for sender A. In the left
case, sender A wants to reveal nothing, while on the right, her ideal policy is
somewhat informative but it is still less informative that the ideal policy for
B.

Figure 2 also illustrates possible interim posteriors, though at this stage
it is unclear whether these strategy pro�les arise in equilibrium; the public
posteriors are also shown. The expected payo�s these strategies generate are
also depicted as middle dots on the dashed line segments.

The equilibrium analysis for di�erent parameter con�gurations is next.
De�ne t∗ = µ

αBµ+αA
and de�ne D1 (tA) = tAαBµ

tA−αAµ
for tA > µαA. Both are

shown in Figure 3, with tA on the horizontal axis and tB > tA on the vertical
one. Scenario 1 equilibria for all parameter constellations are described as
follows.

Proposition 1. Assume Scenario 1 with tA < tB. Under Assumptions 1
and 2, equilibrium exists:

1. If tB ≤ t∗, then the following is a LPSNE: xA = (0, µ) and xB =(
0, tBαBµ

µ−tBαA

)
, with public posterior y = (0, tB).

2. If t∗ < tB and tA ≤ t∗, then the following is a LPSNE: xA = (0, µ)
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and xB = (0, 1), with public posterior y =
(
0, µ

αA+µαB

)
.

3. If µ < tB < D1 (tA), then the following is a LPSNE: xA = (µ, 1)

and xB = (0, tB), with public posterior y =
(

αAtBµ
tB−αBµ

, tB

)
.

4. If t∗ < tA, then the following is a LPSNE: xA =
(
0, tAαA

1−tAαB

)
and

xB = (0, 1), with public posterior y = (0, tA).

5. If tB ≤ µ, then the following is a LPSNE: xA = (µ, 1) and xB =
(µ, 1), with public posterior y = (µ, 1).

Equilibria described in Proposition 1 are depicted in the left panel of Fig-
ure 3. Although the analysis does not aim to �nd all possible equilibria, the
categories identi�ed in the proposition cover together the entire parameter
space. In some regions they overlap, indicating the possibility of multiple
equilibria.

Despite the multitude of cases, the interpretation is straightforward. Re-
call that senders' preferences can be ordered. Sender A prefers to provide less
information than sender B, although this misalignment may by tiny. In all
equilibria, sender A reduces the provision of information while sender B does
the opposite. This is a runaway race that eventually hits a bound: either
sender A provides no information, �ooding the public square with noise, or
sender B attempts to provide full information.

Speci�cally, in cases 1 and 2 of the proposition, sender A withholds in-
formation entirely by sending only message H. Since a low signal realization
cannot lead to electoral defeat, sending only H maximizes the chance of the
outcome favored by sender A. Case 1 is depicted on the left panel of Figure 2.
Here, sender B manages to provide enough information to induce a favorable
action after H, achieving her optimal expected payo�, whereas in case 2, she
attempts to do so by attempting fully revealing information, but is unable
to su�ciently shift the outcome in her favor.

Case 3 equilibrium is di�erent in nature. Sender A still avoids providing
information, but does so in a completely di�erent way: by sending only
message L. This makes public realization L su�ciently noisy to push the
corresponding posterior far enough from zero, so that tA ≤ yL. As a result,
the politician loses the election with probability one, which is sender A's
preferred outcome.
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Figure 3: Types of LPSNE. Left: Scenario 1. Right: Scenario 2.

In case 4, even though sender B provides as much information as pos-
sible, sender A can completely o�set this attempt by introducing carefully
calibrated lies and obtains her �rst-best outcome. This case is shown on the
right of Figure 2.

Case 5, provided here for completeness, is the easiest one, as the senders
have common no-communication interest. Thus, there is an equilibrium in
which they fully coordinate in withholding information.

Now, let us move to the second scenario. Recall that now, sender B con-
tinues to be a strong opponent of the politician, but sender A is a supporter.

Scenario 2. Sender B has an increasing threshold utility function with
threshold tB. Sender A has a decreasing threshold utility function with
threshold tA.

These utilities are shown in Figure 4. If tA < µ < tB and if no information
is provided, the outcome of the election is a mere loss in the vote but the
politician survives to live another day. This outcome does not satisfy either
group: sender A does not get their preferred politician, and sender B does
not succeed in banishing them. Despite the dramatic con�ict of interest
between the senders, they agree that information should be provided, as this
may sometimes crush the politician's career if they are corrupt, or elect them
if they are not, the average of which is better than no information.
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xHB

uA
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tA µ tB
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Figure 4: Case 1 of scenario 2.

To analyze this scenario, de�ne

D2 (tA) =
(1− tA)µ− αA (1− µ) tA
(1− tA)− αA (1− µ)

.

Proposition 2. Assume Scenario 2 with tA < tB. Under Assumptions 1
and 2, equilibrium exists:

1. If D2 (tA) ≤ tB ≤ D1 (tA), then

xA =

(
tA (tB − µ)

tA (tB − µ) + (1− µ)αA (tB − tA)
, 1

)
xB =

(
0,

(tB − tA)αBµ

(1− µαA) (tB − tA)− (1− tA) (tB − µ)

)
is a LPSNE. The public posterior is y = (tA, tB).

2. If D1 (tA) ≤ tB, then xA = (µ, 1) and xB = (0, tB) is a LPSNE.

The public posterior is y =
(

αAtBµ
tB−αBµ

, tB

)
.

3. If µ < tA < tB and µ
αA+αBµ

< tB then xA = (0, µ), xB = (0, 1) is a

LPSNE. The public posterior is y =
(
0, µ

αA+µαB

)
.15

15Symmetrically, cases for tA < tB < D2 (tA) are captured as follows. If tB ≤
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Despite the fact that there is no outcome the senders agree to support,
there is one they are united in opposing, and this gives some scope for coop-
eration in providing information to the receiver, as shown in Case 1 of the
Proposition and illustrated in Figure 4. Both senders provide information,
although they gamble that this information will realize di�erent outcomes:
sender A prefers the low signal realization and election win, and sender B
prefers the high one leading to a full crash of the politician. Consequently,
sender A prefers to fully reveal if the politician is honest and lie slightly if
she is corrupt to maximize the expected probability of winning the election.
Sender B prefers the opposite: to always reveal the corrupt politician and
sometimes lie if she is honest, to maximize the chances that the politician
is permanently canceled. The resulting public message is noisy and it never
achieves senders' respective most preferred outcomes. However, it achieves a
compromise in which the worst outcome (a mere loss of the election) never
occurs.

Case 2 is similar in nature except that it describes the situation in which
thresholds are su�ciently asymmetric to trigger one of the senders to with-
hold information. Speci�cally, even though sender A would like the low signal
realization to occur more often, she already does everything from her point
of view to �ood the public square with it.

Case 3 is somewhat di�erent than the previous two. Since the outcome
involves yH < tA, sender A obtains her �rst-best payo� of 1 with certainty, so
the only chance for this not to be an equilibrium is if sender B can pro�tably
deviate locally to shift the public posterior to above tB. With such high
threshold in this case, she is not able to.

5 Relaxing the small-sender assumption

The small-sender assumption 2 helps to sustain equilibria by allowing only
local deviations. In this section, I consider a standard pure-strategy Nash
equilibrium (PSNE) between two senders, A and B, where large deviations
are also permitted. This can alternatively be interpreted as a setting with a
large population of small independent senders of two types, A and B, where

D2 (tA) then xA = (tA, 1) and xB = (0, µ) is a LPSNE with the public posterior

y =
(
tA,

αA(µ−tA)+(1−tA)αBµ
αA(µ−tA)+(1−tA)αB

)
. If tA < tB < µ and tA < αBµ

αA(1−µ)+αB
, then xA = (0, 1)

and xB = (µ, 1) is a LPSNE.
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Figure 5: Types of PSNE. Left: Scenario 1. Right: Scenario 2.

each type can act as a coalition, capable of coordinating its strategy.
Figure 5 is a counterpart of Figure 3. Clearly, all PSNE are also LPSNE,

but the reverse is not true. We see that some regions shrink in comparison to
Figure 3 as newly available non-local deviations knock out certain categories
of equilibria for given parameter values. All new constraints are de�ned in
the Appendix in section 9.8, where the counterparts of propositions 1 and 2
are stated and proven.

Case 4 in the right panel is worth highlighting because it shows that
a standard PSNE may not exist for some parameter values even though
Assumption 1 holds. Here, sender A is con�icted by two di�erent methods
of designing information provision. On the one hand, she wants to �ood
the public square with the high signal realization to guarantee low public
posterior, very much à la case 3. But then, with a low threshold tB in case 4,
sender B has incentives to provide information to move yH su�ciently high
to cancel the politician. In this case, sender A wants to carefully engineer
communication to increase both public posteriors yL and yH , in the spirit of
case 1. However, if this is part of an equilibrium, sender B must decrease
both yL and yH in response, again like in case 1. Now, in contrast to case 1,
sender A realizes she has an incentive to switch to no information provision
as in case 3, because tB is so close to tA. We are back at the beginning of
the best response cycle and thus no pure strategy Nash equilibrium exists.
This switchback requires a large deviation, so it could not play any role in
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the LPSNE of Proposition 2.

6 Relaxing the common-order assumption

This section provides some more general intuitions to clarify the idea that
when non-common-order strategies can be used, the game with su�ciently
con�icting interests has features of a Matching Pennies game, where best re-
sponse cycles in pure strategies arise and no pure-strategy equilibrium exists.
The logic goes as follows: Sender B, who wants to promote communication,
constructs informative signals in response to a given signal strategy of sender
A, but then sender A who wants to reduce informativeness, associates those
signal realizations with precisely opposite outcomes, thus introducing noise.
This cannot be an equilibrium either, because then sender B wants to deviate
to match the sender A's signals, restoring their informativeness.

Armed with Lemma 4 as a stepping stone for the case of the su�ciently
frequent obstructionist, we obtain the following result, where coui is a con-
cavi�cation of function ui.

Proposition 3. Suppose αA ≥ αB, couA (·) is strictly concave at µ, and
uB (·) is strictly convex at µ. Then no PSNE exists.

The above result requires that sender A, the obstructionist, is su�ciently
likely, but it rests on local curvature at µ.16

The next result does not require sender A to occur frequently, but relies
on a stronger assumptions of global concavity and convexity.

Proposition 4. Suppose uA (·) is strictly concave everywhere; suppose uB (·)
is strictly convex everywhere. Then no PSNE exists.

The common-order Assumption 1 may help to restore pure-strategy equi-
libria.

Proposition 5. Suppose uA (·) is strictly concave everywhere; suppose uB (·)
is strictly convex everywhere. Under Assumption 1,

1. a fully informative strategy, xB = (0, 1) is strictly dominant for sender
B,

16Function uB (·) was required to be strictly convex only around µ which is a local
condition. Function couA (·) is strictly concave also only locally, but constructing this
concavi�cation requires the entire function uA (·).
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2. any strategy in which xLA < µ < xHA is strictly dominated by some
strategy in which xA = (µ, µ) for sender A,

3. a PSNE exists.

Proposition 5 asserts the existence of pure strategy equilibria in a very
extreme case. However, the common-order assumption does not guarantee
the existence of pure strategy equilibrium in general as we saw in the previous
section.

These observations provide an interpretation of what �annihilating truth��
as Garry Kasparov stated in the initial quote�might mean. A sophisticated
viewer who recognizes individual senders and observes their signal realiza-
tions might be alarmed by how much poorer public information is in com-
parison. From this perspective, information is destroyed. Of course, the
Blackwell theorem holds because from its point of view, the public sees de-
teriorated signal

∑
i αiπi (s|ω) rather than its higher quality components,

πA (s|ω) , πB (s|ω).

7 Normative performance of debates

Criteria. As a starting point for normative analysis, I focus on the welfare
criterion of Blackwell informativeness, applied to equilibrium public signals
when these can be ordered. The main comparison is between a two-sender
babel and a non-anonymous environment represented by a single-sender case
(or the average of two single-sender cases). Formally, this means comparing
parameter con�gurations where αi ∈ (0, 1) to cases where αi = 1 for some
i.17

I also consider balance, understood as the degree of symmetry in the roles
of the senders. This is an ad hoc but more conventional way to assess the
quality of public debate. I do not o�er a precise de�nition of this concept, but

17The current version of the babel model, in which one sender is selected at random, is
not directly comparable to the non-anonymous environment studied in Gentzkow and Ka-
menica (2017b), Ravindran and Cui (2022) and related work, where the receiver observes
both senders' signal realizations. However, a babel variant in which both realizations are
revealed but their sources remain anonymous would be comparable to their setup. In such
a variant, the public signal realization is r ∈ {LL,LH,HH} where sA = L and sB = H
is indistinguishable from sA = H and sB = L, and both are recorded simply as LH;
the resulting public posterior yr lies in a two-dimensional simplex. I do not pursue this
analysis here.
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several possible speci�cations come to mind which I explain as the analysis
unfolds.

Scenario 1. Consider Scenario 1 with some con�ict of interests µ < tB,
and examine two polar cases: when αB is near 100% and when it is close to
0%.

Suppose the public square is initially dominated by the more informa-
tive senders B, and some less informative senders begin enter, so αB drops
slightly from 100%. In this situation, only case 1 of proposition 1 arises in
equilibrium. The resulting public posterior remains y = (0, tB), the same
when αB = 1, even as some contamination occurs. The reason is that sender
A has enough capacity to neutralize the noise introduced by relatively spo-
radic obstructionists. This capacity is constrained by how sporadic they are,
as de�ned by αB, but also by her own honesty, as measured by the distance
of tB from one.18

Now, let's consider the opposite polar case. Suppose that the marketplace
of ideas is initially populated only by senders A, and more informative senders
B begin to enter, so that αB increases from 0%. When tA > µ, there is
a unique equilibrium given by case 4 of the proposition 1. By a similar
argument to the one in the previous paragraph, sender A's e�ect is fully
neutralized even as αB is positive, since sender B has enough capacity to
cancel out A's in�uence. When tA < µ, both cases 2 and 3 from proposition
1 characterize equilibria. In both, the entry of sender B may immediately
improve the informativeness of the public square.

We can also view Scenario 1 through the lens of balance of the public
square. The receiver is best o� when the public square is unbalanced in the
sense that it is fully dominated by the more informative sender, that is, when
αB = 100%. Any attempt to increase balance of such a marketplace of ideas
will undermine these bene�ts.

On the other hand, invoking balance as a justi�cation to increase the
presence of more informative senders starting from a low-information envi-
ronment such as αB = 0%, may improve the informativeness of the debate.
This would, however, require a designer to �pick the winner.� This may be
possible if the designer (for example a regulator, national broadcaster, or
newspaper editor) can be trusted to identify anonymous but informative

18To see the latter point, note that sender B's ability to counter the noise from sender
A relies on her own reluctance to fully inform the receiver. If she were totally honest, so
that tB = 1, she would have no capacity to o�est sender A's noise and any such noise
would immediately result in case 2 or 4 of the proposition 1.
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sources. Still, the process remains vulnerable to manipulation. A more ro-
bust approach is to remove anonymity, where possible, and allow the receiver
to pick the winner themselves without relying on gatekeepers.

Scenario 2. Here, the informativeness of babel is strictly worse than in
the single-sender case, regardless of which sender is met at the public square.
The outcome is also worse if a non-anonymous but randomly selected sender
(say, with probability αi) interacts with the receiver in the public square.

Comparative statics with respect to αB is as expected: when αB is close
to 100%, the outcome approaches that of the single-sender case with sender
B, and similarly for the opposite case.

It is also interesting to consider the case where tA is close to tB, as this
situation represents a zero-sum game in the limit. The starkest result appears
in case 1 of proposition 2, where tA and tB both converge to µ, satisfying
the condition for this case. The resulting equilibrium public posterior is
y = (tA, tB), which becomes completely uninformative in the limit. This
stands in sharp contrast with zero-sum games discussed in Gentzkow and
Kamenica (2017a) and Ravindran and Cui (2022), where the equilibrium
must be fully informative. Even if the situation is not so knife-edge, the
equilibrium remains at best partially informative. For instance, when tA
converges to a �xed tB > µ, equilibrium is described by case 2 or 3 of the
proposition and is not close to being fully informative.

To someone concerned with the balance of the debate, Scenario 2 might
appear to represent a well-functioning marketplace of ideas. Consider case
1 in proposition 2 as the leading case. Although both senders try to steer
the public posterior in their preferred direction, they are symmetric in their
roles. Unlike in Scenario 1, each sender shares some information, and neither
acts as a clear saboteur. However, the outcome is poor: each sender provides
less information than they would if acting alone, and the resulting public
posterior is less informative as well.

8 Conclusions

This study takes a standard multi-sender model of Bayesian persuasion and
modi�es it by making the senders anonymous. Consequently, the receiver
cannot attribute the message to the author. This approach enables a nuanced
study of endogenous information obfuscation and, in particular, the role of
anonymity in debate design.
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Unfortunately, the model is highly-stylized. The most problematic as-
sumption is that the set of signal realizations is binary. In the information
design analysis, the choice of signal realizations ought to be endogenous and
the set from which they can be selected ought to be large. Other assumptions,
such as binary state of nature or two agents seem less of an issue.

9 Appendix: proofs and additional results

9.1 Proof of Lemma 1

Proof. Manipulating interim posteriors (1) and using psi =
∑

ω µ (ω) πi (s|ω),
we obtain

πi (s|ω) =
1

µ (ω)
psix

s
i (ω) .

Substituting these into public posterior (2) and canceling µ (ω) leads to

ys (ω) =

∑
i αip

s
ix

s
i (ω)∑

ω′
∑

i αipsix
s
i (ω

′)
.

Using
∑

ω′ xsi (ω
′) = 1 in the denominator, we obtain

ys (ω) =

∑
i αip

s
ix

s
i (ω)∑

i αipsi
.

which, after substituting in λsi de�ned in (6), gives the desired result.

9.2 Proof of Lemma 2

Proof. Step 1. Using the formula for public posterior from Lemma 1 and
isolating player i, we obtain

ys =
αip

s
ix

s
i +Ds

i

αipsi + Cs
i

(9)

where Cs
i =

∑
j ̸=i αjp

s
j and D

s
i =

∑
j ̸=i αjp

s
jx

s
j are independent of i's strategy.

Step 2. Using Bayesian plausibility (4) and taking the same-signal deriva-

tive of psi implies
dpsi
dxs

i
=

xz
i−µ

(xz
i−xs

i)
2 . Similarly, the cross-signal derivative is

dpzi
dxs

i
= − xz

i−µ

(xs
i−xz

i )
2 .

25



Step 3. Calculate the same-signal derivative of (9), where step 2 and the
de�nitions of Cs

i and Ds
i were used to simplify the numerator:

dys

dxsi
=

αi (x
z
i − µ)

(xzi − xsi )
2 (αipsi + Cs

i )
2

(
αi (x

z
i − µ) +

∑
j ̸=i

αjp
s
j

(
xzi − xsj

))
.

This proves point 1 of the Lemma.
Step 4. Similarly, starting with yz written in the form of (9), calculate

the cross-signal derivative. Use step 2 and the de�nitions of Cz
i and Dz

i to
simplify the derivative to

dyz

dxsi
=

αi (x
z
i − µ)

(xzi − xsi )
2 (αipzi + Cz

i )
2

(∑
j ̸=i

αjp
z
j

)(∑
j ̸=i αjp

z
jx

z
j∑

j ̸=i αjpzj
− xzi

)
.

This proves point 2 of the Lemma.

9.3 Proof of Lemma 3

Proof. Strategy of sender j do not change, (xj, pj). The probabilities of
signals do not change for player i either, by assumption. Hence, λsi de�ned
in (6) remains constant for all senders and signal realizations. Increasing xsi
leads to the increase of ys = λsix

s
i +
∑

j ̸=i λ
s
jx

s
j and (through xzi ) the decrease

of yz = λzi

(
µ− psi

pzi
xsi

)
+
∑

j ̸=i λ
z
jx

z
j .

9.4 Proof of Lemma 4

Proof. With two senders i ̸= j and two signals s ̸= z, equation (6) can be
expressed as

λsi =
αi (x

z
i − µ)

(
xzj − xsj

)
αi (xzi − µ)

(
xzj − xsj

)
+ αj

(
xzj − µ

)
(xzi − xsi )

(10)

and the public posterior (5) reduces to

ys = λsix
s
i + λsjx

s
j . (11)

The case αi = αj is particularly easy. Let sender i's non-common-order
strategy be explicitly de�ned in terms of j's strategy: (xsi , x

z
i ) =

(
xzj , x

s
j

)
.
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Figure 6: How sender i's strategy a�ects the public posterior and payo�s, for
a �xed strategy of j.

The public posterior (5) reduces to ys = µ, because terms xzj − xsj = xsi − xzi
and αi = αj cancel, and the numerator and the denominator further simplify.

The general case αi ≥ αj is shown indirectly. The public posterior is
equal to the prior, ys = µ, if the following condition holds

αi (x
z
i − µ) (µ− xsi )

(xzi − xsi )
=
αj

(
µ− xzj

) (
xsj − µ

)(
xsj − xzj

)
For any αj and µ, the term on the right is a number in the interval [0, αjµ (1− µ)]
and any such number is generated by some strategy of sender j. The term
on the left is a continuous function [µ, 1]× [0, µ] → [0, αiµ (1− µ)] of sender
i strategy, xi. Since αi ≥ αj, for any right-hand side, there is a pair (xsi , x

z
i )

that satis�es the equation, thus generating the desired posterior µ.

9.5 Expected utility in threshold examples

I begin by examining the general e�ect of changing a strategy component xsi
on the sender's expected utility, holding �xed the opponent's strategy and
the other components of sender i's own strategy, xzi . Lemma 2 showed that
while the direction of the same-signal e�ect is clear, the cross-signal e�ect
can go either way, depending on other factors.

To see the issue, consider sender A in Figure 4, assuming strict inequality
yL < tA. Increasing x

L
A raises yL, which on its own increases expected utility.

However, it may simultaneously reduce yH , which lowers expected utility. On
the surface, the total e�ect is ambiguous. I show that the structure imposed
by the threshold utility function resolves this ambiguity.

Here, the expected utility is Eui. Written as a function Ui (x
s
i , y

z), a
correct way to decipher it is this: Suppose signal realization z is the one
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for which i gets the higher payo� and s is the one for which she gets the
lower payo�, i.e. ui (y

z) = 1 and ui (y
s) = 0. Then Ui (·, yz) is the expected

utility viewed as a function of xsi for a �xed yz (i.e. when xsi changes, xzi
must be adjusted to keep yz constant; then both the initial change of xsi and
the adjusted xzi a�ect the expected utility via ys only, see Figure 6). By
contrast, Ui (x

s
i , ·) is the same expected utility but viewed as a function of yz

for a �xed xsi (i.e. when yz changes, xzi is adjusted but then so is ys, while
xsi is kept constant; both the initial change of yz and adjusted ys a�ect the
expected utility, both triggered by xzi only).

Lemma 5. Suppose sender i has a threshold utility function. Suppose signal
realization z is the one for which i gets the higher payo�, and s is the one for
which she gets the lower payo�: ui (y

z) = 1 and ui (y
s) = 0. Fix the strategy

of sender j. Then i's expected utility is between 0 and 1 and

1. Expected utility as a function of (ys, yz) is

Eui =
ys − µ

ys − yz

2. Expected utility as a function of (xsi , y
z) is

Ui (x
s
i , y

z) =
αi (x

s
i − µ)

(
xsj − xzj

)
+ αj

(
xsj − µ

) (
xsi − xzj

)(
xsj − xzj

)
(xsi − yz)

Proof. Using (10) and (11), public posteriors become

yL =
αA

(
xHA − µ

) (
xHB − xLB

)
xLA +

(
xHA − xLA

)
αB

(
xHB − µ

)
xLB

αA (xHA − µ) (xHB − xLB) + (xHA − xLA)αB (xHB − µ)
(12)

yH =
αA

(
µ− xLA

) (
xHB − xLB

)
xHA +

(
xHA − xLA

)
αB

(
µ− xLB

)
xHB

αA (µ− xLA) (x
H
B − xLB) + (xHA − xLA)αB (µ− xLB)

(13)

Step 1. Equation (12) expresses yL as a function of xLA. Invert this to
express xLA as a function of yL.

xLA =
ψ1

ψ1 + ψ2

yL +
ψ2

ψ1 + ψ2

xHA
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where ψ1 = αA

(
xHA − µ

) (
xHB − xLB

)
and ψ2 = αB

(
xHB − µ

) (
yL − xLB

)
. The

two following di�erences can be derived immediately:

µ− xLA =
ψ1

(
µ− yL

)
+ ψ2

(
µ− xHA

)
ψ1 + ψ2

xHA − xLA =
ψ1

(
xHA − yL

)
ψ1 + ψ2

Step 2. Equation (13) expresses yH as a function of xLA. Using step 1,
we eliminate xLA to rewrite yH as a function of yL. After simplifying and
canceling terms, we obtain:

yH =
ξ1x

H
A + ξ2x

H
B

ξ1 + ξ2

where ξ1 = αA

(
ψ1

(
µ− yL

)
+ ψ2

(
µ− xHA

)) (
xHB − xLB

)
and ξ2 = ψ1

(
xHA − yL

)
αB

(
µ− xLB

)
.

We can also compute the following two di�erences directly:

yH − µ =
ξ1
(
xHA − µ

)
+ ξ2

(
xHB − µ

)
ξ1 + ξ2

yH − yL =
ξ1
(
xHA − yL

)
+ ξ2

(
xHB − yL

)
ξ1 + ξ2

Step 3. Recall that the expected utility for the decreasing threshold utility

function is given by EuA = yH−µ
yH−yL

. Using step 2, we substitute the di�erences
and cancel the common term ξ1 + ξ2:

EuA =
ξ1
(
xHA − µ

)
+ ξ2

(
xHB − µ

)
ξ1 (xHA − yL) + ξ2 (xHB − yL)

=
En

Ed

Observe that the numerator En is a linear function of yL, since it enters
indirectly through ψ2, ξ1, and ξ2. In contrast, the denominator Ed is a
quadratic function of yL. The goal now is to factor out the term µ− yL from
both the numerator and the denominator, cancel it, and conclude that the
expected utility depends on yL only through the denominator.

Focus on the numerator En

En =αA

(
ψ1

(
µ− yL

)
+ ψ2

(
µ− xHA

)) (
xHB − xLB

) (
xHA − µ

)
+ ψ1

(
xHA − yL

)
αB

(
µ− xLB

) (
xHB − µ

)
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Substituting ψ2 into the expression and some cleaning up allows the term
µ− yL to be factored out:

En =
(
µ− yL

)
αA

(
xHA − µ

) (
xHB − xLB

)
C

where
C = αA

(
xHA − µ

) (
xHB − xLB

)
+ αB

(
xHB − µ

) (
xHA − xLB

)
Now focus on the denominator Ed:

Ed =αA

(
ψ1

(
µ− yL

)
+ ψ2

(
µ− xHA

)) (
xHB − xLB

) (
xHA − yL

)
+ ψ1

(
xHA − yL

)
αB

(
µ− xLB

) (
xHB − yL

)
As before, substituting for ψ1 and ψ2 and much cleaning out shows that the
term µ− yL can be factored out:

Ed =
(
µ− yL

)
αA

(
xHA − yL

) (
xHB − xLB

)2 (
xHA − µ

)
(αA + αB)

Putting the expressions for En and Ed together, the factor µ− yL along with
several other common terms, cancels out. The expected utility simpli�es to:

EuA =
αA

(
xHA − µ

) (
xHB − xLB

)
+ αB

(
xHB − µ

) (
xHA − xLB

)
(xHA − yL) (xHB − xLB) (αA + αB)

9.6 Proof of Proposition 1

Point 1 of the Proposition

Statement: If tB ≤ µ
αBµ+αA

, then the following is a LPSNE: xA = (0, µ) and

xB =
(
0, tBαBµ

µ−tBαA

)
. Proof:

Firstly, observe that these strategies are feasible; in particular, xHB ≤ 1 is
guaranteed by the required condition of the statement. Secondly, by applying
equations (10) and (11), observe that these interim posteriors generate the
public posterior y = (0, tB).

Sender B's problem: Sender B obtains the �rst best, so she has no in-
centives to deviate.

Sender A's problem: Suppose xB =
(
0, tBαBµ

µ−tBαA

)
and consider sender A's

expected utility when she uses xA = (0, µ). Sender A obtains 1 when the
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signal realization is high and 0 when it is low, so the expected utility is

EuA = µ−yL

yH−yL
. By Lemma 2, increasing xLA from zero increases both yL and

yH , which reduces expected utility. Likewise, increasing xHA from µ does the
same.

Point 2 of the Proposition

Statement: If µ
αBµ+αA

< tB and tA ≤ µ
αA+µαB

, then the following is a LPSNE:

xA = (0, µ) and xB = (0, 1). Proof:

This strategy pro�le generates public posterior y =
(
0, µ

αA+µαB

)
.

Sender B's problem: The �rst restriction implies that yH < tB. Not only
sender B's payo� is zero with certainty, she cannot change this locally. Since
sender B's utility is considered strictly convex in this case, she must attempt
fully informative strategy xB = (0, 1).

Sender A's problem: The second restriction implies tA ≤ yH , and hence
sender A obtains 1 when the signal realization is high and 0 when it is low;

the expected utility is EuA = µ−yL

yH−yL
. By Lemma 2, increasing xLA from

zero increases both yL and yH , which reduces expected utility. Likewise,
increasing xHA from µ does the same.

Point 3 of the Proposition

Statement: If µ < tB ≤ D1 (tA), then the following is a LPSNE: xA = (µ, 1)
and xB = (0, tB). Proof:

This strategy pro�le implies that y =
(

αAtBµ
tB−αBµ

, tB

)
.

Sender B's problem: When this strategy pro�le is played, sender B ob-
tains payo� one after high signal and zero after low signal, hence her expected

payo� is EuB = µ−yL

yH−yL
. By Lemma 2, increasing xLB from zero increases yL

and does not a�ect yH ; this lowers the expected utility. Increasing xHB from
tB increases both yL and yH which has a similar e�ect.

Sender A's problem: The restriction in the statement implies that tA ≤
yL, and therefore sender A obtains utility 1 with certainty which is her �rst
best.
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Point 4 of the Proposition

Statement: If µ
αA+µαB

≤ tA, then the following is a LPSNE: xA =
(
0, tAαA

1−tAαB

)
and xB = (0, 1). Proof:

Firstly, observe that the restriction in the statement ensures that equilib-
rium xHA ≥ µ. Secondly, this strategy pro�le generates y = (0, tA).

Sender A's problem: Public posterior is sender A's �rst best when µ < tA,
so she has no incentives to deviate.

Sender B's problem: Sender B obtains payo� zero regardless of the public
signal realization and therefore her utility is considered convex. Her strategy
is already maximally informative, so no deviation is bene�cial.

Point 5 of the Proposition

Statement: If tB ≤ µ, then the following is a LPSNE: xA = (µ, 1) and xB =
(µ, 1). This is a common no-communication interest case; no communication
is a trivial equilibrium.

9.7 Proof of Proposition 2

Point 1 of the Proposition

Statement: If D2 (tA) ≤ tB ≤ D1 (tA), then xA =
(

tA(tB−µ)
tA(tB−µ)+(1−µ)αA(tB−tA)

, 1
)

and xB =
(
0, (tB−tA)αBµ

(1−µαA)(tB−tA)−(1−tA)(tB−µ)

)
is a pure strategy equilibrium. Proof:

This strategy pro�le generates public posterior y = (tA, tB).
Sender A's problem: Suppose B uses strategy xB. Sender A can achieve

payo� 1 only after low signal realization and only when yL ≤ tA holds. By
Lemma 5, senderA's expected payo� in this case is UA

(
xHA , y

L
)
. Observe that

this function is increasing in yL. It is also increasing in xHA if tB < D1 (tA),
which holds here. Thus, to characterize the best response of A, both those
variables must be the highest possible in their domains, i.e. yL = tA and
xHA = 1. Component xLA is recovered from these.

Sender B's problem: The argument is symmetric to the previous para-
graph: Suppose A uses xA. Sender B can achieve payo� 1 only after high
signal realization and only when yH ≥ tB holds. By Lemma 5, sender B's
expected utility is UB

(
xLB, y

H
)
. This function is decreasing in yH . It is also

decreasing in xLB if D2 (tA) < tB, which is the case. Both should be as low
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as possible within their domains, hence yH = tB and xLB = 0. The remaining
variable xHB can be recovered from these.

Point 2 of the Proposition

Statement: If D1 (tA) ≤ tB, then xA = (µ, 1) and xB = (0, tB) is a LPSNE.
Proof:

This strategy pro�le generates y =
(

αAtBµ
tB−αBµ

, tB

)
.

Sender A's problem: Let B use strategy xB = (0, tB). Changing xA
should not improve the expected payo� locally when yL ≤ tA < yH .

Let's identify the domain of yL. By checking the formula for yL for the
given strategy xB and for any xHA , we see that the resulting public posterior

is yL ∈
[
0, αAtBµ

tB−αBµ

]
as xLA varies in the feasible interval [0, µ]. The condition

D1 (tA) ≤ tB in the statement guarantees that the upper bound is not greater
than tA, and therefore utility from the low signal is guaranteed to be 1. Sender
A wants to maximize the overall expected utility UA

(
xHA , y

L
)
in the domain.

Since this function is increasing in its second argument, the solution must be
the upper bound, yL = αAtBµ

tB−αBµ
. In this case, the second argument does not

a�ect the payo�, so xHA = 1 is a best response. The remaining argument xLA
can be recovered from this to be µ.

Sender B's problem: Let sender A use xA = (µ, 1). Sender B maximizes
UB

(
xLB, y

H
)
over the domain which, for the given strategy xA = (µ, 1), is

xLB ∈ [0, µ] and yH ∈ [tB, 1]. This function is decreasing in both arguments,
and hence the solution is

(
xLB, y

H
)
= (0, tB). The last variable, x

H
B , is recov-

ered from this.

Point 3 of the Proposition

Statement: if µ < tA < tB and µ
αA+αBµ

< tB, then xA = (0, µ), xB = (0, 1) is
a LPSNE. Proof:

The public posterior is y =
(
0, µ

αA+µαB

)
.

Sender A gets her best payo� of 1 with certainty, so she has no incentive
to deviate. Because of the restriction in the statement, yH < tB, sender B
gets her worst payo� of 0 with certainty and cannot change it.
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9.8 Section 5 results

This section adds additional constraints to the one listed in Propositions 1
and 2, converting them from LPSNE to conventional PSNE.

De�ne

D3 (tA) =
tAµ

tA (1 + αA)− αAµ
, for tA >

µαA

1 + αA

Proposition 6. Assume conditions for Proposition 1. Under the following
additional conditions, LPSNE described in Proposition 1 become PSNE:

1. D3 (tA) < tB.

2. αAµ
1−αBµ

≤ tA.

3. no additional conditions.

4. no additional conditions.

5. no additional conditions.

Proof. Case 1 of the proposition: When the strategy pro�le of this case is
played, sender A can try to increase yL to reach tA, which would be bene�cial
as it would guarantee payo� of 1 with certainty (this is a di�erent deviation
than the local one already considered in the proof of Proposition 1). Using
xLB = 0, (10) and (11), we have

yL =
αA

(
xHA − µ

)
xHBx

L
A

αA (xHA − µ)xHB + (xHA − xLA)αB (xHB − µ)

which increases with xLA for any xHB . Hence, the best chance to reach threshold

tA is to set xLA = µ, which implies yL =
αAxH

Bµ

xH
B−αBµ

. Plugging in sender B's

strategy xHB implies that this public posterior is

yL =
αAtBµ

tB − µ+ tBαA

.

However, the additional condition of the statement assures that the right
hand side is lower than tA, so sender A cannot increase yL to reach threshold
tA.

Case 2 of the proposition: When the strategy pro�le of this case is played,
sender A can try to increase yL up to tA, which would be again bene�cial
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as it would guarantee payo� of 1 with certainty. To maximize yL, sender A
should increase xLA to µ, by Lemma 2. This leads to yL = αAµ

1−αBµ
. However,

the extra condition in the proposition means that yL cannot reach tA.
Other cases: No other non-local deviations are pro�table.

Moving to the counterpart of Scenario 2, de�ne

D4 (tA) =
tAαBµ

µ− tAαA

, for µ < tA <
µ

αA

.

Proposition 7. Assume conditions for Proposition 2. Under the following
additional conditions, LPSNE described in Proposition 2 become PSNE:

1. no additional conditions,

2. D4 (tA) < tB.

3. no additional conditions.

Consequently, if µ < tA < tB, tB < t∗, and tB ≤ D4 (tA) then no PSNE
exists.19

Proof. Case 2: When the strategy pro�le of this case is played, sender A can
try to increase yH up to tA, which would be bene�cial as it would guarantee
payo� of 1 with certainty. The best chance to pro�t from this deviation is to
�ood the public square with the low signal, xA = (0, µ). This strategy leads
to yH = tBµ

αAtB+αBµ
, which reaches tA as long as tB ≥ D4 (tA) for tA <

µ
αA
. If

the inequality is reversed, this deviation is not possible.
Case 1 and 2: No other non-local deviations are pro�table.
The rest of this proof deals with the last statement (new case 4): If

µ < tA < tB, tB < t∗, and tB ≤ D4 (tA) then no PSNE exists. If µ < tA < tB
then in any outcome, yL ≤ tA. There are two possible kinds of PSNE:
one in which yL < yH < tB (Sender B obtains payo� 0 with certainty), or
yL < tB ≤ yH (sender B obtains expected payo� between (0, 1)). Consider
them in turn:

19Symmetrically, cases for tA < tB < D2 (tA) are captured as follows. Let D5 (tA) =
αA(1−µ)tA+(1−tA)αBµ
αA(1−µ)+(1−tA)αB

. If D5 (tA) < tB ≤ D3 (tA) then xA = (tA, 1) and xB = (0, µ) is

a PSNE with the public posterior y =
(
tA,

αA(µ−tA)+(1−tA)αBµ
αA(µ−tA)+(1−tA)αB

)
. If tA < tB < µ and

tA < αBµ
αA(1−µ)+αB

, then xA = (0, 1) and xB = (µ, 1) is a PSNE achieving yH = yL = µ. If

tA < tB < µ, αBµ
αA(1−µ)+αB

< tA, and tB < D5 (tA) then no PSNE exists.
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Step 1: Suppose there is an equilibrium in which yL < yH < tB. Sender
B can deviate to attempt a fully informative strategy, xB = (0, 1), achieving
the public posterior

yH =
αA

(
µ− xLA

)
xHA +

(
xHA − xLA

)
αBµ

αA (µ− xLA) + (xHA − xLA)αBµ

which is bounded below by µ
αA+αBµ

(achieved when xHA = µ), which itself is

greater than tB. Hence this deviation guarantees yH > tB and leads to a
positive expected payo� for sender B. Hence, not an equilibrium.

Step 2. Suppose there is an equilibrium in which yL < tB ≤ yH . In
this equilibrium, sender A considers two types of deviations: (i) can yH be
dropped to tA or less, to ensure payo� of 1 with certainty, (ii) increase both
yL and yH to increase EuA. Firstly, note that sender A must �ood the public
square with low signal realization, xLA = µ. Suppose not: examining incentive
(ii), we observe that UA

(
xHA , y

L
)
increases in yL (in the domain yL ∈ [0, µ],

for given xHA ), which can be increased by increasing xLA alone. Since xLA = µ
and xHA ≥ µ, the public posterior must beyL =

αA(xH
B−xL

B)µ+αB(xH
B−µ)xL

B

αA(xH
B−xL

B)+αB(xH
B−µ)

yH = xHB

Secondly, note that in this equilibrium, senderB's strategy must involve xLB =
0 (lowering xLB lowers yL and doesn't a�ect yH which has an unambiguously
positive e�ect expected utility). Thirdly, this equilibrium must have xHB =
tB (UB

(
xLB, y

H
)
is decreasing in yH , so in equilibrium yH ≥ tB should be

as low as possible and so should xHB ). Finally, we must check if sender A
does not bene�t from following deviation (i) in response to sender B playing
xB = (0, tB) in equilibrium. If this is what sender B plays, the high public
posterior is

yH =
αA

(
µ− xLA

)
tBx

H
A +

(
xHA − xLA

)
αBµtB

αA (µ− xLA) tB + (xHA − xLA)αBµ

Sender A can lower it by setting xHA = µ and reach yH = tBµ
αAtB+αBµ

. This

is not an equilibrium if tBµ
αAtB+αBµ

≤ tA, equivalent tB ≤ D4 (tA), which
holds.
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9.9 Proof of Proposition 3

Proof. Suppose there is a pure strategy equilibrium where yL < µ < yH .
Sender A expected utility from this outcome is strictly lower than uA (µ)
because this point is on the strictly concave part of the concave function
couA (·). By Lemma 4, sender A can respond with a non-common-order
strategy that generates utility uA (µ). This cannot be a Nash equilibrium.
Thus, a pure strategy equilibrium must lead to outcomes yL = µ or yH = µ.
However, for any αB > 0, sender B can deviate and make posteriors close
to the prior but di�erent than them, yL ̸= µ ̸= yH . This deviation bene�ts
sender B since her utility is strictly convex around point µ. Therefore, a
pure strategy equilibrium does not exist.

9.10 Proof of Proposition 4

Proof. In any pure strategy equilibrium equilibrium, there must be some
information transmitted, i.e. yL ̸= µ ̸= yH . For if we had yL = µ or yH = µ,
sender B could deviate and make posteriors close to the prior but di�erent
than them. Regardless of αB > 0, this deviation bene�ts sender B since her
utility is strictly convex around point µ.

Therefore, suppose that in a pure strategy equilibrium, the outcome is
yL < µ < yH . The sender who wants to avoid communication, sender A,
must use a non-common-order strategy, xLA > µ > xHA in which either xHA = 0
or xLA = 1. For if not, she could move yL up and yH down by moving
simultaneously xHA or xLA (keeping pAH constant, by Lemma 3); this would be
bene�cial to her as her utility is strictly concave. Suppose in equilibrium 0 <
xHA < µ, xLA = 1. In this case, a direct application of Lemma 2 implies that
lowering xHA and keeping everything else constant will lower yH and increase
yL. This would be strictly bene�cial for A. Hence, in this equilibrium,
xA = (1, 0). However, then sender B would prefer to match sender A's
strategy and select xB = (1, 0) resulting in public posterior y = (1, 0). This
contradicts the initial assumption that yL < yH . Other cases are similar.

9.11 Proof of Proposition 5

Proof. Sender B's strategy xB = (0, 1) is dominant. Fix any strategy of A
satisfying the common-order assumption xLA ≤ µ ≤ xHA . Consider sender B's
strategy 0 < xLB ≤ µ and µ ≤ xHB < 1 and consider a more informative
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strategy of B, so that psB does not change as in Lemma 3. The resulting
public posterior

(
yL, yH

)
is more informative. Since the utility function is

convex, the expected utility is strictly greater. Hence, a strategy with either
xLB = 0 or xHB = 1 strictly dominates the original one. To see that both
equalities must hold, suppose w.l.o.g. that xLB = 0 and xHB < 1. By Lemma
2, increasing xHB increases yH by the same-signal e�ect and decreases yL by
the cross-signal e�ect. Again, convexity of B's utility implies this change is
bene�cial. Hence xB = (0, 1) is strictly dominant.

For point 2, a strategy of A such that xLA < µ < xHA is strictly dominated
by xA = (µ, µ) and the same probability of signals psA as in the original
strategy. Fix any strategy of B. Posteriors xLA can be increased and xHA
decreased towards µ, to keep psA constant as in Lemma 3. This leads to a
higher yL and a lower yH . Given that A's utility is strictly concave, the
payo� strictly increases.

For the �nal point, since in any equilibrium we have xA = (µ, µ) and
xB = (0, 1), the only remaining variable to construct an equilibrium is pLA.
Sender A has a well-de�ned maximization problem of a continuous expected
concave utility function on a unit interval and hence a solution exists.
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