3D X-ray Histology for biomedical applications at the University of Southampton: Get involved, Get in touch!

Orestis L. Katsamenis^{1*}, Elena Konstantinopoulou², Philip Basford³, Jane A. Warner⁴, Oliver J. Larkin⁴, Bennie Smit⁴, Ian Haig^{3,5}, Simon J. Cox³, Ian Sinclair^{1,3}, Anton Page^{2,6}, Peter M. Lackie^{2,4}, Philipp Schneider^{1,3}

¹µ-VIS X-ray Imaging Centre, Faculty of Engineering and the Physical Sciences, [University of Southampton, Southampton, UK]⁺; ²Biomedical Imaging Unit, Clinical & Experimental Sciences, Faculty of Medicine*; ³ Faculty of Engineering and Physical Sciences*; ⁴ School of Clinical and Experimental Sciences, Faculty of Medicine*; ⁵ Nikon X-Tek Systems Ltd, Tring, UK; ⁶ University Hospital Southampton NHS Foundation Trust, Southampton, UK

X-ray micro-computed tomography (µCT) allows non-destructive 3D (volume) imaging of specimens' microstructure. We have demonstrated that μ CT can successfully resolve microstructural detail¹ of routinely prepared tissue specimens, to a degree that can challenge current understanding of disease pathogenesis^{2,3}. We recently introduced 3D X-ray histology^[1] and demonstrated how combining µCT with conventional 2D histological techniques adds value to both⁴.

3D X-ray Histology (XRH) is non-destructive and non-disruptive imaging technology based on soft tissue-optimised µCT, capable of complementing conventional histology with truly 3D micro-structural data of standard unstained, formalin-fixed and paraffin-embedded (FFPE) soft tissue biopsies. Find out more

High-resolution imaging of FFPE soft tissues down to ~5 μm spatial resolution

- Non-destructive, distortion-free 3D (volume) imaging
 - > Correlative 2D histology / immunohistochemistry and 3D visualisation
 - > Whole block imaging

Matching XRH and histology of a head and neck tumour specimen • Specimen was scanned on the cassette at 10 µm voxel (3D pixel) size without staining

• Serial sections were taken after µCT and stained with H&E

XRH + Conventional Histology Augmented tomography for enhanced "specificity"

Expanding the clinical imaging landscape

Direct integration into existing histology workflows Current Specimen Fissue sectioning Tissue Tissue and staining processing Embedding accession (biopsy) Workflow Dehydratio Clearing Fixation Proposed routine

Benefits of X-ray Histology

3D X-ray Histology

ging Centre | E

Get involved, Get in touch with the XRH-team !

We are always **looking for collaborations** to explore the full potential of the technology, and can provide open access to the technique for proof-of-concept studies with qualitative inspection and quantitative image-based characterisation of the tissue.

We are particularly interested in stimulating and supporting novel and exploratory projects, introducing 3D X-ray Histology to the wider biomedical research and clinical pathology community and identifying application-specific imaging needs

visit: www.XrayHistology.org
contact us at info@xrayhistology.org

Acknowledgements

Wellcome Trust Biomedical Resource and Technology Development Grant 212940/Z/18/Z Histochemistry Research Unit, University of Southampton, UK