Formal Methods Considered Normal

Janet Barnes and Angela Wallenburg
ABZ Conference, Southampton, 6 June 2018

dlLTRaN

Agenda

01 Setting the Scene

02 SPARK — What has Worked and Why?
03 Current Large Scale Formal Specification
04 Looking Forward

05 Resources

dlLTRAanN

01.

Setting the Scene

dlLTRAanN

Formal Methods in Industry: Always Applied by Expert Clique?

dlLTRAanN

Some People Do Proof Every Day...

... and are

= aware of it

» using a principled
(CbyC) approach

= not FM experts

= using SPARK

"

o*

<photo collage of hordes of SPARK users>

dlLTRAanN

Why We Do It

dlLTRAanN

The Prevailing V-Model

User/Business

DO-178C: — i
C: SRs Requirements

N\

_ Software System
DO-178C: HLRS“ Specification

AN

High Level
Design

DO-178C: LLRs

AN

Unit Level
Specification

Acceptance
Testing

/

Testing

‘ System ‘

/

Integration
Testing

/

N/

‘ Implementation

Unit
Testing

dlLTRAanN

A Sweet Spot: SPARK

DO-178C: SRs User.-‘_lﬂusiness Accepifance
Requirements Testing
™, s
, /
N, /
N /
N /
. Software System System
DO-178C: HLRs Specification ‘ Testing ‘

KN A
™, s

™, ;s

, s
High Level Integration

Design Testing

DO-178C: LLRs AN /
™, s
Unit Level Unit
Specification Testing
‘\\ /f
s
rs

Implementation

dlLTRAanN

02.

SPARK — What has Worked and Why?

dlLTRAanN

What is SPARK?

SPARK is...

* alanguage
= a set of tools
» adesign approach

... for development of high-integrity applications.

adlLTRaN

SPARK — Analysable Subset of Ada

Core language
Ada constructs commonto

features outside
the SPARK subset Adaand SPARK Additional SPARK

contracts

Ada

&
v

&
v

SPARK

dlLTRAanN

How We Feel about Types

adlTRaN

Contract Example — An Observation about Types

procedure Sgrt (Input : in Integer; Res: out Natural)
with
Pre => Input >= 0,
Post => (Res * Res) <= Input and
Input < (Res + 1) * (Res + 1);

What difference do types make?

dlLTRAanN

Contract Example — An Observation about Types

procedure Sgrt (Input : in Integer; Res: out Natural)
with
Pre => Input >= 0,
Post => (Res * Res) <= Input and
Input < (Res + 1) * (Res + 1);

With the help of types...

procedure Sgrt (Input : in Natural; Res: out Natural)
with
Post => (Res * Res) <= Input and
Input < (Res + 1) * (Res + 1);

... less to write!

dlLTRAanN

Mixing Test and Proof

* Dynamic Semantics — contracts can be:
» compiled
» checked at run time
» thought of as “pre-assert” and “post-assert”

= Static Semantics — contracts can be;:
» interpreted in logic

» formal pre- and post- assertions of a Hoare
triplet

» checked exhaustively by a theorem prover

dlLTRAanN

Number One Killer of FM Tools Uptake?

Alarm:
Off Target

| 77

dlLTRAanN

Semantics of Contracts — Overflows

= Contracts have the same semantics as in Ada:

procedure P (X, Y

: in Positive; Z : out Positive)

with Post => (if X + Y <= Positive'last then Z = X + Y) and
(i1f X + Y > Positive'last then 7Z = Positive'last):;

X +Y could overflow
and raise a run-time
exception when the

Kcontract IS executed

)

Is this a false alarm in your context?

“warning: overflow check might fail”

adlLTRaN

SPARK 2014 Design: Overflow Checking Modes

= Different user needs
» run-time assertion checking for contracts on/off in deliverable
» amount of proof activity, requirements on false alarm rate
= Customisable overflow checking mode
= Options
1. strict Ada semantics for overflow checking
2. minimized overflow checking
3. eliminated - no possibility of overflow (mathematical semantics)
= Specified semantics is used both at run time and for proof

adlLTRaN

SPARK - Teaching

Building High Integrity

Applications with
= formal and sound SPARK

= contracts e
= industrially used R \/ .
* Oopen source mature tools '

= support for academic faculty

= code examples, labs, and sample answers

= excellent books: Chapin, McCormick 2015
(Barnes' book 3rd edition)

= Altran 5 day course for any and all

Consider teaching SPARK... aLTRaN

Lessons Learned in Research Productisation

= Successful case study? Typical activities:

= What about repeat usage? » Producing user-friendly
wrapping software

» Patching theories (80-20% rule
for research work too)

» Constructing cost-benefit
arguments

» Pitching & Teaching
» Porting software

» Making resource control
deterministic

y Test & build

Major investment.

dlLTRAanN

03.

Current Large Scale Formal Specification

dlLTRAanN

Case Study

= Air Traffic Control - IFACTS

—

© NATS Press Office

dlLTRAanN

What is IFACTS?

» Tactical medium term support to controllers:
» Trajectory Prediction
» Conflict Detection
» Flight Path Monitoring

= Enhances existing ATC system:
» Additional tools

» Display components

© NATS Press Office = Improves airspace efficiency.

dlLTRAanN

How much of IFACTS is Specified in Z?

Performance &

Capacity \ LM - Look
- Loo

and Feel

HMI - functional
(2)

Message
Interface (Z)

Core Tools (Z) Flight Data

Processing (2)

dlLTRAanN

How big is the IFACTS Z specification?

Initially developed by a team of 12 engineers.

Actively developed or maintained over 10 years.
» Supporting successful incorporation of major changes.

The specification comprises over 40,000 lines of Z.

The key Z documents amount to over 3,000 pages.

dlLTRAanN

Why we choose Z to write specifications

= 7 models can be Abstract

» Z schema notation allows Structuring of the specification through
encapsulation, modularisation and composition.

» Zis Expressive with a large toolkit of operators
= Easy to combine English narrative with Z notation

Flight Ax 7 @ ¥y TPRecognitionChange § TPUpdateTrack
callsign : CALLSIGN .

departure : FLX . departure € knownFixes — Track
destination : FIX AF/] g/] f\ — LTACKS

type : FlightType -

departure € knownFixes <([q])> Lﬂ!ghf(,uﬂlflgﬂ (] kﬂO%’??thhIS D alLTRanN

How we use Z in specifications

System Specification

Behavioural
Model

Timing
Requirements

ICD
Inputs and
Outputs

Operations

Already Formal
Requirements
(e.g. Algorithms)

Data Model
System State

HMI Look and
Feel

adlTRaN

How we specify systems in Z

= Z boundary identified

= Structured data model

= Abstract messages

= System operations

Z boundary

Detailed partial operations

» For large systems it is important to structure the specification

dlLTRAanN

How we specify systems in Z-The boundary

» Right level of abstraction
= Drawing the line at the display

» What messages cross the Z boundary?

(nae) (vt) (smrnd

dlLTRAanN

How we specify systems in Z — Data Model

Display

Allocations

Mobiles

Mydpp_

Display

Friends
Mobiles

Friends

Allocations

» Hierarchy of packages

» package static characteristics

> primary state

» derived state and derivation
» Invariants on the state

» Initial state

_InitialAllocations
Allocations

~AllocationsDecs

AllocationsEntitiesDecs

AllocationsAssociationsDecs

~AllocationsEntitiesDecs

‘ myMobile : FMOBILE

_AllocationsAssociationsDecs
‘ mobileAllocation : MOBILE ~FRIEND

_AllocationsDerivedAssociations,
AllocationsAssociations
Mobiles
Friends
activeMobilelriend : MOBILE - FRIEND

activeMobileFriend = mobiles <1 mobileAllocation

_Allocations.

AllocationsDerived Associations

myMobile < 1
myMobile Cdom mobileState

ran mobileAllocation C friends

myMobile

%]

mobileAllocation = &

dlLTRAanN

How we specify systems in Z — Operations

_GPSUpdate
= Dynamic behaviour of the whole system AMyApp
» response to asingle stimulus gps? : GPSMsg
> models outputs RefreshDisp
» state changes as post conditions ... = AllocationsDecs
... postponed to partial operations EFriends
UpdatePositionMob

_UpdatePositionMob _RefieshDisp
AMobiles ‘ ADisplay
eps? . GPSMsg |

dlLTRAanN

How we specify systems in Z — Partial Operations

» behaviour of one package

» the detail of the change
...as post conditions on the package state
_UpdatePositionMob _RefreshDisp

AMobiles ADisplay
aps? . GPSMsg

= DisplayPrimaryDecs

mobileState' =
mobileState
@ {Mobile | number = gps?.mobld
A gpsLocation = gps? .position

e O\ Ahilel
®umber — GMobile) alLTRaN

How we specify systems in Z - Schema types

» Heavy use to aggregate properties of an entity together.
» Encapsulation is enforced stylistically.

_FriendsDecs
FriendsEntitiesDecs
Friend _FriendsEntitiesDecs _AddF riend
—ren fiiendState : FRIEND ~+ Friend AM App
ident: FRIEND Jriends | P FRIEND ne Iﬁr’end'} . FriendData
B WwWiriend! . frie
firstname : NAME
o _FriendsEntities = DisplavD
Surname : NAME FriendsEntitiesDecs =Lispiaytiecs
knownAs : NAME v £+ dom friendstate ® (friendState f).ident = f HAllocationsDecs
birthday . Date AddFriendFr
_Friends _ .
FriendsEntities EMobiles
_InitialFriends
Friends

dlLTRAanN

friends = &

How we specify systems in Z — Condition Hierarchies

= We apply a divide and conquer approach using predicate schemas
» Schemas as guards.

» Partial operations are decomposed into fragments.
» Schema composition to “do A” and then “do B”

_DisplayScreenCentre _MyMobileExists
DisplayDerivedDecs Allocations
Allocations myMobile # &

MyMobileExists =
(3 mm : MOBILE ® {mm} = myMobile
A screenCentre = (mobileState mm).gpsLocation)
= MyMobileExists =

screenCentre = defaultPosn

dlLTRAanN

Verification of Z specifications

= We always Q
» type check our specifications. -

» review our specifications against the requirements. ?:/,;,
= \We may also prove the following: \ y -
» existence of an initial state.

» precondition of operations
» properties hold of our system

= Our specifications are often too big to realistically apply these proofs.

dlLTRAanN

Our experience —what is successful?

Implementing from a Z specification.

Developers and testers agree.

Training software engineers to read Z.

Z specification is maintainable.

Requirements ambiguities found early.

adlLTRaN

Our experience —what is difficult?
* Finding good Z specification authors
= Overcoming the language gap

= Justifying the up-front investment

04.

Looking Forward

dlLTRAanN

Specification Improvement Motivation

DO-178C: SRs Userf_Business Accepi:'ance
Requirements Testing

Contract? Customer Lingo Warranty?
E E E E EEE . -------------------------74-------

Risk Developer Lingo
) oftware System System
DO-178C: HLRs —| STt SYore M Yo ‘
Cost
High Level Integration
Design Testing

DO-178C: LLRs —

Unit Level Unit
Specification Testing

‘ Implementation

dlLTRAanN

SECT-AIRGoal Q. SECT-AIR

BAE SYSTEMS Southampton

2 L EONARDO UNIVERSITY ¢ J07%& N EE P S

AIRBORNE & SPACE SYSTEMS

“To deliver a step-change improvement in

) the affordability of aerospace software.

. This is required to secure and develop the aUTRar
/ UK as a world leader in critical and

complex systems development and enable

UK aerospace to build new products.”

Rolls-Royce

|:|_f.'“'u'rER — - —
OXFORD s e
rapiia D-RISQ coswam

SOFTWARE SYSTEMS

dlLTRAanN

http://www.york.ac.uk/

Which Specification Technology to Choose?

Wait... let us
consider
semantics
first!

adlLTRaN

Sample label for
Macaroni & Cheese

Ontology Nutrition Facts
(1) Start Here == S0 S o 2
Focusing on semantics. G macOnlorien cxierins_Tamirens
m . Total Fat 12g — @
DO m a| n Saturated Fat 3g Quick Guide
. Limit th Trans Fat 3g
» Expressiveness © \etronte * |t o el
Sodium 470mg
= Executable or not T e 5% or less
. . Sugars 5g is Low
= Non-determinism Protein 59 - ——
. ° or more
» Ex: throttleisinranget i ... t ., (4) Get Enough |G | S
: : Caloium_
= Abstraction mechanisms B
= Validation possibilities T a0 30
. o (5) Footnote s pormadlc
» Tool processing possibilities ool o e B e
Dietary Fiber 2599 2(7):9

dlLTRAanN

Two strands of work: Evaluation & Step Change in Existing Process

1. Evaluation of ABZ languages and tools

» No silver bullet!

» Challenging evaluation questions: records, editors, tool
maturity, structuring, refinement

» Longer term evaluation and community effort

2. Step change in risk and cost improvement
» Multilingual specifications
» Natural language
» Automatically generated V&V monitors

y Z and fuzz based
aLTRaN

Specification Solution Architecture

Writer

Grammar

GF
Grammars

Specification
Engineer

SW Developer

Business
Requirements

[EN

M~ Acceptance |e—
Test Suite

e
IN—{1/0 and Algo. |¢—1
Specifications

4

Specification
Document

[=

> Wrapping

Text

Code

Formal
Gen.

|{ Specification

el

Same
Semantics

O~
Natural Lang.
Specification

Verification
Conditions

V&V

Natural Lang.
Examples

Customer
Specification Pack
(Contract/Warranty)

Engineer

Customer Customer
Non-Technical Technical

dlLTRAanN

13 Years Ago in Another Verification Tool Building Team...

An example OCL specification for verification of a JavaCard program in the
KeY proof system (Johannison 2005):

context OwnerPIN
def: let tryCounter = self.trieslLeft->at(l)

context OwnerFIN::check(pin: Sequence(Integer),
offset: Integer, length: Integer): Boolean
post: self.tryCounter = 0 implies result = false
post: (self.tryCounter > O and pin <> null and offset >= 0 and length >= O
and offset+length <= pin->size()
and Util.arrayCompare(self.pin, 0, pin, offset, length) = 0
}) implies (result = true and self.isValidated{) and tryCounter = maxTries)
post: (self.tryCounter > 0 and not (pin <* null and offset >= 0 and length >= 0
and offset+length <= pin-»sizel()
and Util.arrayCompare(self.pin, 0, pin, offset, length) = 0)
) implies (not self.isValidated() and self.tryCounter = tryCounter@pre-1 and
({ not excThrown(java::lang::Exception) and result = false)
or excThrown(java::lang::NullPointerException)
or excThrown(java::lang::ArrayIndexOut0fBoundsException)))

adlLTRan
Fig. 1. OCL specification from the Java Card API

First Translation Attempt

In Fig. 2 we show the translation of the OCL specification produced by an earlier
version of our system. The English text is basically correct, but it is clumsy and
very hard to read.

for the class OwnerPIN introduce the following definition : the tryCounter is defined as the element
at index 1 of the triesLeft of the ownerPIN for the operation check [pin : Seq(Integer) . offset :
Integer , length : Integer) : Boolean of the class javacard::framework::OwnerPIN the [ollowing holds
: the following postconditions should hold : (*) if the tryCounter of the ownerPIN is equal to 0, the
result is equal to false (*) if the tryCounter of the ownerPIN is greater than 0 and pin is not equal
to null and offset is at least 0 and length is at least 00 and offset plus length is at most the size of
pin and the query arrayCompare [the pin of the ownerPIN | 0, pin . offset , length) to Util is

equal to 0, the result is equal to true and the query isValidated ({) holds for the ownerPIN and the

tryCounter of the ownerPIN is equal to the maxTries of the ownerPIN (*) il the tryCounter of the TranS|at|0n tO
ownerPIN is greater than 0 and it is not the case that pin is not equal to null and offset is at least 0 En IISh O.I: the
and length is at least 0 and offset plus length is at most the size of pin and the query arrayCompare g

{ the pin of the ownerPIN |, 0, pin , offset , length) to Util is equal to 0, it is not the case that OCL SpeCIflcatlon

the query isValidated () holds for the ownerPIN and the tryCounter of the ownerPIN is equal to

the tryCounter of the ownerPIN at the beginning of the Operation minus 1 and it is not the case (JOhannison 2005)

that an exception is thrown and the result is equal to false or a nullPointerException is thrown or

an arraylndexOutofBoundsException is thrown aLTRan

Fig. 2. Translation of OCL specification (before)

Improved Translation

for the class OwnerPIN introduce the following definition :
— the try counter is defined as the element at index 1 of the triesLeft attribute

for the operation check (pin : Sequence(Integer) , offset : Integer , length : Integer) :
Boolean of the class javacard::framework::OwnerPIN |
the following post-conditions should hold :

— il the try counter is equal to 0 then this implies that the result is equal to false
— il the following conditions are true
e the lry counter is greater than 0
e pin is not equal to null
o offset is at least 0
e length is at least 0
e offsel plus length is at most the size of pin
e the query arrayCompare (the pin , 0 , pin , offset , length)' on Util is
equal to 0
then this implies that the following conditions are true
e the result is equal to true
e this owner PIN is validated
e the try counter is equal to the maximum number of tries
— if the try counter is greater than 0 and at least one of the following conditions is not true
e pin is not equal to null
offsel is at least 0
length is at least 0
offsel plus length is at most the size of pin
the query arrayCompare (the pin , 0 , pin , offset , lemgth)2 on Util is
equal to 0
then this implies that the following conditions are true
e this owner PIN is not validated
e the try counter is equal to the previous value of the try counter minus 1
e at least one of the following conditions is true
= an exception is not thrown and the result is equal to false

= a null pointer exception is thrown aLTRan

= an array index out of bounds exception is thrown

Trade-Offs in Natural Language Translation Techniques

1. Statistical methods
» Consumer-oriented
» Wide coverage
> Imprecise
2. Rule-based methods
» Producer-oriented
» Grammar-based
» Restricted
3. Ad-hoc methods
» We are used to writing parsers and linearisers... can’t be that difficult?

adlLTRaN

Grammatical Framework

Multilingual grammar formalism

Based on type theory and functional
programming

Multilingual grammar = abstract syntax +
concrete syntaxes

Parsing: from string to abstract syntax
Linearization: from abstract syntax to string
Translation = parsing followed by linearization
Abstract syntax is interlingua

adlLTRaN

Grammatical Framework Mission...

dlLTRAanN

...Is Grammar Engineering Without Tears

Catalan
French
Hind Thai

dlLTRAanN

Aarne Ranta [FINMT16] Cipancse) Copanisn)

Multilingual Specifications — Progress and Future Work

= Abstract core grammar (GF) @
close to Spivey’'s ZRM
= Concrete grammars:
» Fuzzlisp
) LaTeX ﬁ;ﬁgﬁiﬂﬁ;ﬁﬂﬁar
» English
» V&V Monitors in {ELZ%'::} Python Z lib
Python/SpecSPARK

dlLTRAanN

Some Concluding Remarks

= Correctness by Construction
IS still important and hot
» Keep teaching and improving
“text-book style” formal
verification

= How do we recruit and train
specifiers?

» How could we make ABZ
courses for lawyers, linguists,
chemical engineers,
astrophysicists...? SITRAN

05.

Resources

dlLTRAanN

SPARK Resources & Getting Started

= SPARK 2014: http://www.spark-2014.orqg/

» GAP - GNAT Academic Program
» Open-source, GPL release of SPARK tools
» _https://www.adacore.com/academia
» Support from SPARK team for faculty

= (Getting Started

» Download the tools: http://libre.adacore.com/download/

» User Guide: http://docs.adacore.com/spark2014-docs/html/ug/, chapter 5,
SPARK tutorial, is a good start

» SPARK 2014 Reference Manual: htip://docs.adacore.com/spark2014-
docs/html/Irm

dlLTRAanN

http://www.spark-2014.org/
http://www.spark-2014.org/
http://www.spark-2014.org/
http://www.spark-2014.org/
http://www.spark-2014.org/
https://www.adacore.com/academia
https://www.adacore.com/academia
https://www.adacore.com/academia
https://www.adacore.com/academia
http://libre.adacore.com/download/
http://libre.adacore.com/download/
http://libre.adacore.com/download/
http://docs.adacore.com/spark2014-docs/html/ug/
http://docs.adacore.com/spark2014-docs/html/ug/
http://docs.adacore.com/spark2014-docs/html/ug/
http://docs.adacore.com/spark2014-docs/html/ug/
http://docs.adacore.com/spark2014-docs/html/ug/
http://docs.adacore.com/spark2014-docs/html/lrm
http://docs.adacore.com/spark2014-docs/html/lrm
http://docs.adacore.com/spark2014-docs/html/lrm
http://docs.adacore.com/spark2014-docs/html/lrm
http://docs.adacore.com/spark2014-docs/html/lrm

Some More References

» Tokeneer case study: https://www.adacore.com/tokeneer
» Grammatical Framework: https://www.grammaticalframework.org/
» Digital Grammars: http://www.digitalgrammars.com/

= A. Ranta’s FINMT 2016 presentation: https://blogs.helsinki.fi/language-
technology/files/2016/09/FINMT2016-aarne-ranta.pdf

» Fuzz typechecker for Z:
http://spivey.oriel.ox.ac.uk/corner/Fuzz typechecker for Z

» High Integrity Agile, our take:
https://cacm.acm.org/magazines/2017/10/221329-what-can-agile-
methods-bring-to-high-integrity-software-development/abstract

dlLTRAanN

https://www.adacore.com/tokeneer
https://www.adacore.com/tokeneer
https://www.grammaticalframework.org/
https://www.grammaticalframework.org/
http://www.digitalgrammars.com/
http://www.digitalgrammars.com/
https://blogs.helsinki.fi/language-technology/files/2016/09/FINMT2016-aarne-ranta.pdf
https://blogs.helsinki.fi/language-technology/files/2016/09/FINMT2016-aarne-ranta.pdf
https://blogs.helsinki.fi/language-technology/files/2016/09/FINMT2016-aarne-ranta.pdf
https://blogs.helsinki.fi/language-technology/files/2016/09/FINMT2016-aarne-ranta.pdf
https://blogs.helsinki.fi/language-technology/files/2016/09/FINMT2016-aarne-ranta.pdf
https://blogs.helsinki.fi/language-technology/files/2016/09/FINMT2016-aarne-ranta.pdf
https://blogs.helsinki.fi/language-technology/files/2016/09/FINMT2016-aarne-ranta.pdf
https://blogs.helsinki.fi/language-technology/files/2016/09/FINMT2016-aarne-ranta.pdf
https://blogs.helsinki.fi/language-technology/files/2016/09/FINMT2016-aarne-ranta.pdf
http://spivey.oriel.ox.ac.uk/corner/Fuzz_typechecker_for_Z
http://spivey.oriel.ox.ac.uk/corner/Fuzz_typechecker_for_Z
http://spivey.oriel.ox.ac.uk/corner/Fuzz_typechecker_for_Z
https://cacm.acm.org/magazines/2017/10/221329-what-can-agile-methods-bring-to-high-integrity-software-development/abstract
https://cacm.acm.org/magazines/2017/10/221329-what-can-agile-methods-bring-to-high-integrity-software-development/abstract
https://cacm.acm.org/magazines/2017/10/221329-what-can-agile-methods-bring-to-high-integrity-software-development/abstract
https://cacm.acm.org/magazines/2017/10/221329-what-can-agile-methods-bring-to-high-integrity-software-development/abstract
https://cacm.acm.org/magazines/2017/10/221329-what-can-agile-methods-bring-to-high-integrity-software-development/abstract
https://cacm.acm.org/magazines/2017/10/221329-what-can-agile-methods-bring-to-high-integrity-software-development/abstract
https://cacm.acm.org/magazines/2017/10/221329-what-can-agile-methods-bring-to-high-integrity-software-development/abstract
https://cacm.acm.org/magazines/2017/10/221329-what-can-agile-methods-bring-to-high-integrity-software-development/abstract
https://cacm.acm.org/magazines/2017/10/221329-what-can-agile-methods-bring-to-high-integrity-software-development/abstract
https://cacm.acm.org/magazines/2017/10/221329-what-can-agile-methods-bring-to-high-integrity-software-development/abstract
https://cacm.acm.org/magazines/2017/10/221329-what-can-agile-methods-bring-to-high-integrity-software-development/abstract
https://cacm.acm.org/magazines/2017/10/221329-what-can-agile-methods-bring-to-high-integrity-software-development/abstract
https://cacm.acm.org/magazines/2017/10/221329-what-can-agile-methods-bring-to-high-integrity-software-development/abstract
https://cacm.acm.org/magazines/2017/10/221329-what-can-agile-methods-bring-to-high-integrity-software-development/abstract
https://cacm.acm.org/magazines/2017/10/221329-what-can-agile-methods-bring-to-high-integrity-software-development/abstract
https://cacm.acm.org/magazines/2017/10/221329-what-can-agile-methods-bring-to-high-integrity-software-development/abstract
https://cacm.acm.org/magazines/2017/10/221329-what-can-agile-methods-bring-to-high-integrity-software-development/abstract
https://cacm.acm.org/magazines/2017/10/221329-what-can-agile-methods-bring-to-high-integrity-software-development/abstract
https://cacm.acm.org/magazines/2017/10/221329-what-can-agile-methods-bring-to-high-integrity-software-development/abstract
https://cacm.acm.org/magazines/2017/10/221329-what-can-agile-methods-bring-to-high-integrity-software-development/abstract
https://cacm.acm.org/magazines/2017/10/221329-what-can-agile-methods-bring-to-high-integrity-software-development/abstract
https://cacm.acm.org/magazines/2017/10/221329-what-can-agile-methods-bring-to-high-integrity-software-development/abstract

adlLTRaN

