
Janet Barnes and Angela Wallenburg 

ABZ Conference, Southampton, 6 June 2018 

Formal Methods Considered Normal 



Agenda 

01 Setting the Scene 

02 SPARK – What has Worked and Why? 

 
03 Current Large Scale Formal Specification 

 
04 Looking Forward 

 
05 Resources 

 



01. 

Setting the Scene 



Formal Methods in Industry: Always Applied by Expert Clique? 



Some People Do Proof Every Day… 

… and are 

 

 aware of it 

 using a principled 

(CbyC) approach 

 not FM experts 

 using SPARK 
<photo collage of hordes of SPARK users> 



Why We Do It 



The Prevailing V-Model 



A Sweet Spot: SPARK 



02. 

SPARK – What has Worked and Why? 



What is SPARK? 

SPARK is... 

 

 a language 

 a set of tools 

 a design approach 

 

 

 

... for development of high-integrity applications. 



SPARK – Analysable Subset of Ada 



How We Feel about Types 



Contract Example – An Observation about Types 

 

 

 

 

What difference do types make? 

 

procedure Sqrt (Input : in Integer; Res: out Natural) 

  with  

       Pre  => Input >= 0, 

       Post => (Res * Res) <= Input and 

               Input < (Res + 1) * (Res + 1); 



Contract Example – An Observation about Types 

 

 

 

 

With the help of types…  

 

 

 

 

… less to write! 

 

 

procedure Sqrt (Input : in Integer; Res: out Natural) 

  with  

       Pre  => Input >= 0, 

       Post => (Res * Res) <= Input and 

               Input < (Res + 1) * (Res + 1); 

procedure Sqrt (Input : in Natural; Res: out Natural) 

  with  

       Post => (Res * Res) <= Input and 

               Input < (Res + 1) * (Res + 1); 



Mixing Test and Proof 

 Dynamic Semantics – contracts can be: 

› compiled  

› checked at run time 

› thought of as “pre-assert” and “post-assert” 

 

 Static Semantics – contracts can be: 

› interpreted in logic  

› formal pre- and post- assertions of a Hoare 

triplet  

› checked exhaustively by a theorem prover 

 



Number One Killer of FM Tools Uptake? 

!? 

Alarm: 

Off Target 



Semantics of Contracts – Overflows 

 Contracts have the same semantics as in Ada: 

 

 

 

 

 

                 “warning: overflow check might fail” 

 

 

Is this a false alarm in your context? 

 

 

 procedure P (X, Y : in Positive; Z : out Positive) 

   with Post => (if X + Y <= Positive'Last then Z = X + Y) and 

                (if X + Y > Positive'Last then Z = Positive'Last); 

X + Y could overflow 

and raise a run-time 

exception when the 

contract is executed 



SPARK 2014 Design: Overflow Checking Modes  

 Different user needs 

› run-time assertion checking for contracts on/off in deliverable 

› amount of proof activity, requirements on false alarm rate 

 Customisable overflow checking mode 

 Options 

1. strict Ada semantics for overflow checking 

2. minimized overflow checking 

3. eliminated - no possibility of overflow (mathematical semantics) 

 Specified semantics is used both at run time and for proof 

 

 

 

 

 



SPARK - Teaching 

 formal and sound 

 contracts 

 industrially used 

 open source mature tools 

 support for academic faculty 

 code examples, labs, and sample answers 

 excellent books: Chapin, McCormick 2015 

(Barnes' book 3rd edition) 

 Altran 5 day course for any and all 

 

Consider teaching SPARK… 



Lessons Learned in Research Productisation 

 Successful case study? 

 What about repeat usage? 

 

 

 

 

 

 

 

Major investment. 

Typical activities: 

› Producing user-friendly 

wrapping software 

› Patching theories (80-20% rule 

for research work too) 

› Constructing cost-benefit 

arguments 

› Pitching & Teaching 

› Porting software 

› Making resource control 

deterministic 

› Test & build 

 

 



03. 

Current Large Scale Formal Specification 



Case Study 

 Air Traffic Control - iFACTS 

© NATS Press Office 



What is iFACTS? 

  Tactical medium term support to controllers: 

› Trajectory Prediction 

› Conflict Detection 

› Flight Path Monitoring 

 

 Enhances existing ATC system: 

› Additional tools 

› Display components 

 

 Improves airspace efficiency. © NATS Press Office 



How much of iFACTS is Specified in Z? 



How big is the iFACTS Z specification? 

 Initially developed by a team of 12 engineers. 

 

 Actively developed or maintained over 10 years. 

› Supporting successful incorporation of major changes. 

 

 The specification comprises over 40,000 lines of Z. 

 

 The key Z documents amount to over 3,000 pages. 



Why we choose Z to write specifications 

 Z models can be Abstract 

 Z schema notation allows Structuring of the specification through 

encapsulation, modularisation and composition.  

 Z is Expressive with a large toolkit of operators  

 Easy to combine English narrative with Z notation 

 



How we use Z in specifications 



 For large systems it is important to structure the specification 

 

SystemSystem

Z boundary

System

Z boundary

System

Z boundary

System

Z boundary

Op

System

Z boundary

Op

How we specify systems in Z 

  Z boundary identified 

  Structured data model 

  Abstract messages 

  System operations 

  Detailed partial operations 

 



How we specify systems in Z –The boundary 

 Right level of abstraction 
 

 Drawing the line at the display 
 

 What messages cross the Z boundary? 
 

 



  Hierarchy of packages 

 

 package static characteristics  

 

›  primary state 

›  derived state and derivation 

›  invariants on the state 

›  initial state 

 

 

 

How we specify systems in Z – Data Model 



How we specify systems in Z – Operations 

 Dynamic behaviour of the whole system 

›  response to a single stimulus 

›  models outputs 

›  state changes as post conditions … 

 … postponed to partial operations 

 

 

 



How we specify systems in Z – Partial Operations 

  behaviour of one package 

  the detail of the change  

 …as post conditions on the package state 
 

 

 



How we specify systems in Z – Schema types 

 Heavy use to aggregate properties of an entity together. 

 Encapsulation is enforced stylistically. 

 



How we specify systems in Z – Condition Hierarchies 

 We apply a divide and conquer approach using predicate schemas 

› Schemas as guards. 

› Partial operations are decomposed into fragments. 

› Schema composition to “do A” and then “do B” 

 

 



Verification of Z specifications 

 We always  

› type check our specifications.  

› review our specifications against the requirements. 

 

 We may also prove the following: 

› existence of an initial state. 

› precondition of operations 

› properties hold of our system 

 

 Our specifications are often too big to realistically apply these proofs. 



Our experience – what is successful? 

 Implementing from a Z specification. 

 

 Developers and testers agree. 

 

 Training software engineers to read Z. 

 

 Requirements ambiguities found early. 

 

 Z specification is maintainable. 

 

 



Our experience – what is difficult? 

 Finding good Z specification authors 

 

 Overcoming the language gap 

 

 Justifying the up-front investment 

 

 



04. 

Looking Forward 



Specification Improvement Motivation 



SECT-AIR Goal 

“To deliver a step-change improvement in 

the affordability of aerospace software. 

This is required to secure and develop the 

UK as a world leader in critical and 

complex systems development and enable 

UK aerospace to build new products.” 

http://www.york.ac.uk/


Which Specification Technology to Choose? 

 

 

 

 

Wait... let us 

consider 

semantics 

first! 



Ontology 

Focusing on semantics. 

 Domain 

 Expressiveness 

 Executable or not 

 Non-determinism 

› Ex: throttle is in range tmin … tmax 

 Abstraction mechanisms 

 Validation possibilities 

 Tool processing possibilities 

 



Two strands of work: Evaluation & Step Change in Existing Process 

1. Evaluation of ABZ languages and tools 

› No silver bullet! 

› Challenging evaluation questions: records, editors, tool 

maturity, structuring, refinement 

› Longer term evaluation and community effort 

 

2. Step change in risk and cost improvement 

› Multilingual specifications 

› Natural language 

› Automatically generated V&V monitors 

› Z and fuzz based 

 

 



Specification Solution Architecture 



13 Years Ago in Another Verification Tool Building Team... 

An example OCL specification for verification of a JavaCard program in the 

KeY proof system (Johannison 2005): 



First Translation Attempt 

 

 

 

 

 

 

Translation to 

English of the  

OCL specification 

(Johannison 2005) 



Improved Translation 



Trade-Offs in Natural Language Translation Techniques 

1. Statistical methods 

› Consumer-oriented 

› Wide coverage 

› Imprecise 

2. Rule-based methods 

› Producer-oriented 

› Grammar-based 

› Restricted 

3. Ad-hoc methods 

› We are used to writing parsers and linearisers… can’t be that difficult? 



Grammatical Framework 

 Multilingual grammar formalism 

 Based on type theory and functional 

programming 

 Multilingual grammar = abstract syntax + 

concrete syntaxes 

 Parsing: from string to abstract syntax 

 Linearization: from abstract syntax to string 

 Translation = parsing followed by linearization 

 Abstract syntax is interlingua 



Grammatical Framework Mission… 

Aarne Ranta [FINMT16] 



...is Grammar Engineering Without Tears 

Aarne Ranta [FINMT16] 



Multilingual Specifications – Progress and Future Work 

 Abstract core grammar (GF) 

close to Spivey’s ZRM 

 Concrete grammars: 

› Fuzzlisp 

› LaTeX 

› English 

› V&V Monitors in 

Python/SpecSPARK  



Some Concluding Remarks 

 Correctness by Construction 

is still important and hot 

› Keep teaching and improving 

“text-book style” formal 

verification 

 

 How do we recruit and train 

specifiers? 

› How could we make ABZ 

courses for lawyers, linguists, 

chemical engineers, 

astrophysicists…? 

 



05. 

Resources 



SPARK Resources & Getting Started 

 SPARK 2014: http://www.spark-2014.org/  

 GAP - GNAT Academic Program 

›  Open-source, GPL release of SPARK tools 

›  https://www.adacore.com/academia  

›  Support from SPARK team for faculty 

  Getting Started 

› Download the tools: http://libre.adacore.com/download/  

› User Guide: http://docs.adacore.com/spark2014-docs/html/ug/, chapter 5, 

SPARK tutorial, is a good start 

› SPARK 2014 Reference Manual: http://docs.adacore.com/spark2014-

docs/html/lrm  

http://www.spark-2014.org/
http://www.spark-2014.org/
http://www.spark-2014.org/
http://www.spark-2014.org/
http://www.spark-2014.org/
https://www.adacore.com/academia
https://www.adacore.com/academia
https://www.adacore.com/academia
https://www.adacore.com/academia
http://libre.adacore.com/download/
http://libre.adacore.com/download/
http://libre.adacore.com/download/
http://docs.adacore.com/spark2014-docs/html/ug/
http://docs.adacore.com/spark2014-docs/html/ug/
http://docs.adacore.com/spark2014-docs/html/ug/
http://docs.adacore.com/spark2014-docs/html/ug/
http://docs.adacore.com/spark2014-docs/html/ug/
http://docs.adacore.com/spark2014-docs/html/lrm
http://docs.adacore.com/spark2014-docs/html/lrm
http://docs.adacore.com/spark2014-docs/html/lrm
http://docs.adacore.com/spark2014-docs/html/lrm
http://docs.adacore.com/spark2014-docs/html/lrm


Some More References 

 Tokeneer case study: https://www.adacore.com/tokeneer  

 Grammatical Framework: https://www.grammaticalframework.org/  

 Digital Grammars: http://www.digitalgrammars.com/  

 A. Ranta’s FINMT 2016 presentation: https://blogs.helsinki.fi/language-

technology/files/2016/09/FINMT2016-aarne-ranta.pdf 

 Fuzz typechecker for Z: 

http://spivey.oriel.ox.ac.uk/corner/Fuzz_typechecker_for_Z  

 High Integrity Agile, our take: 

https://cacm.acm.org/magazines/2017/10/221329-what-can-agile-

methods-bring-to-high-integrity-software-development/abstract  

https://www.adacore.com/tokeneer
https://www.adacore.com/tokeneer
https://www.grammaticalframework.org/
https://www.grammaticalframework.org/
http://www.digitalgrammars.com/
http://www.digitalgrammars.com/
https://blogs.helsinki.fi/language-technology/files/2016/09/FINMT2016-aarne-ranta.pdf
https://blogs.helsinki.fi/language-technology/files/2016/09/FINMT2016-aarne-ranta.pdf
https://blogs.helsinki.fi/language-technology/files/2016/09/FINMT2016-aarne-ranta.pdf
https://blogs.helsinki.fi/language-technology/files/2016/09/FINMT2016-aarne-ranta.pdf
https://blogs.helsinki.fi/language-technology/files/2016/09/FINMT2016-aarne-ranta.pdf
https://blogs.helsinki.fi/language-technology/files/2016/09/FINMT2016-aarne-ranta.pdf
https://blogs.helsinki.fi/language-technology/files/2016/09/FINMT2016-aarne-ranta.pdf
https://blogs.helsinki.fi/language-technology/files/2016/09/FINMT2016-aarne-ranta.pdf
https://blogs.helsinki.fi/language-technology/files/2016/09/FINMT2016-aarne-ranta.pdf
http://spivey.oriel.ox.ac.uk/corner/Fuzz_typechecker_for_Z
http://spivey.oriel.ox.ac.uk/corner/Fuzz_typechecker_for_Z
http://spivey.oriel.ox.ac.uk/corner/Fuzz_typechecker_for_Z
https://cacm.acm.org/magazines/2017/10/221329-what-can-agile-methods-bring-to-high-integrity-software-development/abstract
https://cacm.acm.org/magazines/2017/10/221329-what-can-agile-methods-bring-to-high-integrity-software-development/abstract
https://cacm.acm.org/magazines/2017/10/221329-what-can-agile-methods-bring-to-high-integrity-software-development/abstract
https://cacm.acm.org/magazines/2017/10/221329-what-can-agile-methods-bring-to-high-integrity-software-development/abstract
https://cacm.acm.org/magazines/2017/10/221329-what-can-agile-methods-bring-to-high-integrity-software-development/abstract
https://cacm.acm.org/magazines/2017/10/221329-what-can-agile-methods-bring-to-high-integrity-software-development/abstract
https://cacm.acm.org/magazines/2017/10/221329-what-can-agile-methods-bring-to-high-integrity-software-development/abstract
https://cacm.acm.org/magazines/2017/10/221329-what-can-agile-methods-bring-to-high-integrity-software-development/abstract
https://cacm.acm.org/magazines/2017/10/221329-what-can-agile-methods-bring-to-high-integrity-software-development/abstract
https://cacm.acm.org/magazines/2017/10/221329-what-can-agile-methods-bring-to-high-integrity-software-development/abstract
https://cacm.acm.org/magazines/2017/10/221329-what-can-agile-methods-bring-to-high-integrity-software-development/abstract
https://cacm.acm.org/magazines/2017/10/221329-what-can-agile-methods-bring-to-high-integrity-software-development/abstract
https://cacm.acm.org/magazines/2017/10/221329-what-can-agile-methods-bring-to-high-integrity-software-development/abstract
https://cacm.acm.org/magazines/2017/10/221329-what-can-agile-methods-bring-to-high-integrity-software-development/abstract
https://cacm.acm.org/magazines/2017/10/221329-what-can-agile-methods-bring-to-high-integrity-software-development/abstract
https://cacm.acm.org/magazines/2017/10/221329-what-can-agile-methods-bring-to-high-integrity-software-development/abstract
https://cacm.acm.org/magazines/2017/10/221329-what-can-agile-methods-bring-to-high-integrity-software-development/abstract
https://cacm.acm.org/magazines/2017/10/221329-what-can-agile-methods-bring-to-high-integrity-software-development/abstract
https://cacm.acm.org/magazines/2017/10/221329-what-can-agile-methods-bring-to-high-integrity-software-development/abstract
https://cacm.acm.org/magazines/2017/10/221329-what-can-agile-methods-bring-to-high-integrity-software-development/abstract
https://cacm.acm.org/magazines/2017/10/221329-what-can-agile-methods-bring-to-high-integrity-software-development/abstract
https://cacm.acm.org/magazines/2017/10/221329-what-can-agile-methods-bring-to-high-integrity-software-development/abstract



